forked from mirrors/linux
		
	 b03641af68
			
		
	
	
		b03641af68
		
	
	
	
	
		
			
			In preparation for runtime randomization of the zone lists, take all (well, most of) the list_*() functions in the buddy allocator and put them in helper functions. Provide a common control point for injecting additional behavior when freeing pages. [dan.j.williams@intel.com: fix buddy list helpers] Link: http://lkml.kernel.org/r/155033679702.1773410.13041474192173212653.stgit@dwillia2-desk3.amr.corp.intel.com [vbabka@suse.cz: remove del_page_from_free_area() migratetype parameter] Link: http://lkml.kernel.org/r/4672701b-6775-6efd-0797-b6242591419e@suse.cz Link: http://lkml.kernel.org/r/154899812264.3165233.5219320056406926223.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: Keith Busch <keith.busch@intel.com> Cc: Robert Elliott <elliott@hpe.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			2884 lines
		
	
	
	
		
			89 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2884 lines
		
	
	
	
		
			89 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef _LINUX_MM_H
 | |
| #define _LINUX_MM_H
 | |
| 
 | |
| #include <linux/errno.h>
 | |
| 
 | |
| #ifdef __KERNEL__
 | |
| 
 | |
| #include <linux/mmdebug.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/debug_locks.h>
 | |
| #include <linux/mm_types.h>
 | |
| #include <linux/range.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/percpu-refcount.h>
 | |
| #include <linux/bit_spinlock.h>
 | |
| #include <linux/shrinker.h>
 | |
| #include <linux/resource.h>
 | |
| #include <linux/page_ext.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/page_ref.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/overflow.h>
 | |
| #include <linux/sizes.h>
 | |
| 
 | |
| struct mempolicy;
 | |
| struct anon_vma;
 | |
| struct anon_vma_chain;
 | |
| struct file_ra_state;
 | |
| struct user_struct;
 | |
| struct writeback_control;
 | |
| struct bdi_writeback;
 | |
| 
 | |
| void init_mm_internals(void);
 | |
| 
 | |
| #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
 | |
| extern unsigned long max_mapnr;
 | |
| 
 | |
| static inline void set_max_mapnr(unsigned long limit)
 | |
| {
 | |
| 	max_mapnr = limit;
 | |
| }
 | |
| #else
 | |
| static inline void set_max_mapnr(unsigned long limit) { }
 | |
| #endif
 | |
| 
 | |
| extern atomic_long_t _totalram_pages;
 | |
| static inline unsigned long totalram_pages(void)
 | |
| {
 | |
| 	return (unsigned long)atomic_long_read(&_totalram_pages);
 | |
| }
 | |
| 
 | |
| static inline void totalram_pages_inc(void)
 | |
| {
 | |
| 	atomic_long_inc(&_totalram_pages);
 | |
| }
 | |
| 
 | |
| static inline void totalram_pages_dec(void)
 | |
| {
 | |
| 	atomic_long_dec(&_totalram_pages);
 | |
| }
 | |
| 
 | |
| static inline void totalram_pages_add(long count)
 | |
| {
 | |
| 	atomic_long_add(count, &_totalram_pages);
 | |
| }
 | |
| 
 | |
| static inline void totalram_pages_set(long val)
 | |
| {
 | |
| 	atomic_long_set(&_totalram_pages, val);
 | |
| }
 | |
| 
 | |
| extern void * high_memory;
 | |
| extern int page_cluster;
 | |
| 
 | |
| #ifdef CONFIG_SYSCTL
 | |
| extern int sysctl_legacy_va_layout;
 | |
| #else
 | |
| #define sysctl_legacy_va_layout 0
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
 | |
| extern const int mmap_rnd_bits_min;
 | |
| extern const int mmap_rnd_bits_max;
 | |
| extern int mmap_rnd_bits __read_mostly;
 | |
| #endif
 | |
| #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
 | |
| extern const int mmap_rnd_compat_bits_min;
 | |
| extern const int mmap_rnd_compat_bits_max;
 | |
| extern int mmap_rnd_compat_bits __read_mostly;
 | |
| #endif
 | |
| 
 | |
| #include <asm/page.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/processor.h>
 | |
| 
 | |
| #ifndef __pa_symbol
 | |
| #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
 | |
| #endif
 | |
| 
 | |
| #ifndef page_to_virt
 | |
| #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
 | |
| #endif
 | |
| 
 | |
| #ifndef lm_alias
 | |
| #define lm_alias(x)	__va(__pa_symbol(x))
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * To prevent common memory management code establishing
 | |
|  * a zero page mapping on a read fault.
 | |
|  * This macro should be defined within <asm/pgtable.h>.
 | |
|  * s390 does this to prevent multiplexing of hardware bits
 | |
|  * related to the physical page in case of virtualization.
 | |
|  */
 | |
| #ifndef mm_forbids_zeropage
 | |
| #define mm_forbids_zeropage(X)	(0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * On some architectures it is expensive to call memset() for small sizes.
 | |
|  * If an architecture decides to implement their own version of
 | |
|  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
 | |
|  * define their own version of this macro in <asm/pgtable.h>
 | |
|  */
 | |
| #if BITS_PER_LONG == 64
 | |
| /* This function must be updated when the size of struct page grows above 80
 | |
|  * or reduces below 56. The idea that compiler optimizes out switch()
 | |
|  * statement, and only leaves move/store instructions. Also the compiler can
 | |
|  * combine write statments if they are both assignments and can be reordered,
 | |
|  * this can result in several of the writes here being dropped.
 | |
|  */
 | |
| #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
 | |
| static inline void __mm_zero_struct_page(struct page *page)
 | |
| {
 | |
| 	unsigned long *_pp = (void *)page;
 | |
| 
 | |
| 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
 | |
| 	BUILD_BUG_ON(sizeof(struct page) & 7);
 | |
| 	BUILD_BUG_ON(sizeof(struct page) < 56);
 | |
| 	BUILD_BUG_ON(sizeof(struct page) > 80);
 | |
| 
 | |
| 	switch (sizeof(struct page)) {
 | |
| 	case 80:
 | |
| 		_pp[9] = 0;	/* fallthrough */
 | |
| 	case 72:
 | |
| 		_pp[8] = 0;	/* fallthrough */
 | |
| 	case 64:
 | |
| 		_pp[7] = 0;	/* fallthrough */
 | |
| 	case 56:
 | |
| 		_pp[6] = 0;
 | |
| 		_pp[5] = 0;
 | |
| 		_pp[4] = 0;
 | |
| 		_pp[3] = 0;
 | |
| 		_pp[2] = 0;
 | |
| 		_pp[1] = 0;
 | |
| 		_pp[0] = 0;
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Default maximum number of active map areas, this limits the number of vmas
 | |
|  * per mm struct. Users can overwrite this number by sysctl but there is a
 | |
|  * problem.
 | |
|  *
 | |
|  * When a program's coredump is generated as ELF format, a section is created
 | |
|  * per a vma. In ELF, the number of sections is represented in unsigned short.
 | |
|  * This means the number of sections should be smaller than 65535 at coredump.
 | |
|  * Because the kernel adds some informative sections to a image of program at
 | |
|  * generating coredump, we need some margin. The number of extra sections is
 | |
|  * 1-3 now and depends on arch. We use "5" as safe margin, here.
 | |
|  *
 | |
|  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
 | |
|  * not a hard limit any more. Although some userspace tools can be surprised by
 | |
|  * that.
 | |
|  */
 | |
| #define MAPCOUNT_ELF_CORE_MARGIN	(5)
 | |
| #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
 | |
| 
 | |
| extern int sysctl_max_map_count;
 | |
| 
 | |
| extern unsigned long sysctl_user_reserve_kbytes;
 | |
| extern unsigned long sysctl_admin_reserve_kbytes;
 | |
| 
 | |
| extern int sysctl_overcommit_memory;
 | |
| extern int sysctl_overcommit_ratio;
 | |
| extern unsigned long sysctl_overcommit_kbytes;
 | |
| 
 | |
| extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
 | |
| 				    size_t *, loff_t *);
 | |
| extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
 | |
| 				    size_t *, loff_t *);
 | |
| 
 | |
| #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
 | |
| 
 | |
| /* to align the pointer to the (next) page boundary */
 | |
| #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
 | |
| 
 | |
| /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
 | |
| #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
 | |
| 
 | |
| #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
 | |
| 
 | |
| /*
 | |
|  * Linux kernel virtual memory manager primitives.
 | |
|  * The idea being to have a "virtual" mm in the same way
 | |
|  * we have a virtual fs - giving a cleaner interface to the
 | |
|  * mm details, and allowing different kinds of memory mappings
 | |
|  * (from shared memory to executable loading to arbitrary
 | |
|  * mmap() functions).
 | |
|  */
 | |
| 
 | |
| struct vm_area_struct *vm_area_alloc(struct mm_struct *);
 | |
| struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
 | |
| void vm_area_free(struct vm_area_struct *);
 | |
| 
 | |
| #ifndef CONFIG_MMU
 | |
| extern struct rb_root nommu_region_tree;
 | |
| extern struct rw_semaphore nommu_region_sem;
 | |
| 
 | |
| extern unsigned int kobjsize(const void *objp);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * vm_flags in vm_area_struct, see mm_types.h.
 | |
|  * When changing, update also include/trace/events/mmflags.h
 | |
|  */
 | |
| #define VM_NONE		0x00000000
 | |
| 
 | |
| #define VM_READ		0x00000001	/* currently active flags */
 | |
| #define VM_WRITE	0x00000002
 | |
| #define VM_EXEC		0x00000004
 | |
| #define VM_SHARED	0x00000008
 | |
| 
 | |
| /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
 | |
| #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
 | |
| #define VM_MAYWRITE	0x00000020
 | |
| #define VM_MAYEXEC	0x00000040
 | |
| #define VM_MAYSHARE	0x00000080
 | |
| 
 | |
| #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
 | |
| #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
 | |
| #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
 | |
| #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
 | |
| #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
 | |
| 
 | |
| #define VM_LOCKED	0x00002000
 | |
| #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
 | |
| 
 | |
| 					/* Used by sys_madvise() */
 | |
| #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
 | |
| #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
 | |
| 
 | |
| #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
 | |
| #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
 | |
| #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
 | |
| #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
 | |
| #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
 | |
| #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
 | |
| #define VM_SYNC		0x00800000	/* Synchronous page faults */
 | |
| #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
 | |
| #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
 | |
| #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
 | |
| 
 | |
| #ifdef CONFIG_MEM_SOFT_DIRTY
 | |
| # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
 | |
| #else
 | |
| # define VM_SOFTDIRTY	0
 | |
| #endif
 | |
| 
 | |
| #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
 | |
| #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
 | |
| #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
 | |
| #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
 | |
| 
 | |
| #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
 | |
| #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
 | |
| #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
 | |
| #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
 | |
| #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
 | |
| #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
 | |
| #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
 | |
| #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
 | |
| #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
 | |
| #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
 | |
| #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
 | |
| #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
 | |
| 
 | |
| #ifdef CONFIG_ARCH_HAS_PKEYS
 | |
| # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
 | |
| # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
 | |
| # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
 | |
| # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
 | |
| # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
 | |
| #ifdef CONFIG_PPC
 | |
| # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
 | |
| #else
 | |
| # define VM_PKEY_BIT4  0
 | |
| #endif
 | |
| #endif /* CONFIG_ARCH_HAS_PKEYS */
 | |
| 
 | |
| #if defined(CONFIG_X86)
 | |
| # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
 | |
| #elif defined(CONFIG_PPC)
 | |
| # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
 | |
| #elif defined(CONFIG_PARISC)
 | |
| # define VM_GROWSUP	VM_ARCH_1
 | |
| #elif defined(CONFIG_IA64)
 | |
| # define VM_GROWSUP	VM_ARCH_1
 | |
| #elif defined(CONFIG_SPARC64)
 | |
| # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
 | |
| # define VM_ARCH_CLEAR	VM_SPARC_ADI
 | |
| #elif !defined(CONFIG_MMU)
 | |
| # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_X86_INTEL_MPX)
 | |
| /* MPX specific bounds table or bounds directory */
 | |
| # define VM_MPX		VM_HIGH_ARCH_4
 | |
| #else
 | |
| # define VM_MPX		VM_NONE
 | |
| #endif
 | |
| 
 | |
| #ifndef VM_GROWSUP
 | |
| # define VM_GROWSUP	VM_NONE
 | |
| #endif
 | |
| 
 | |
| /* Bits set in the VMA until the stack is in its final location */
 | |
| #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
 | |
| 
 | |
| #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
 | |
| #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| #define VM_STACK	VM_GROWSUP
 | |
| #else
 | |
| #define VM_STACK	VM_GROWSDOWN
 | |
| #endif
 | |
| 
 | |
| #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 | |
| 
 | |
| /*
 | |
|  * Special vmas that are non-mergable, non-mlock()able.
 | |
|  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
 | |
|  */
 | |
| #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
 | |
| 
 | |
| /* This mask defines which mm->def_flags a process can inherit its parent */
 | |
| #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
 | |
| 
 | |
| /* This mask is used to clear all the VMA flags used by mlock */
 | |
| #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
 | |
| 
 | |
| /* Arch-specific flags to clear when updating VM flags on protection change */
 | |
| #ifndef VM_ARCH_CLEAR
 | |
| # define VM_ARCH_CLEAR	VM_NONE
 | |
| #endif
 | |
| #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
 | |
| 
 | |
| /*
 | |
|  * mapping from the currently active vm_flags protection bits (the
 | |
|  * low four bits) to a page protection mask..
 | |
|  */
 | |
| extern pgprot_t protection_map[16];
 | |
| 
 | |
| #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
 | |
| #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
 | |
| #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
 | |
| #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
 | |
| #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
 | |
| #define FAULT_FLAG_TRIED	0x20	/* Second try */
 | |
| #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
 | |
| #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
 | |
| #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
 | |
| 
 | |
| #define FAULT_FLAG_TRACE \
 | |
| 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
 | |
| 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
 | |
| 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
 | |
| 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
 | |
| 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
 | |
| 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
 | |
| 	{ FAULT_FLAG_USER,		"USER" }, \
 | |
| 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
 | |
| 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
 | |
| 
 | |
| /*
 | |
|  * vm_fault is filled by the the pagefault handler and passed to the vma's
 | |
|  * ->fault function. The vma's ->fault is responsible for returning a bitmask
 | |
|  * of VM_FAULT_xxx flags that give details about how the fault was handled.
 | |
|  *
 | |
|  * MM layer fills up gfp_mask for page allocations but fault handler might
 | |
|  * alter it if its implementation requires a different allocation context.
 | |
|  *
 | |
|  * pgoff should be used in favour of virtual_address, if possible.
 | |
|  */
 | |
| struct vm_fault {
 | |
| 	struct vm_area_struct *vma;	/* Target VMA */
 | |
| 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
 | |
| 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
 | |
| 	pgoff_t pgoff;			/* Logical page offset based on vma */
 | |
| 	unsigned long address;		/* Faulting virtual address */
 | |
| 	pmd_t *pmd;			/* Pointer to pmd entry matching
 | |
| 					 * the 'address' */
 | |
| 	pud_t *pud;			/* Pointer to pud entry matching
 | |
| 					 * the 'address'
 | |
| 					 */
 | |
| 	pte_t orig_pte;			/* Value of PTE at the time of fault */
 | |
| 
 | |
| 	struct page *cow_page;		/* Page handler may use for COW fault */
 | |
| 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
 | |
| 	struct page *page;		/* ->fault handlers should return a
 | |
| 					 * page here, unless VM_FAULT_NOPAGE
 | |
| 					 * is set (which is also implied by
 | |
| 					 * VM_FAULT_ERROR).
 | |
| 					 */
 | |
| 	/* These three entries are valid only while holding ptl lock */
 | |
| 	pte_t *pte;			/* Pointer to pte entry matching
 | |
| 					 * the 'address'. NULL if the page
 | |
| 					 * table hasn't been allocated.
 | |
| 					 */
 | |
| 	spinlock_t *ptl;		/* Page table lock.
 | |
| 					 * Protects pte page table if 'pte'
 | |
| 					 * is not NULL, otherwise pmd.
 | |
| 					 */
 | |
| 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
 | |
| 					 * vm_ops->map_pages() calls
 | |
| 					 * alloc_set_pte() from atomic context.
 | |
| 					 * do_fault_around() pre-allocates
 | |
| 					 * page table to avoid allocation from
 | |
| 					 * atomic context.
 | |
| 					 */
 | |
| };
 | |
| 
 | |
| /* page entry size for vm->huge_fault() */
 | |
| enum page_entry_size {
 | |
| 	PE_SIZE_PTE = 0,
 | |
| 	PE_SIZE_PMD,
 | |
| 	PE_SIZE_PUD,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * These are the virtual MM functions - opening of an area, closing and
 | |
|  * unmapping it (needed to keep files on disk up-to-date etc), pointer
 | |
|  * to the functions called when a no-page or a wp-page exception occurs.
 | |
|  */
 | |
| struct vm_operations_struct {
 | |
| 	void (*open)(struct vm_area_struct * area);
 | |
| 	void (*close)(struct vm_area_struct * area);
 | |
| 	int (*split)(struct vm_area_struct * area, unsigned long addr);
 | |
| 	int (*mremap)(struct vm_area_struct * area);
 | |
| 	vm_fault_t (*fault)(struct vm_fault *vmf);
 | |
| 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
 | |
| 			enum page_entry_size pe_size);
 | |
| 	void (*map_pages)(struct vm_fault *vmf,
 | |
| 			pgoff_t start_pgoff, pgoff_t end_pgoff);
 | |
| 	unsigned long (*pagesize)(struct vm_area_struct * area);
 | |
| 
 | |
| 	/* notification that a previously read-only page is about to become
 | |
| 	 * writable, if an error is returned it will cause a SIGBUS */
 | |
| 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
 | |
| 
 | |
| 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
 | |
| 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
 | |
| 
 | |
| 	/* called by access_process_vm when get_user_pages() fails, typically
 | |
| 	 * for use by special VMAs that can switch between memory and hardware
 | |
| 	 */
 | |
| 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
 | |
| 		      void *buf, int len, int write);
 | |
| 
 | |
| 	/* Called by the /proc/PID/maps code to ask the vma whether it
 | |
| 	 * has a special name.  Returning non-NULL will also cause this
 | |
| 	 * vma to be dumped unconditionally. */
 | |
| 	const char *(*name)(struct vm_area_struct *vma);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	/*
 | |
| 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
 | |
| 	 * to hold the policy upon return.  Caller should pass NULL @new to
 | |
| 	 * remove a policy and fall back to surrounding context--i.e. do not
 | |
| 	 * install a MPOL_DEFAULT policy, nor the task or system default
 | |
| 	 * mempolicy.
 | |
| 	 */
 | |
| 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
 | |
| 
 | |
| 	/*
 | |
| 	 * get_policy() op must add reference [mpol_get()] to any policy at
 | |
| 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
 | |
| 	 * in mm/mempolicy.c will do this automatically.
 | |
| 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
 | |
| 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
 | |
| 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
 | |
| 	 * must return NULL--i.e., do not "fallback" to task or system default
 | |
| 	 * policy.
 | |
| 	 */
 | |
| 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
 | |
| 					unsigned long addr);
 | |
| #endif
 | |
| 	/*
 | |
| 	 * Called by vm_normal_page() for special PTEs to find the
 | |
| 	 * page for @addr.  This is useful if the default behavior
 | |
| 	 * (using pte_page()) would not find the correct page.
 | |
| 	 */
 | |
| 	struct page *(*find_special_page)(struct vm_area_struct *vma,
 | |
| 					  unsigned long addr);
 | |
| };
 | |
| 
 | |
| static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
 | |
| {
 | |
| 	static const struct vm_operations_struct dummy_vm_ops = {};
 | |
| 
 | |
| 	memset(vma, 0, sizeof(*vma));
 | |
| 	vma->vm_mm = mm;
 | |
| 	vma->vm_ops = &dummy_vm_ops;
 | |
| 	INIT_LIST_HEAD(&vma->anon_vma_chain);
 | |
| }
 | |
| 
 | |
| static inline void vma_set_anonymous(struct vm_area_struct *vma)
 | |
| {
 | |
| 	vma->vm_ops = NULL;
 | |
| }
 | |
| 
 | |
| /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
 | |
| #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
 | |
| 
 | |
| struct mmu_gather;
 | |
| struct inode;
 | |
| 
 | |
| #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
 | |
| static inline int pmd_devmap(pmd_t pmd)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline int pud_devmap(pud_t pud)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline int pgd_devmap(pgd_t pgd)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * FIXME: take this include out, include page-flags.h in
 | |
|  * files which need it (119 of them)
 | |
|  */
 | |
| #include <linux/page-flags.h>
 | |
| #include <linux/huge_mm.h>
 | |
| 
 | |
| /*
 | |
|  * Methods to modify the page usage count.
 | |
|  *
 | |
|  * What counts for a page usage:
 | |
|  * - cache mapping   (page->mapping)
 | |
|  * - private data    (page->private)
 | |
|  * - page mapped in a task's page tables, each mapping
 | |
|  *   is counted separately
 | |
|  *
 | |
|  * Also, many kernel routines increase the page count before a critical
 | |
|  * routine so they can be sure the page doesn't go away from under them.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Drop a ref, return true if the refcount fell to zero (the page has no users)
 | |
|  */
 | |
| static inline int put_page_testzero(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
 | |
| 	return page_ref_dec_and_test(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to grab a ref unless the page has a refcount of zero, return false if
 | |
|  * that is the case.
 | |
|  * This can be called when MMU is off so it must not access
 | |
|  * any of the virtual mappings.
 | |
|  */
 | |
| static inline int get_page_unless_zero(struct page *page)
 | |
| {
 | |
| 	return page_ref_add_unless(page, 1, 0);
 | |
| }
 | |
| 
 | |
| extern int page_is_ram(unsigned long pfn);
 | |
| 
 | |
| enum {
 | |
| 	REGION_INTERSECTS,
 | |
| 	REGION_DISJOINT,
 | |
| 	REGION_MIXED,
 | |
| };
 | |
| 
 | |
| int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
 | |
| 		      unsigned long desc);
 | |
| 
 | |
| /* Support for virtually mapped pages */
 | |
| struct page *vmalloc_to_page(const void *addr);
 | |
| unsigned long vmalloc_to_pfn(const void *addr);
 | |
| 
 | |
| /*
 | |
|  * Determine if an address is within the vmalloc range
 | |
|  *
 | |
|  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 | |
|  * is no special casing required.
 | |
|  */
 | |
| static inline bool is_vmalloc_addr(const void *x)
 | |
| {
 | |
| #ifdef CONFIG_MMU
 | |
| 	unsigned long addr = (unsigned long)x;
 | |
| 
 | |
| 	return addr >= VMALLOC_START && addr < VMALLOC_END;
 | |
| #else
 | |
| 	return false;
 | |
| #endif
 | |
| }
 | |
| #ifdef CONFIG_MMU
 | |
| extern int is_vmalloc_or_module_addr(const void *x);
 | |
| #else
 | |
| static inline int is_vmalloc_or_module_addr(const void *x)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
 | |
| static inline void *kvmalloc(size_t size, gfp_t flags)
 | |
| {
 | |
| 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
 | |
| }
 | |
| static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
 | |
| {
 | |
| 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
 | |
| }
 | |
| static inline void *kvzalloc(size_t size, gfp_t flags)
 | |
| {
 | |
| 	return kvmalloc(size, flags | __GFP_ZERO);
 | |
| }
 | |
| 
 | |
| static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
 | |
| {
 | |
| 	size_t bytes;
 | |
| 
 | |
| 	if (unlikely(check_mul_overflow(n, size, &bytes)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return kvmalloc(bytes, flags);
 | |
| }
 | |
| 
 | |
| static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
 | |
| {
 | |
| 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
 | |
| }
 | |
| 
 | |
| extern void kvfree(const void *addr);
 | |
| 
 | |
| static inline atomic_t *compound_mapcount_ptr(struct page *page)
 | |
| {
 | |
| 	return &page[1].compound_mapcount;
 | |
| }
 | |
| 
 | |
| static inline int compound_mapcount(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(!PageCompound(page), page);
 | |
| 	page = compound_head(page);
 | |
| 	return atomic_read(compound_mapcount_ptr(page)) + 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The atomic page->_mapcount, starts from -1: so that transitions
 | |
|  * both from it and to it can be tracked, using atomic_inc_and_test
 | |
|  * and atomic_add_negative(-1).
 | |
|  */
 | |
| static inline void page_mapcount_reset(struct page *page)
 | |
| {
 | |
| 	atomic_set(&(page)->_mapcount, -1);
 | |
| }
 | |
| 
 | |
| int __page_mapcount(struct page *page);
 | |
| 
 | |
| static inline int page_mapcount(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(PageSlab(page), page);
 | |
| 
 | |
| 	if (unlikely(PageCompound(page)))
 | |
| 		return __page_mapcount(page);
 | |
| 	return atomic_read(&page->_mapcount) + 1;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| int total_mapcount(struct page *page);
 | |
| int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
 | |
| #else
 | |
| static inline int total_mapcount(struct page *page)
 | |
| {
 | |
| 	return page_mapcount(page);
 | |
| }
 | |
| static inline int page_trans_huge_mapcount(struct page *page,
 | |
| 					   int *total_mapcount)
 | |
| {
 | |
| 	int mapcount = page_mapcount(page);
 | |
| 	if (total_mapcount)
 | |
| 		*total_mapcount = mapcount;
 | |
| 	return mapcount;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline struct page *virt_to_head_page(const void *x)
 | |
| {
 | |
| 	struct page *page = virt_to_page(x);
 | |
| 
 | |
| 	return compound_head(page);
 | |
| }
 | |
| 
 | |
| void __put_page(struct page *page);
 | |
| 
 | |
| void put_pages_list(struct list_head *pages);
 | |
| 
 | |
| void split_page(struct page *page, unsigned int order);
 | |
| 
 | |
| /*
 | |
|  * Compound pages have a destructor function.  Provide a
 | |
|  * prototype for that function and accessor functions.
 | |
|  * These are _only_ valid on the head of a compound page.
 | |
|  */
 | |
| typedef void compound_page_dtor(struct page *);
 | |
| 
 | |
| /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
 | |
| enum compound_dtor_id {
 | |
| 	NULL_COMPOUND_DTOR,
 | |
| 	COMPOUND_PAGE_DTOR,
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| 	HUGETLB_PAGE_DTOR,
 | |
| #endif
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	TRANSHUGE_PAGE_DTOR,
 | |
| #endif
 | |
| 	NR_COMPOUND_DTORS,
 | |
| };
 | |
| extern compound_page_dtor * const compound_page_dtors[];
 | |
| 
 | |
| static inline void set_compound_page_dtor(struct page *page,
 | |
| 		enum compound_dtor_id compound_dtor)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
 | |
| 	page[1].compound_dtor = compound_dtor;
 | |
| }
 | |
| 
 | |
| static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
 | |
| 	return compound_page_dtors[page[1].compound_dtor];
 | |
| }
 | |
| 
 | |
| static inline unsigned int compound_order(struct page *page)
 | |
| {
 | |
| 	if (!PageHead(page))
 | |
| 		return 0;
 | |
| 	return page[1].compound_order;
 | |
| }
 | |
| 
 | |
| static inline void set_compound_order(struct page *page, unsigned int order)
 | |
| {
 | |
| 	page[1].compound_order = order;
 | |
| }
 | |
| 
 | |
| void free_compound_page(struct page *page);
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| /*
 | |
|  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 | |
|  * servicing faults for write access.  In the normal case, do always want
 | |
|  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 | |
|  * that do not have writing enabled, when used by access_process_vm.
 | |
|  */
 | |
| static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (likely(vma->vm_flags & VM_WRITE))
 | |
| 		pte = pte_mkwrite(pte);
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
 | |
| 		struct page *page);
 | |
| vm_fault_t finish_fault(struct vm_fault *vmf);
 | |
| vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Multiple processes may "see" the same page. E.g. for untouched
 | |
|  * mappings of /dev/null, all processes see the same page full of
 | |
|  * zeroes, and text pages of executables and shared libraries have
 | |
|  * only one copy in memory, at most, normally.
 | |
|  *
 | |
|  * For the non-reserved pages, page_count(page) denotes a reference count.
 | |
|  *   page_count() == 0 means the page is free. page->lru is then used for
 | |
|  *   freelist management in the buddy allocator.
 | |
|  *   page_count() > 0  means the page has been allocated.
 | |
|  *
 | |
|  * Pages are allocated by the slab allocator in order to provide memory
 | |
|  * to kmalloc and kmem_cache_alloc. In this case, the management of the
 | |
|  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 | |
|  * unless a particular usage is carefully commented. (the responsibility of
 | |
|  * freeing the kmalloc memory is the caller's, of course).
 | |
|  *
 | |
|  * A page may be used by anyone else who does a __get_free_page().
 | |
|  * In this case, page_count still tracks the references, and should only
 | |
|  * be used through the normal accessor functions. The top bits of page->flags
 | |
|  * and page->virtual store page management information, but all other fields
 | |
|  * are unused and could be used privately, carefully. The management of this
 | |
|  * page is the responsibility of the one who allocated it, and those who have
 | |
|  * subsequently been given references to it.
 | |
|  *
 | |
|  * The other pages (we may call them "pagecache pages") are completely
 | |
|  * managed by the Linux memory manager: I/O, buffers, swapping etc.
 | |
|  * The following discussion applies only to them.
 | |
|  *
 | |
|  * A pagecache page contains an opaque `private' member, which belongs to the
 | |
|  * page's address_space. Usually, this is the address of a circular list of
 | |
|  * the page's disk buffers. PG_private must be set to tell the VM to call
 | |
|  * into the filesystem to release these pages.
 | |
|  *
 | |
|  * A page may belong to an inode's memory mapping. In this case, page->mapping
 | |
|  * is the pointer to the inode, and page->index is the file offset of the page,
 | |
|  * in units of PAGE_SIZE.
 | |
|  *
 | |
|  * If pagecache pages are not associated with an inode, they are said to be
 | |
|  * anonymous pages. These may become associated with the swapcache, and in that
 | |
|  * case PG_swapcache is set, and page->private is an offset into the swapcache.
 | |
|  *
 | |
|  * In either case (swapcache or inode backed), the pagecache itself holds one
 | |
|  * reference to the page. Setting PG_private should also increment the
 | |
|  * refcount. The each user mapping also has a reference to the page.
 | |
|  *
 | |
|  * The pagecache pages are stored in a per-mapping radix tree, which is
 | |
|  * rooted at mapping->i_pages, and indexed by offset.
 | |
|  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 | |
|  * lists, we instead now tag pages as dirty/writeback in the radix tree.
 | |
|  *
 | |
|  * All pagecache pages may be subject to I/O:
 | |
|  * - inode pages may need to be read from disk,
 | |
|  * - inode pages which have been modified and are MAP_SHARED may need
 | |
|  *   to be written back to the inode on disk,
 | |
|  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 | |
|  *   modified may need to be swapped out to swap space and (later) to be read
 | |
|  *   back into memory.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The zone field is never updated after free_area_init_core()
 | |
|  * sets it, so none of the operations on it need to be atomic.
 | |
|  */
 | |
| 
 | |
| /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
 | |
| #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
 | |
| #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
 | |
| #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
 | |
| #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
 | |
| #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
 | |
| 
 | |
| /*
 | |
|  * Define the bit shifts to access each section.  For non-existent
 | |
|  * sections we define the shift as 0; that plus a 0 mask ensures
 | |
|  * the compiler will optimise away reference to them.
 | |
|  */
 | |
| #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
 | |
| #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
 | |
| #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
 | |
| #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
 | |
| #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
 | |
| 
 | |
| /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
 | |
| #ifdef NODE_NOT_IN_PAGE_FLAGS
 | |
| #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
 | |
| #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
 | |
| 						SECTIONS_PGOFF : ZONES_PGOFF)
 | |
| #else
 | |
| #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
 | |
| #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
 | |
| 						NODES_PGOFF : ZONES_PGOFF)
 | |
| #endif
 | |
| 
 | |
| #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
 | |
| 
 | |
| #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 | |
| #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
 | |
| #endif
 | |
| 
 | |
| #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
 | |
| #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
 | |
| #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
 | |
| #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
 | |
| #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
 | |
| #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
 | |
| 
 | |
| static inline enum zone_type page_zonenum(const struct page *page)
 | |
| {
 | |
| 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DEVICE
 | |
| static inline bool is_zone_device_page(const struct page *page)
 | |
| {
 | |
| 	return page_zonenum(page) == ZONE_DEVICE;
 | |
| }
 | |
| extern void memmap_init_zone_device(struct zone *, unsigned long,
 | |
| 				    unsigned long, struct dev_pagemap *);
 | |
| #else
 | |
| static inline bool is_zone_device_page(const struct page *page)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_DEV_PAGEMAP_OPS
 | |
| void dev_pagemap_get_ops(void);
 | |
| void dev_pagemap_put_ops(void);
 | |
| void __put_devmap_managed_page(struct page *page);
 | |
| DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
 | |
| static inline bool put_devmap_managed_page(struct page *page)
 | |
| {
 | |
| 	if (!static_branch_unlikely(&devmap_managed_key))
 | |
| 		return false;
 | |
| 	if (!is_zone_device_page(page))
 | |
| 		return false;
 | |
| 	switch (page->pgmap->type) {
 | |
| 	case MEMORY_DEVICE_PRIVATE:
 | |
| 	case MEMORY_DEVICE_PUBLIC:
 | |
| 	case MEMORY_DEVICE_FS_DAX:
 | |
| 		__put_devmap_managed_page(page);
 | |
| 		return true;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool is_device_private_page(const struct page *page)
 | |
| {
 | |
| 	return is_zone_device_page(page) &&
 | |
| 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
 | |
| }
 | |
| 
 | |
| static inline bool is_device_public_page(const struct page *page)
 | |
| {
 | |
| 	return is_zone_device_page(page) &&
 | |
| 		page->pgmap->type == MEMORY_DEVICE_PUBLIC;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PCI_P2PDMA
 | |
| static inline bool is_pci_p2pdma_page(const struct page *page)
 | |
| {
 | |
| 	return is_zone_device_page(page) &&
 | |
| 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
 | |
| }
 | |
| #else /* CONFIG_PCI_P2PDMA */
 | |
| static inline bool is_pci_p2pdma_page(const struct page *page)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif /* CONFIG_PCI_P2PDMA */
 | |
| 
 | |
| #else /* CONFIG_DEV_PAGEMAP_OPS */
 | |
| static inline void dev_pagemap_get_ops(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void dev_pagemap_put_ops(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline bool put_devmap_managed_page(struct page *page)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool is_device_private_page(const struct page *page)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool is_device_public_page(const struct page *page)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool is_pci_p2pdma_page(const struct page *page)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif /* CONFIG_DEV_PAGEMAP_OPS */
 | |
| 
 | |
| /* 127: arbitrary random number, small enough to assemble well */
 | |
| #define page_ref_zero_or_close_to_overflow(page) \
 | |
| 	((unsigned int) page_ref_count(page) + 127u <= 127u)
 | |
| 
 | |
| static inline void get_page(struct page *page)
 | |
| {
 | |
| 	page = compound_head(page);
 | |
| 	/*
 | |
| 	 * Getting a normal page or the head of a compound page
 | |
| 	 * requires to already have an elevated page->_refcount.
 | |
| 	 */
 | |
| 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
 | |
| 	page_ref_inc(page);
 | |
| }
 | |
| 
 | |
| static inline __must_check bool try_get_page(struct page *page)
 | |
| {
 | |
| 	page = compound_head(page);
 | |
| 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
 | |
| 		return false;
 | |
| 	page_ref_inc(page);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void put_page(struct page *page)
 | |
| {
 | |
| 	page = compound_head(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * For devmap managed pages we need to catch refcount transition from
 | |
| 	 * 2 to 1, when refcount reach one it means the page is free and we
 | |
| 	 * need to inform the device driver through callback. See
 | |
| 	 * include/linux/memremap.h and HMM for details.
 | |
| 	 */
 | |
| 	if (put_devmap_managed_page(page))
 | |
| 		return;
 | |
| 
 | |
| 	if (put_page_testzero(page))
 | |
| 		__put_page(page);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * put_user_page() - release a gup-pinned page
 | |
|  * @page:            pointer to page to be released
 | |
|  *
 | |
|  * Pages that were pinned via get_user_pages*() must be released via
 | |
|  * either put_user_page(), or one of the put_user_pages*() routines
 | |
|  * below. This is so that eventually, pages that are pinned via
 | |
|  * get_user_pages*() can be separately tracked and uniquely handled. In
 | |
|  * particular, interactions with RDMA and filesystems need special
 | |
|  * handling.
 | |
|  *
 | |
|  * put_user_page() and put_page() are not interchangeable, despite this early
 | |
|  * implementation that makes them look the same. put_user_page() calls must
 | |
|  * be perfectly matched up with get_user_page() calls.
 | |
|  */
 | |
| static inline void put_user_page(struct page *page)
 | |
| {
 | |
| 	put_page(page);
 | |
| }
 | |
| 
 | |
| void put_user_pages_dirty(struct page **pages, unsigned long npages);
 | |
| void put_user_pages_dirty_lock(struct page **pages, unsigned long npages);
 | |
| void put_user_pages(struct page **pages, unsigned long npages);
 | |
| 
 | |
| #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 | |
| #define SECTION_IN_PAGE_FLAGS
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The identification function is mainly used by the buddy allocator for
 | |
|  * determining if two pages could be buddies. We are not really identifying
 | |
|  * the zone since we could be using the section number id if we do not have
 | |
|  * node id available in page flags.
 | |
|  * We only guarantee that it will return the same value for two combinable
 | |
|  * pages in a zone.
 | |
|  */
 | |
| static inline int page_zone_id(struct page *page)
 | |
| {
 | |
| 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
 | |
| }
 | |
| 
 | |
| #ifdef NODE_NOT_IN_PAGE_FLAGS
 | |
| extern int page_to_nid(const struct page *page);
 | |
| #else
 | |
| static inline int page_to_nid(const struct page *page)
 | |
| {
 | |
| 	struct page *p = (struct page *)page;
 | |
| 
 | |
| 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| static inline int cpu_pid_to_cpupid(int cpu, int pid)
 | |
| {
 | |
| 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
 | |
| }
 | |
| 
 | |
| static inline int cpupid_to_pid(int cpupid)
 | |
| {
 | |
| 	return cpupid & LAST__PID_MASK;
 | |
| }
 | |
| 
 | |
| static inline int cpupid_to_cpu(int cpupid)
 | |
| {
 | |
| 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
 | |
| }
 | |
| 
 | |
| static inline int cpupid_to_nid(int cpupid)
 | |
| {
 | |
| 	return cpu_to_node(cpupid_to_cpu(cpupid));
 | |
| }
 | |
| 
 | |
| static inline bool cpupid_pid_unset(int cpupid)
 | |
| {
 | |
| 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
 | |
| }
 | |
| 
 | |
| static inline bool cpupid_cpu_unset(int cpupid)
 | |
| {
 | |
| 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
 | |
| }
 | |
| 
 | |
| static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
 | |
| {
 | |
| 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
 | |
| }
 | |
| 
 | |
| #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
 | |
| #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
 | |
| static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
 | |
| {
 | |
| 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
 | |
| }
 | |
| 
 | |
| static inline int page_cpupid_last(struct page *page)
 | |
| {
 | |
| 	return page->_last_cpupid;
 | |
| }
 | |
| static inline void page_cpupid_reset_last(struct page *page)
 | |
| {
 | |
| 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
 | |
| }
 | |
| #else
 | |
| static inline int page_cpupid_last(struct page *page)
 | |
| {
 | |
| 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
 | |
| }
 | |
| 
 | |
| extern int page_cpupid_xchg_last(struct page *page, int cpupid);
 | |
| 
 | |
| static inline void page_cpupid_reset_last(struct page *page)
 | |
| {
 | |
| 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
 | |
| }
 | |
| #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
 | |
| #else /* !CONFIG_NUMA_BALANCING */
 | |
| static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
 | |
| {
 | |
| 	return page_to_nid(page); /* XXX */
 | |
| }
 | |
| 
 | |
| static inline int page_cpupid_last(struct page *page)
 | |
| {
 | |
| 	return page_to_nid(page); /* XXX */
 | |
| }
 | |
| 
 | |
| static inline int cpupid_to_nid(int cpupid)
 | |
| {
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static inline int cpupid_to_pid(int cpupid)
 | |
| {
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static inline int cpupid_to_cpu(int cpupid)
 | |
| {
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static inline int cpu_pid_to_cpupid(int nid, int pid)
 | |
| {
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static inline bool cpupid_pid_unset(int cpupid)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline void page_cpupid_reset_last(struct page *page)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 
 | |
| #ifdef CONFIG_KASAN_SW_TAGS
 | |
| static inline u8 page_kasan_tag(const struct page *page)
 | |
| {
 | |
| 	return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
 | |
| }
 | |
| 
 | |
| static inline void page_kasan_tag_set(struct page *page, u8 tag)
 | |
| {
 | |
| 	page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
 | |
| 	page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
 | |
| }
 | |
| 
 | |
| static inline void page_kasan_tag_reset(struct page *page)
 | |
| {
 | |
| 	page_kasan_tag_set(page, 0xff);
 | |
| }
 | |
| #else
 | |
| static inline u8 page_kasan_tag(const struct page *page)
 | |
| {
 | |
| 	return 0xff;
 | |
| }
 | |
| 
 | |
| static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
 | |
| static inline void page_kasan_tag_reset(struct page *page) { }
 | |
| #endif
 | |
| 
 | |
| static inline struct zone *page_zone(const struct page *page)
 | |
| {
 | |
| 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
 | |
| }
 | |
| 
 | |
| static inline pg_data_t *page_pgdat(const struct page *page)
 | |
| {
 | |
| 	return NODE_DATA(page_to_nid(page));
 | |
| }
 | |
| 
 | |
| #ifdef SECTION_IN_PAGE_FLAGS
 | |
| static inline void set_page_section(struct page *page, unsigned long section)
 | |
| {
 | |
| 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
 | |
| 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
 | |
| }
 | |
| 
 | |
| static inline unsigned long page_to_section(const struct page *page)
 | |
| {
 | |
| 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline void set_page_zone(struct page *page, enum zone_type zone)
 | |
| {
 | |
| 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
 | |
| 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
 | |
| }
 | |
| 
 | |
| static inline void set_page_node(struct page *page, unsigned long node)
 | |
| {
 | |
| 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
 | |
| 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
 | |
| }
 | |
| 
 | |
| static inline void set_page_links(struct page *page, enum zone_type zone,
 | |
| 	unsigned long node, unsigned long pfn)
 | |
| {
 | |
| 	set_page_zone(page, zone);
 | |
| 	set_page_node(page, node);
 | |
| #ifdef SECTION_IN_PAGE_FLAGS
 | |
| 	set_page_section(page, pfn_to_section_nr(pfn));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG
 | |
| static inline struct mem_cgroup *page_memcg(struct page *page)
 | |
| {
 | |
| 	return page->mem_cgroup;
 | |
| }
 | |
| static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
 | |
| {
 | |
| 	WARN_ON_ONCE(!rcu_read_lock_held());
 | |
| 	return READ_ONCE(page->mem_cgroup);
 | |
| }
 | |
| #else
 | |
| static inline struct mem_cgroup *page_memcg(struct page *page)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
 | |
| {
 | |
| 	WARN_ON_ONCE(!rcu_read_lock_held());
 | |
| 	return NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Some inline functions in vmstat.h depend on page_zone()
 | |
|  */
 | |
| #include <linux/vmstat.h>
 | |
| 
 | |
| static __always_inline void *lowmem_page_address(const struct page *page)
 | |
| {
 | |
| 	return page_to_virt(page);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
 | |
| #define HASHED_PAGE_VIRTUAL
 | |
| #endif
 | |
| 
 | |
| #if defined(WANT_PAGE_VIRTUAL)
 | |
| static inline void *page_address(const struct page *page)
 | |
| {
 | |
| 	return page->virtual;
 | |
| }
 | |
| static inline void set_page_address(struct page *page, void *address)
 | |
| {
 | |
| 	page->virtual = address;
 | |
| }
 | |
| #define page_address_init()  do { } while(0)
 | |
| #endif
 | |
| 
 | |
| #if defined(HASHED_PAGE_VIRTUAL)
 | |
| void *page_address(const struct page *page);
 | |
| void set_page_address(struct page *page, void *virtual);
 | |
| void page_address_init(void);
 | |
| #endif
 | |
| 
 | |
| #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
 | |
| #define page_address(page) lowmem_page_address(page)
 | |
| #define set_page_address(page, address)  do { } while(0)
 | |
| #define page_address_init()  do { } while(0)
 | |
| #endif
 | |
| 
 | |
| extern void *page_rmapping(struct page *page);
 | |
| extern struct anon_vma *page_anon_vma(struct page *page);
 | |
| extern struct address_space *page_mapping(struct page *page);
 | |
| 
 | |
| extern struct address_space *__page_file_mapping(struct page *);
 | |
| 
 | |
| static inline
 | |
| struct address_space *page_file_mapping(struct page *page)
 | |
| {
 | |
| 	if (unlikely(PageSwapCache(page)))
 | |
| 		return __page_file_mapping(page);
 | |
| 
 | |
| 	return page->mapping;
 | |
| }
 | |
| 
 | |
| extern pgoff_t __page_file_index(struct page *page);
 | |
| 
 | |
| /*
 | |
|  * Return the pagecache index of the passed page.  Regular pagecache pages
 | |
|  * use ->index whereas swapcache pages use swp_offset(->private)
 | |
|  */
 | |
| static inline pgoff_t page_index(struct page *page)
 | |
| {
 | |
| 	if (unlikely(PageSwapCache(page)))
 | |
| 		return __page_file_index(page);
 | |
| 	return page->index;
 | |
| }
 | |
| 
 | |
| bool page_mapped(struct page *page);
 | |
| struct address_space *page_mapping(struct page *page);
 | |
| struct address_space *page_mapping_file(struct page *page);
 | |
| 
 | |
| /*
 | |
|  * Return true only if the page has been allocated with
 | |
|  * ALLOC_NO_WATERMARKS and the low watermark was not
 | |
|  * met implying that the system is under some pressure.
 | |
|  */
 | |
| static inline bool page_is_pfmemalloc(struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * Page index cannot be this large so this must be
 | |
| 	 * a pfmemalloc page.
 | |
| 	 */
 | |
| 	return page->index == -1UL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Only to be called by the page allocator on a freshly allocated
 | |
|  * page.
 | |
|  */
 | |
| static inline void set_page_pfmemalloc(struct page *page)
 | |
| {
 | |
| 	page->index = -1UL;
 | |
| }
 | |
| 
 | |
| static inline void clear_page_pfmemalloc(struct page *page)
 | |
| {
 | |
| 	page->index = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
 | |
|  */
 | |
| extern void pagefault_out_of_memory(void);
 | |
| 
 | |
| #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
 | |
| 
 | |
| /*
 | |
|  * Flags passed to show_mem() and show_free_areas() to suppress output in
 | |
|  * various contexts.
 | |
|  */
 | |
| #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
 | |
| 
 | |
| extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
 | |
| 
 | |
| extern bool can_do_mlock(void);
 | |
| extern int user_shm_lock(size_t, struct user_struct *);
 | |
| extern void user_shm_unlock(size_t, struct user_struct *);
 | |
| 
 | |
| /*
 | |
|  * Parameter block passed down to zap_pte_range in exceptional cases.
 | |
|  */
 | |
| struct zap_details {
 | |
| 	struct address_space *check_mapping;	/* Check page->mapping if set */
 | |
| 	pgoff_t	first_index;			/* Lowest page->index to unmap */
 | |
| 	pgoff_t last_index;			/* Highest page->index to unmap */
 | |
| };
 | |
| 
 | |
| struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			     pte_t pte, bool with_public_device);
 | |
| #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
 | |
| 
 | |
| struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 				pmd_t pmd);
 | |
| 
 | |
| void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
 | |
| 		  unsigned long size);
 | |
| void zap_page_range(struct vm_area_struct *vma, unsigned long address,
 | |
| 		    unsigned long size);
 | |
| void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
 | |
| 		unsigned long start, unsigned long end);
 | |
| 
 | |
| /**
 | |
|  * mm_walk - callbacks for walk_page_range
 | |
|  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
 | |
|  *	       this handler should only handle pud_trans_huge() puds.
 | |
|  *	       the pmd_entry or pte_entry callbacks will be used for
 | |
|  *	       regular PUDs.
 | |
|  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
 | |
|  *	       this handler is required to be able to handle
 | |
|  *	       pmd_trans_huge() pmds.  They may simply choose to
 | |
|  *	       split_huge_page() instead of handling it explicitly.
 | |
|  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
 | |
|  * @pte_hole: if set, called for each hole at all levels
 | |
|  * @hugetlb_entry: if set, called for each hugetlb entry
 | |
|  * @test_walk: caller specific callback function to determine whether
 | |
|  *             we walk over the current vma or not. Returning 0
 | |
|  *             value means "do page table walk over the current vma,"
 | |
|  *             and a negative one means "abort current page table walk
 | |
|  *             right now." 1 means "skip the current vma."
 | |
|  * @mm:        mm_struct representing the target process of page table walk
 | |
|  * @vma:       vma currently walked (NULL if walking outside vmas)
 | |
|  * @private:   private data for callbacks' usage
 | |
|  *
 | |
|  * (see the comment on walk_page_range() for more details)
 | |
|  */
 | |
| struct mm_walk {
 | |
| 	int (*pud_entry)(pud_t *pud, unsigned long addr,
 | |
| 			 unsigned long next, struct mm_walk *walk);
 | |
| 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
 | |
| 			 unsigned long next, struct mm_walk *walk);
 | |
| 	int (*pte_entry)(pte_t *pte, unsigned long addr,
 | |
| 			 unsigned long next, struct mm_walk *walk);
 | |
| 	int (*pte_hole)(unsigned long addr, unsigned long next,
 | |
| 			struct mm_walk *walk);
 | |
| 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
 | |
| 			     unsigned long addr, unsigned long next,
 | |
| 			     struct mm_walk *walk);
 | |
| 	int (*test_walk)(unsigned long addr, unsigned long next,
 | |
| 			struct mm_walk *walk);
 | |
| 	struct mm_struct *mm;
 | |
| 	struct vm_area_struct *vma;
 | |
| 	void *private;
 | |
| };
 | |
| 
 | |
| struct mmu_notifier_range;
 | |
| 
 | |
| int walk_page_range(unsigned long addr, unsigned long end,
 | |
| 		struct mm_walk *walk);
 | |
| int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
 | |
| void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
 | |
| 		unsigned long end, unsigned long floor, unsigned long ceiling);
 | |
| int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
 | |
| 			struct vm_area_struct *vma);
 | |
| int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
 | |
| 		   struct mmu_notifier_range *range,
 | |
| 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
 | |
| int follow_pfn(struct vm_area_struct *vma, unsigned long address,
 | |
| 	unsigned long *pfn);
 | |
| int follow_phys(struct vm_area_struct *vma, unsigned long address,
 | |
| 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
 | |
| int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			void *buf, int len, int write);
 | |
| 
 | |
| extern void truncate_pagecache(struct inode *inode, loff_t new);
 | |
| extern void truncate_setsize(struct inode *inode, loff_t newsize);
 | |
| void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
 | |
| void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
 | |
| int truncate_inode_page(struct address_space *mapping, struct page *page);
 | |
| int generic_error_remove_page(struct address_space *mapping, struct page *page);
 | |
| int invalidate_inode_page(struct page *page);
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
 | |
| 			unsigned long address, unsigned int flags);
 | |
| extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
 | |
| 			    unsigned long address, unsigned int fault_flags,
 | |
| 			    bool *unlocked);
 | |
| void unmap_mapping_pages(struct address_space *mapping,
 | |
| 		pgoff_t start, pgoff_t nr, bool even_cows);
 | |
| void unmap_mapping_range(struct address_space *mapping,
 | |
| 		loff_t const holebegin, loff_t const holelen, int even_cows);
 | |
| #else
 | |
| static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
 | |
| 		unsigned long address, unsigned int flags)
 | |
| {
 | |
| 	/* should never happen if there's no MMU */
 | |
| 	BUG();
 | |
| 	return VM_FAULT_SIGBUS;
 | |
| }
 | |
| static inline int fixup_user_fault(struct task_struct *tsk,
 | |
| 		struct mm_struct *mm, unsigned long address,
 | |
| 		unsigned int fault_flags, bool *unlocked)
 | |
| {
 | |
| 	/* should never happen if there's no MMU */
 | |
| 	BUG();
 | |
| 	return -EFAULT;
 | |
| }
 | |
| static inline void unmap_mapping_pages(struct address_space *mapping,
 | |
| 		pgoff_t start, pgoff_t nr, bool even_cows) { }
 | |
| static inline void unmap_mapping_range(struct address_space *mapping,
 | |
| 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
 | |
| #endif
 | |
| 
 | |
| static inline void unmap_shared_mapping_range(struct address_space *mapping,
 | |
| 		loff_t const holebegin, loff_t const holelen)
 | |
| {
 | |
| 	unmap_mapping_range(mapping, holebegin, holelen, 0);
 | |
| }
 | |
| 
 | |
| extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
 | |
| 		void *buf, int len, unsigned int gup_flags);
 | |
| extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
 | |
| 		void *buf, int len, unsigned int gup_flags);
 | |
| extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
 | |
| 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
 | |
| 
 | |
| long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
 | |
| 			    unsigned long start, unsigned long nr_pages,
 | |
| 			    unsigned int gup_flags, struct page **pages,
 | |
| 			    struct vm_area_struct **vmas, int *locked);
 | |
| long get_user_pages(unsigned long start, unsigned long nr_pages,
 | |
| 			    unsigned int gup_flags, struct page **pages,
 | |
| 			    struct vm_area_struct **vmas);
 | |
| long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
 | |
| 		    unsigned int gup_flags, struct page **pages, int *locked);
 | |
| long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
 | |
| 		    struct page **pages, unsigned int gup_flags);
 | |
| 
 | |
| int get_user_pages_fast(unsigned long start, int nr_pages,
 | |
| 			unsigned int gup_flags, struct page **pages);
 | |
| 
 | |
| /* Container for pinned pfns / pages */
 | |
| struct frame_vector {
 | |
| 	unsigned int nr_allocated;	/* Number of frames we have space for */
 | |
| 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
 | |
| 	bool got_ref;		/* Did we pin pages by getting page ref? */
 | |
| 	bool is_pfns;		/* Does array contain pages or pfns? */
 | |
| 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
 | |
| 				 * pfns_vector_pages() or pfns_vector_pfns()
 | |
| 				 * for access */
 | |
| };
 | |
| 
 | |
| struct frame_vector *frame_vector_create(unsigned int nr_frames);
 | |
| void frame_vector_destroy(struct frame_vector *vec);
 | |
| int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
 | |
| 		     unsigned int gup_flags, struct frame_vector *vec);
 | |
| void put_vaddr_frames(struct frame_vector *vec);
 | |
| int frame_vector_to_pages(struct frame_vector *vec);
 | |
| void frame_vector_to_pfns(struct frame_vector *vec);
 | |
| 
 | |
| static inline unsigned int frame_vector_count(struct frame_vector *vec)
 | |
| {
 | |
| 	return vec->nr_frames;
 | |
| }
 | |
| 
 | |
| static inline struct page **frame_vector_pages(struct frame_vector *vec)
 | |
| {
 | |
| 	if (vec->is_pfns) {
 | |
| 		int err = frame_vector_to_pages(vec);
 | |
| 
 | |
| 		if (err)
 | |
| 			return ERR_PTR(err);
 | |
| 	}
 | |
| 	return (struct page **)(vec->ptrs);
 | |
| }
 | |
| 
 | |
| static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
 | |
| {
 | |
| 	if (!vec->is_pfns)
 | |
| 		frame_vector_to_pfns(vec);
 | |
| 	return (unsigned long *)(vec->ptrs);
 | |
| }
 | |
| 
 | |
| struct kvec;
 | |
| int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
 | |
| 			struct page **pages);
 | |
| int get_kernel_page(unsigned long start, int write, struct page **pages);
 | |
| struct page *get_dump_page(unsigned long addr);
 | |
| 
 | |
| extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
 | |
| extern void do_invalidatepage(struct page *page, unsigned int offset,
 | |
| 			      unsigned int length);
 | |
| 
 | |
| void __set_page_dirty(struct page *, struct address_space *, int warn);
 | |
| int __set_page_dirty_nobuffers(struct page *page);
 | |
| int __set_page_dirty_no_writeback(struct page *page);
 | |
| int redirty_page_for_writepage(struct writeback_control *wbc,
 | |
| 				struct page *page);
 | |
| void account_page_dirtied(struct page *page, struct address_space *mapping);
 | |
| void account_page_cleaned(struct page *page, struct address_space *mapping,
 | |
| 			  struct bdi_writeback *wb);
 | |
| int set_page_dirty(struct page *page);
 | |
| int set_page_dirty_lock(struct page *page);
 | |
| void __cancel_dirty_page(struct page *page);
 | |
| static inline void cancel_dirty_page(struct page *page)
 | |
| {
 | |
| 	/* Avoid atomic ops, locking, etc. when not actually needed. */
 | |
| 	if (PageDirty(page))
 | |
| 		__cancel_dirty_page(page);
 | |
| }
 | |
| int clear_page_dirty_for_io(struct page *page);
 | |
| 
 | |
| int get_cmdline(struct task_struct *task, char *buffer, int buflen);
 | |
| 
 | |
| static inline bool vma_is_anonymous(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return !vma->vm_ops;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SHMEM
 | |
| /*
 | |
|  * The vma_is_shmem is not inline because it is used only by slow
 | |
|  * paths in userfault.
 | |
|  */
 | |
| bool vma_is_shmem(struct vm_area_struct *vma);
 | |
| #else
 | |
| static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
 | |
| #endif
 | |
| 
 | |
| int vma_is_stack_for_current(struct vm_area_struct *vma);
 | |
| 
 | |
| extern unsigned long move_page_tables(struct vm_area_struct *vma,
 | |
| 		unsigned long old_addr, struct vm_area_struct *new_vma,
 | |
| 		unsigned long new_addr, unsigned long len,
 | |
| 		bool need_rmap_locks);
 | |
| extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
 | |
| 			      unsigned long end, pgprot_t newprot,
 | |
| 			      int dirty_accountable, int prot_numa);
 | |
| extern int mprotect_fixup(struct vm_area_struct *vma,
 | |
| 			  struct vm_area_struct **pprev, unsigned long start,
 | |
| 			  unsigned long end, unsigned long newflags);
 | |
| 
 | |
| /*
 | |
|  * doesn't attempt to fault and will return short.
 | |
|  */
 | |
| int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
 | |
| 			  struct page **pages);
 | |
| /*
 | |
|  * per-process(per-mm_struct) statistics.
 | |
|  */
 | |
| static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
 | |
| {
 | |
| 	long val = atomic_long_read(&mm->rss_stat.count[member]);
 | |
| 
 | |
| #ifdef SPLIT_RSS_COUNTING
 | |
| 	/*
 | |
| 	 * counter is updated in asynchronous manner and may go to minus.
 | |
| 	 * But it's never be expected number for users.
 | |
| 	 */
 | |
| 	if (val < 0)
 | |
| 		val = 0;
 | |
| #endif
 | |
| 	return (unsigned long)val;
 | |
| }
 | |
| 
 | |
| static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
 | |
| {
 | |
| 	atomic_long_add(value, &mm->rss_stat.count[member]);
 | |
| }
 | |
| 
 | |
| static inline void inc_mm_counter(struct mm_struct *mm, int member)
 | |
| {
 | |
| 	atomic_long_inc(&mm->rss_stat.count[member]);
 | |
| }
 | |
| 
 | |
| static inline void dec_mm_counter(struct mm_struct *mm, int member)
 | |
| {
 | |
| 	atomic_long_dec(&mm->rss_stat.count[member]);
 | |
| }
 | |
| 
 | |
| /* Optimized variant when page is already known not to be PageAnon */
 | |
| static inline int mm_counter_file(struct page *page)
 | |
| {
 | |
| 	if (PageSwapBacked(page))
 | |
| 		return MM_SHMEMPAGES;
 | |
| 	return MM_FILEPAGES;
 | |
| }
 | |
| 
 | |
| static inline int mm_counter(struct page *page)
 | |
| {
 | |
| 	if (PageAnon(page))
 | |
| 		return MM_ANONPAGES;
 | |
| 	return mm_counter_file(page);
 | |
| }
 | |
| 
 | |
| static inline unsigned long get_mm_rss(struct mm_struct *mm)
 | |
| {
 | |
| 	return get_mm_counter(mm, MM_FILEPAGES) +
 | |
| 		get_mm_counter(mm, MM_ANONPAGES) +
 | |
| 		get_mm_counter(mm, MM_SHMEMPAGES);
 | |
| }
 | |
| 
 | |
| static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
 | |
| {
 | |
| 	return max(mm->hiwater_rss, get_mm_rss(mm));
 | |
| }
 | |
| 
 | |
| static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
 | |
| {
 | |
| 	return max(mm->hiwater_vm, mm->total_vm);
 | |
| }
 | |
| 
 | |
| static inline void update_hiwater_rss(struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long _rss = get_mm_rss(mm);
 | |
| 
 | |
| 	if ((mm)->hiwater_rss < _rss)
 | |
| 		(mm)->hiwater_rss = _rss;
 | |
| }
 | |
| 
 | |
| static inline void update_hiwater_vm(struct mm_struct *mm)
 | |
| {
 | |
| 	if (mm->hiwater_vm < mm->total_vm)
 | |
| 		mm->hiwater_vm = mm->total_vm;
 | |
| }
 | |
| 
 | |
| static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
 | |
| {
 | |
| 	mm->hiwater_rss = get_mm_rss(mm);
 | |
| }
 | |
| 
 | |
| static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
 | |
| 					 struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
 | |
| 
 | |
| 	if (*maxrss < hiwater_rss)
 | |
| 		*maxrss = hiwater_rss;
 | |
| }
 | |
| 
 | |
| #if defined(SPLIT_RSS_COUNTING)
 | |
| void sync_mm_rss(struct mm_struct *mm);
 | |
| #else
 | |
| static inline void sync_mm_rss(struct mm_struct *mm)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __HAVE_ARCH_PTE_DEVMAP
 | |
| static inline int pte_devmap(pte_t pte)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
 | |
| 
 | |
| extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
 | |
| 			       spinlock_t **ptl);
 | |
| static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
 | |
| 				    spinlock_t **ptl)
 | |
| {
 | |
| 	pte_t *ptep;
 | |
| 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
 | |
| 	return ptep;
 | |
| }
 | |
| 
 | |
| #ifdef __PAGETABLE_P4D_FOLDED
 | |
| static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
 | |
| 						unsigned long address)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
 | |
| #endif
 | |
| 
 | |
| #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
 | |
| static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
 | |
| 						unsigned long address)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
 | |
| static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
 | |
| 
 | |
| #else
 | |
| int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
 | |
| 
 | |
| static inline void mm_inc_nr_puds(struct mm_struct *mm)
 | |
| {
 | |
| 	if (mm_pud_folded(mm))
 | |
| 		return;
 | |
| 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
 | |
| }
 | |
| 
 | |
| static inline void mm_dec_nr_puds(struct mm_struct *mm)
 | |
| {
 | |
| 	if (mm_pud_folded(mm))
 | |
| 		return;
 | |
| 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
 | |
| static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
 | |
| 						unsigned long address)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
 | |
| static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
 | |
| 
 | |
| #else
 | |
| int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
 | |
| 
 | |
| static inline void mm_inc_nr_pmds(struct mm_struct *mm)
 | |
| {
 | |
| 	if (mm_pmd_folded(mm))
 | |
| 		return;
 | |
| 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
 | |
| }
 | |
| 
 | |
| static inline void mm_dec_nr_pmds(struct mm_struct *mm)
 | |
| {
 | |
| 	if (mm_pmd_folded(mm))
 | |
| 		return;
 | |
| 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
 | |
| {
 | |
| 	atomic_long_set(&mm->pgtables_bytes, 0);
 | |
| }
 | |
| 
 | |
| static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
 | |
| {
 | |
| 	return atomic_long_read(&mm->pgtables_bytes);
 | |
| }
 | |
| 
 | |
| static inline void mm_inc_nr_ptes(struct mm_struct *mm)
 | |
| {
 | |
| 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
 | |
| }
 | |
| 
 | |
| static inline void mm_dec_nr_ptes(struct mm_struct *mm)
 | |
| {
 | |
| 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
 | |
| }
 | |
| #else
 | |
| 
 | |
| static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
 | |
| static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
 | |
| static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
 | |
| #endif
 | |
| 
 | |
| int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
 | |
| int __pte_alloc_kernel(pmd_t *pmd);
 | |
| 
 | |
| /*
 | |
|  * The following ifdef needed to get the 4level-fixup.h header to work.
 | |
|  * Remove it when 4level-fixup.h has been removed.
 | |
|  */
 | |
| #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
 | |
| 
 | |
| #ifndef __ARCH_HAS_5LEVEL_HACK
 | |
| static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
 | |
| 		unsigned long address)
 | |
| {
 | |
| 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
 | |
| 		NULL : p4d_offset(pgd, address);
 | |
| }
 | |
| 
 | |
| static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
 | |
| 		unsigned long address)
 | |
| {
 | |
| 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
 | |
| 		NULL : pud_offset(p4d, address);
 | |
| }
 | |
| #endif /* !__ARCH_HAS_5LEVEL_HACK */
 | |
| 
 | |
| static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
 | |
| {
 | |
| 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
 | |
| 		NULL: pmd_offset(pud, address);
 | |
| }
 | |
| #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
 | |
| 
 | |
| #if USE_SPLIT_PTE_PTLOCKS
 | |
| #if ALLOC_SPLIT_PTLOCKS
 | |
| void __init ptlock_cache_init(void);
 | |
| extern bool ptlock_alloc(struct page *page);
 | |
| extern void ptlock_free(struct page *page);
 | |
| 
 | |
| static inline spinlock_t *ptlock_ptr(struct page *page)
 | |
| {
 | |
| 	return page->ptl;
 | |
| }
 | |
| #else /* ALLOC_SPLIT_PTLOCKS */
 | |
| static inline void ptlock_cache_init(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline bool ptlock_alloc(struct page *page)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void ptlock_free(struct page *page)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline spinlock_t *ptlock_ptr(struct page *page)
 | |
| {
 | |
| 	return &page->ptl;
 | |
| }
 | |
| #endif /* ALLOC_SPLIT_PTLOCKS */
 | |
| 
 | |
| static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
 | |
| {
 | |
| 	return ptlock_ptr(pmd_page(*pmd));
 | |
| }
 | |
| 
 | |
| static inline bool ptlock_init(struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * prep_new_page() initialize page->private (and therefore page->ptl)
 | |
| 	 * with 0. Make sure nobody took it in use in between.
 | |
| 	 *
 | |
| 	 * It can happen if arch try to use slab for page table allocation:
 | |
| 	 * slab code uses page->slab_cache, which share storage with page->ptl.
 | |
| 	 */
 | |
| 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
 | |
| 	if (!ptlock_alloc(page))
 | |
| 		return false;
 | |
| 	spin_lock_init(ptlock_ptr(page));
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #else	/* !USE_SPLIT_PTE_PTLOCKS */
 | |
| /*
 | |
|  * We use mm->page_table_lock to guard all pagetable pages of the mm.
 | |
|  */
 | |
| static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
 | |
| {
 | |
| 	return &mm->page_table_lock;
 | |
| }
 | |
| static inline void ptlock_cache_init(void) {}
 | |
| static inline bool ptlock_init(struct page *page) { return true; }
 | |
| static inline void ptlock_free(struct page *page) {}
 | |
| #endif /* USE_SPLIT_PTE_PTLOCKS */
 | |
| 
 | |
| static inline void pgtable_init(void)
 | |
| {
 | |
| 	ptlock_cache_init();
 | |
| 	pgtable_cache_init();
 | |
| }
 | |
| 
 | |
| static inline bool pgtable_page_ctor(struct page *page)
 | |
| {
 | |
| 	if (!ptlock_init(page))
 | |
| 		return false;
 | |
| 	__SetPageTable(page);
 | |
| 	inc_zone_page_state(page, NR_PAGETABLE);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void pgtable_page_dtor(struct page *page)
 | |
| {
 | |
| 	ptlock_free(page);
 | |
| 	__ClearPageTable(page);
 | |
| 	dec_zone_page_state(page, NR_PAGETABLE);
 | |
| }
 | |
| 
 | |
| #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
 | |
| ({							\
 | |
| 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
 | |
| 	pte_t *__pte = pte_offset_map(pmd, address);	\
 | |
| 	*(ptlp) = __ptl;				\
 | |
| 	spin_lock(__ptl);				\
 | |
| 	__pte;						\
 | |
| })
 | |
| 
 | |
| #define pte_unmap_unlock(pte, ptl)	do {		\
 | |
| 	spin_unlock(ptl);				\
 | |
| 	pte_unmap(pte);					\
 | |
| } while (0)
 | |
| 
 | |
| #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
 | |
| 
 | |
| #define pte_alloc_map(mm, pmd, address)			\
 | |
| 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
 | |
| 
 | |
| #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
 | |
| 	(pte_alloc(mm, pmd) ?			\
 | |
| 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
 | |
| 
 | |
| #define pte_alloc_kernel(pmd, address)			\
 | |
| 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
 | |
| 		NULL: pte_offset_kernel(pmd, address))
 | |
| 
 | |
| #if USE_SPLIT_PMD_PTLOCKS
 | |
| 
 | |
| static struct page *pmd_to_page(pmd_t *pmd)
 | |
| {
 | |
| 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
 | |
| 	return virt_to_page((void *)((unsigned long) pmd & mask));
 | |
| }
 | |
| 
 | |
| static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
 | |
| {
 | |
| 	return ptlock_ptr(pmd_to_page(pmd));
 | |
| }
 | |
| 
 | |
| static inline bool pgtable_pmd_page_ctor(struct page *page)
 | |
| {
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	page->pmd_huge_pte = NULL;
 | |
| #endif
 | |
| 	return ptlock_init(page);
 | |
| }
 | |
| 
 | |
| static inline void pgtable_pmd_page_dtor(struct page *page)
 | |
| {
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
 | |
| #endif
 | |
| 	ptlock_free(page);
 | |
| }
 | |
| 
 | |
| #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
 | |
| {
 | |
| 	return &mm->page_table_lock;
 | |
| }
 | |
| 
 | |
| static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
 | |
| static inline void pgtable_pmd_page_dtor(struct page *page) {}
 | |
| 
 | |
| #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
 | |
| {
 | |
| 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
 | |
| 	spin_lock(ptl);
 | |
| 	return ptl;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * No scalability reason to split PUD locks yet, but follow the same pattern
 | |
|  * as the PMD locks to make it easier if we decide to.  The VM should not be
 | |
|  * considered ready to switch to split PUD locks yet; there may be places
 | |
|  * which need to be converted from page_table_lock.
 | |
|  */
 | |
| static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
 | |
| {
 | |
| 	return &mm->page_table_lock;
 | |
| }
 | |
| 
 | |
| static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
 | |
| {
 | |
| 	spinlock_t *ptl = pud_lockptr(mm, pud);
 | |
| 
 | |
| 	spin_lock(ptl);
 | |
| 	return ptl;
 | |
| }
 | |
| 
 | |
| extern void __init pagecache_init(void);
 | |
| extern void free_area_init(unsigned long * zones_size);
 | |
| extern void __init free_area_init_node(int nid, unsigned long * zones_size,
 | |
| 		unsigned long zone_start_pfn, unsigned long *zholes_size);
 | |
| extern void free_initmem(void);
 | |
| 
 | |
| /*
 | |
|  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
 | |
|  * into the buddy system. The freed pages will be poisoned with pattern
 | |
|  * "poison" if it's within range [0, UCHAR_MAX].
 | |
|  * Return pages freed into the buddy system.
 | |
|  */
 | |
| extern unsigned long free_reserved_area(void *start, void *end,
 | |
| 					int poison, const char *s);
 | |
| 
 | |
| #ifdef	CONFIG_HIGHMEM
 | |
| /*
 | |
|  * Free a highmem page into the buddy system, adjusting totalhigh_pages
 | |
|  * and totalram_pages.
 | |
|  */
 | |
| extern void free_highmem_page(struct page *page);
 | |
| #endif
 | |
| 
 | |
| extern void adjust_managed_page_count(struct page *page, long count);
 | |
| extern void mem_init_print_info(const char *str);
 | |
| 
 | |
| extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
 | |
| 
 | |
| /* Free the reserved page into the buddy system, so it gets managed. */
 | |
| static inline void __free_reserved_page(struct page *page)
 | |
| {
 | |
| 	ClearPageReserved(page);
 | |
| 	init_page_count(page);
 | |
| 	__free_page(page);
 | |
| }
 | |
| 
 | |
| static inline void free_reserved_page(struct page *page)
 | |
| {
 | |
| 	__free_reserved_page(page);
 | |
| 	adjust_managed_page_count(page, 1);
 | |
| }
 | |
| 
 | |
| static inline void mark_page_reserved(struct page *page)
 | |
| {
 | |
| 	SetPageReserved(page);
 | |
| 	adjust_managed_page_count(page, -1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Default method to free all the __init memory into the buddy system.
 | |
|  * The freed pages will be poisoned with pattern "poison" if it's within
 | |
|  * range [0, UCHAR_MAX].
 | |
|  * Return pages freed into the buddy system.
 | |
|  */
 | |
| static inline unsigned long free_initmem_default(int poison)
 | |
| {
 | |
| 	extern char __init_begin[], __init_end[];
 | |
| 
 | |
| 	return free_reserved_area(&__init_begin, &__init_end,
 | |
| 				  poison, "unused kernel");
 | |
| }
 | |
| 
 | |
| static inline unsigned long get_num_physpages(void)
 | |
| {
 | |
| 	int nid;
 | |
| 	unsigned long phys_pages = 0;
 | |
| 
 | |
| 	for_each_online_node(nid)
 | |
| 		phys_pages += node_present_pages(nid);
 | |
| 
 | |
| 	return phys_pages;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 | |
| /*
 | |
|  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
 | |
|  * zones, allocate the backing mem_map and account for memory holes in a more
 | |
|  * architecture independent manner. This is a substitute for creating the
 | |
|  * zone_sizes[] and zholes_size[] arrays and passing them to
 | |
|  * free_area_init_node()
 | |
|  *
 | |
|  * An architecture is expected to register range of page frames backed by
 | |
|  * physical memory with memblock_add[_node]() before calling
 | |
|  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
 | |
|  * usage, an architecture is expected to do something like
 | |
|  *
 | |
|  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
 | |
|  * 							 max_highmem_pfn};
 | |
|  * for_each_valid_physical_page_range()
 | |
|  * 	memblock_add_node(base, size, nid)
 | |
|  * free_area_init_nodes(max_zone_pfns);
 | |
|  *
 | |
|  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
 | |
|  * registered physical page range.  Similarly
 | |
|  * sparse_memory_present_with_active_regions() calls memory_present() for
 | |
|  * each range when SPARSEMEM is enabled.
 | |
|  *
 | |
|  * See mm/page_alloc.c for more information on each function exposed by
 | |
|  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
 | |
|  */
 | |
| extern void free_area_init_nodes(unsigned long *max_zone_pfn);
 | |
| unsigned long node_map_pfn_alignment(void);
 | |
| unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
 | |
| 						unsigned long end_pfn);
 | |
| extern unsigned long absent_pages_in_range(unsigned long start_pfn,
 | |
| 						unsigned long end_pfn);
 | |
| extern void get_pfn_range_for_nid(unsigned int nid,
 | |
| 			unsigned long *start_pfn, unsigned long *end_pfn);
 | |
| extern unsigned long find_min_pfn_with_active_regions(void);
 | |
| extern void free_bootmem_with_active_regions(int nid,
 | |
| 						unsigned long max_low_pfn);
 | |
| extern void sparse_memory_present_with_active_regions(int nid);
 | |
| 
 | |
| #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 | |
| 
 | |
| #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
 | |
|     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
 | |
| static inline int __early_pfn_to_nid(unsigned long pfn,
 | |
| 					struct mminit_pfnnid_cache *state)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| /* please see mm/page_alloc.c */
 | |
| extern int __meminit early_pfn_to_nid(unsigned long pfn);
 | |
| /* there is a per-arch backend function. */
 | |
| extern int __meminit __early_pfn_to_nid(unsigned long pfn,
 | |
| 					struct mminit_pfnnid_cache *state);
 | |
| #endif
 | |
| 
 | |
| #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
 | |
| void zero_resv_unavail(void);
 | |
| #else
 | |
| static inline void zero_resv_unavail(void) {}
 | |
| #endif
 | |
| 
 | |
| extern void set_dma_reserve(unsigned long new_dma_reserve);
 | |
| extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
 | |
| 		enum memmap_context, struct vmem_altmap *);
 | |
| extern void setup_per_zone_wmarks(void);
 | |
| extern int __meminit init_per_zone_wmark_min(void);
 | |
| extern void mem_init(void);
 | |
| extern void __init mmap_init(void);
 | |
| extern void show_mem(unsigned int flags, nodemask_t *nodemask);
 | |
| extern long si_mem_available(void);
 | |
| extern void si_meminfo(struct sysinfo * val);
 | |
| extern void si_meminfo_node(struct sysinfo *val, int nid);
 | |
| #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
 | |
| extern unsigned long arch_reserved_kernel_pages(void);
 | |
| #endif
 | |
| 
 | |
| extern __printf(3, 4)
 | |
| void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
 | |
| 
 | |
| extern void setup_per_cpu_pageset(void);
 | |
| 
 | |
| extern void zone_pcp_update(struct zone *zone);
 | |
| extern void zone_pcp_reset(struct zone *zone);
 | |
| 
 | |
| /* page_alloc.c */
 | |
| extern int min_free_kbytes;
 | |
| extern int watermark_boost_factor;
 | |
| extern int watermark_scale_factor;
 | |
| 
 | |
| /* nommu.c */
 | |
| extern atomic_long_t mmap_pages_allocated;
 | |
| extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
 | |
| 
 | |
| /* interval_tree.c */
 | |
| void vma_interval_tree_insert(struct vm_area_struct *node,
 | |
| 			      struct rb_root_cached *root);
 | |
| void vma_interval_tree_insert_after(struct vm_area_struct *node,
 | |
| 				    struct vm_area_struct *prev,
 | |
| 				    struct rb_root_cached *root);
 | |
| void vma_interval_tree_remove(struct vm_area_struct *node,
 | |
| 			      struct rb_root_cached *root);
 | |
| struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
 | |
| 				unsigned long start, unsigned long last);
 | |
| struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
 | |
| 				unsigned long start, unsigned long last);
 | |
| 
 | |
| #define vma_interval_tree_foreach(vma, root, start, last)		\
 | |
| 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
 | |
| 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
 | |
| 
 | |
| void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
 | |
| 				   struct rb_root_cached *root);
 | |
| void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
 | |
| 				   struct rb_root_cached *root);
 | |
| struct anon_vma_chain *
 | |
| anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
 | |
| 				  unsigned long start, unsigned long last);
 | |
| struct anon_vma_chain *anon_vma_interval_tree_iter_next(
 | |
| 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
 | |
| #ifdef CONFIG_DEBUG_VM_RB
 | |
| void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
 | |
| #endif
 | |
| 
 | |
| #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
 | |
| 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
 | |
| 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
 | |
| 
 | |
| /* mmap.c */
 | |
| extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
 | |
| extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
 | |
| 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
 | |
| 	struct vm_area_struct *expand);
 | |
| static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
 | |
| 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 | |
| {
 | |
| 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
 | |
| }
 | |
| extern struct vm_area_struct *vma_merge(struct mm_struct *,
 | |
| 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
 | |
| 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
 | |
| 	struct mempolicy *, struct vm_userfaultfd_ctx);
 | |
| extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
 | |
| extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
 | |
| 	unsigned long addr, int new_below);
 | |
| extern int split_vma(struct mm_struct *, struct vm_area_struct *,
 | |
| 	unsigned long addr, int new_below);
 | |
| extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
 | |
| extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
 | |
| 	struct rb_node **, struct rb_node *);
 | |
| extern void unlink_file_vma(struct vm_area_struct *);
 | |
| extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
 | |
| 	unsigned long addr, unsigned long len, pgoff_t pgoff,
 | |
| 	bool *need_rmap_locks);
 | |
| extern void exit_mmap(struct mm_struct *);
 | |
| 
 | |
| static inline int check_data_rlimit(unsigned long rlim,
 | |
| 				    unsigned long new,
 | |
| 				    unsigned long start,
 | |
| 				    unsigned long end_data,
 | |
| 				    unsigned long start_data)
 | |
| {
 | |
| 	if (rlim < RLIM_INFINITY) {
 | |
| 		if (((new - start) + (end_data - start_data)) > rlim)
 | |
| 			return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| extern int mm_take_all_locks(struct mm_struct *mm);
 | |
| extern void mm_drop_all_locks(struct mm_struct *mm);
 | |
| 
 | |
| extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
 | |
| extern struct file *get_mm_exe_file(struct mm_struct *mm);
 | |
| extern struct file *get_task_exe_file(struct task_struct *task);
 | |
| 
 | |
| extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
 | |
| extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
 | |
| 
 | |
| extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
 | |
| 				   const struct vm_special_mapping *sm);
 | |
| extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
 | |
| 				   unsigned long addr, unsigned long len,
 | |
| 				   unsigned long flags,
 | |
| 				   const struct vm_special_mapping *spec);
 | |
| /* This is an obsolete alternative to _install_special_mapping. */
 | |
| extern int install_special_mapping(struct mm_struct *mm,
 | |
| 				   unsigned long addr, unsigned long len,
 | |
| 				   unsigned long flags, struct page **pages);
 | |
| 
 | |
| extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
 | |
| 
 | |
| extern unsigned long mmap_region(struct file *file, unsigned long addr,
 | |
| 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
 | |
| 	struct list_head *uf);
 | |
| extern unsigned long do_mmap(struct file *file, unsigned long addr,
 | |
| 	unsigned long len, unsigned long prot, unsigned long flags,
 | |
| 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
 | |
| 	struct list_head *uf);
 | |
| extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
 | |
| 		       struct list_head *uf, bool downgrade);
 | |
| extern int do_munmap(struct mm_struct *, unsigned long, size_t,
 | |
| 		     struct list_head *uf);
 | |
| 
 | |
| static inline unsigned long
 | |
| do_mmap_pgoff(struct file *file, unsigned long addr,
 | |
| 	unsigned long len, unsigned long prot, unsigned long flags,
 | |
| 	unsigned long pgoff, unsigned long *populate,
 | |
| 	struct list_head *uf)
 | |
| {
 | |
| 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| extern int __mm_populate(unsigned long addr, unsigned long len,
 | |
| 			 int ignore_errors);
 | |
| static inline void mm_populate(unsigned long addr, unsigned long len)
 | |
| {
 | |
| 	/* Ignore errors */
 | |
| 	(void) __mm_populate(addr, len, 1);
 | |
| }
 | |
| #else
 | |
| static inline void mm_populate(unsigned long addr, unsigned long len) {}
 | |
| #endif
 | |
| 
 | |
| /* These take the mm semaphore themselves */
 | |
| extern int __must_check vm_brk(unsigned long, unsigned long);
 | |
| extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
 | |
| extern int vm_munmap(unsigned long, size_t);
 | |
| extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
 | |
|         unsigned long, unsigned long,
 | |
|         unsigned long, unsigned long);
 | |
| 
 | |
| struct vm_unmapped_area_info {
 | |
| #define VM_UNMAPPED_AREA_TOPDOWN 1
 | |
| 	unsigned long flags;
 | |
| 	unsigned long length;
 | |
| 	unsigned long low_limit;
 | |
| 	unsigned long high_limit;
 | |
| 	unsigned long align_mask;
 | |
| 	unsigned long align_offset;
 | |
| };
 | |
| 
 | |
| extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
 | |
| extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
 | |
| 
 | |
| /*
 | |
|  * Search for an unmapped address range.
 | |
|  *
 | |
|  * We are looking for a range that:
 | |
|  * - does not intersect with any VMA;
 | |
|  * - is contained within the [low_limit, high_limit) interval;
 | |
|  * - is at least the desired size.
 | |
|  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
 | |
|  */
 | |
| static inline unsigned long
 | |
| vm_unmapped_area(struct vm_unmapped_area_info *info)
 | |
| {
 | |
| 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
 | |
| 		return unmapped_area_topdown(info);
 | |
| 	else
 | |
| 		return unmapped_area(info);
 | |
| }
 | |
| 
 | |
| /* truncate.c */
 | |
| extern void truncate_inode_pages(struct address_space *, loff_t);
 | |
| extern void truncate_inode_pages_range(struct address_space *,
 | |
| 				       loff_t lstart, loff_t lend);
 | |
| extern void truncate_inode_pages_final(struct address_space *);
 | |
| 
 | |
| /* generic vm_area_ops exported for stackable file systems */
 | |
| extern vm_fault_t filemap_fault(struct vm_fault *vmf);
 | |
| extern void filemap_map_pages(struct vm_fault *vmf,
 | |
| 		pgoff_t start_pgoff, pgoff_t end_pgoff);
 | |
| extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
 | |
| 
 | |
| /* mm/page-writeback.c */
 | |
| int __must_check write_one_page(struct page *page);
 | |
| void task_dirty_inc(struct task_struct *tsk);
 | |
| 
 | |
| /* readahead.c */
 | |
| #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
 | |
| 
 | |
| int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
 | |
| 			pgoff_t offset, unsigned long nr_to_read);
 | |
| 
 | |
| void page_cache_sync_readahead(struct address_space *mapping,
 | |
| 			       struct file_ra_state *ra,
 | |
| 			       struct file *filp,
 | |
| 			       pgoff_t offset,
 | |
| 			       unsigned long size);
 | |
| 
 | |
| void page_cache_async_readahead(struct address_space *mapping,
 | |
| 				struct file_ra_state *ra,
 | |
| 				struct file *filp,
 | |
| 				struct page *pg,
 | |
| 				pgoff_t offset,
 | |
| 				unsigned long size);
 | |
| 
 | |
| extern unsigned long stack_guard_gap;
 | |
| /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
 | |
| extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
 | |
| 
 | |
| /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
 | |
| extern int expand_downwards(struct vm_area_struct *vma,
 | |
| 		unsigned long address);
 | |
| #if VM_GROWSUP
 | |
| extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
 | |
| #else
 | |
|   #define expand_upwards(vma, address) (0)
 | |
| #endif
 | |
| 
 | |
| /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
 | |
| extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
 | |
| extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
 | |
| 					     struct vm_area_struct **pprev);
 | |
| 
 | |
| /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
 | |
|    NULL if none.  Assume start_addr < end_addr. */
 | |
| static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
 | |
| {
 | |
| 	struct vm_area_struct * vma = find_vma(mm,start_addr);
 | |
| 
 | |
| 	if (vma && end_addr <= vma->vm_start)
 | |
| 		vma = NULL;
 | |
| 	return vma;
 | |
| }
 | |
| 
 | |
| static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
 | |
| {
 | |
| 	unsigned long vm_start = vma->vm_start;
 | |
| 
 | |
| 	if (vma->vm_flags & VM_GROWSDOWN) {
 | |
| 		vm_start -= stack_guard_gap;
 | |
| 		if (vm_start > vma->vm_start)
 | |
| 			vm_start = 0;
 | |
| 	}
 | |
| 	return vm_start;
 | |
| }
 | |
| 
 | |
| static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
 | |
| {
 | |
| 	unsigned long vm_end = vma->vm_end;
 | |
| 
 | |
| 	if (vma->vm_flags & VM_GROWSUP) {
 | |
| 		vm_end += stack_guard_gap;
 | |
| 		if (vm_end < vma->vm_end)
 | |
| 			vm_end = -PAGE_SIZE;
 | |
| 	}
 | |
| 	return vm_end;
 | |
| }
 | |
| 
 | |
| static inline unsigned long vma_pages(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
 | |
| static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
 | |
| 				unsigned long vm_start, unsigned long vm_end)
 | |
| {
 | |
| 	struct vm_area_struct *vma = find_vma(mm, vm_start);
 | |
| 
 | |
| 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
 | |
| 		vma = NULL;
 | |
| 
 | |
| 	return vma;
 | |
| }
 | |
| 
 | |
| static inline bool range_in_vma(struct vm_area_struct *vma,
 | |
| 				unsigned long start, unsigned long end)
 | |
| {
 | |
| 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| pgprot_t vm_get_page_prot(unsigned long vm_flags);
 | |
| void vma_set_page_prot(struct vm_area_struct *vma);
 | |
| #else
 | |
| static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
 | |
| {
 | |
| 	return __pgprot(0);
 | |
| }
 | |
| static inline void vma_set_page_prot(struct vm_area_struct *vma)
 | |
| {
 | |
| 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| unsigned long change_prot_numa(struct vm_area_struct *vma,
 | |
| 			unsigned long start, unsigned long end);
 | |
| #endif
 | |
| 
 | |
| struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
 | |
| int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
 | |
| 			unsigned long pfn, unsigned long size, pgprot_t);
 | |
| int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
 | |
| int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
 | |
| 				unsigned long num);
 | |
| int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
 | |
| 				unsigned long num);
 | |
| vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			unsigned long pfn);
 | |
| vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			unsigned long pfn, pgprot_t pgprot);
 | |
| vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			pfn_t pfn);
 | |
| vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
 | |
| 		unsigned long addr, pfn_t pfn);
 | |
| int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
 | |
| 
 | |
| static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
 | |
| 				unsigned long addr, struct page *page)
 | |
| {
 | |
| 	int err = vm_insert_page(vma, addr, page);
 | |
| 
 | |
| 	if (err == -ENOMEM)
 | |
| 		return VM_FAULT_OOM;
 | |
| 	if (err < 0 && err != -EBUSY)
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 
 | |
| 	return VM_FAULT_NOPAGE;
 | |
| }
 | |
| 
 | |
| static inline vm_fault_t vmf_error(int err)
 | |
| {
 | |
| 	if (err == -ENOMEM)
 | |
| 		return VM_FAULT_OOM;
 | |
| 	return VM_FAULT_SIGBUS;
 | |
| }
 | |
| 
 | |
| struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
 | |
| 			 unsigned int foll_flags);
 | |
| 
 | |
| #define FOLL_WRITE	0x01	/* check pte is writable */
 | |
| #define FOLL_TOUCH	0x02	/* mark page accessed */
 | |
| #define FOLL_GET	0x04	/* do get_page on page */
 | |
| #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
 | |
| #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
 | |
| #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
 | |
| 				 * and return without waiting upon it */
 | |
| #define FOLL_POPULATE	0x40	/* fault in page */
 | |
| #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
 | |
| #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
 | |
| #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
 | |
| #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
 | |
| #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
 | |
| #define FOLL_MLOCK	0x1000	/* lock present pages */
 | |
| #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
 | |
| #define FOLL_COW	0x4000	/* internal GUP flag */
 | |
| #define FOLL_ANON	0x8000	/* don't do file mappings */
 | |
| #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
 | |
| 
 | |
| /*
 | |
|  * NOTE on FOLL_LONGTERM:
 | |
|  *
 | |
|  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
 | |
|  * period _often_ under userspace control.  This is contrasted with
 | |
|  * iov_iter_get_pages() where usages which are transient.
 | |
|  *
 | |
|  * FIXME: For pages which are part of a filesystem, mappings are subject to the
 | |
|  * lifetime enforced by the filesystem and we need guarantees that longterm
 | |
|  * users like RDMA and V4L2 only establish mappings which coordinate usage with
 | |
|  * the filesystem.  Ideas for this coordination include revoking the longterm
 | |
|  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
 | |
|  * added after the problem with filesystems was found FS DAX VMAs are
 | |
|  * specifically failed.  Filesystem pages are still subject to bugs and use of
 | |
|  * FOLL_LONGTERM should be avoided on those pages.
 | |
|  *
 | |
|  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
 | |
|  * Currently only get_user_pages() and get_user_pages_fast() support this flag
 | |
|  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
 | |
|  * is due to an incompatibility with the FS DAX check and
 | |
|  * FAULT_FLAG_ALLOW_RETRY
 | |
|  *
 | |
|  * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
 | |
|  * that region.  And so CMA attempts to migrate the page before pinning when
 | |
|  * FOLL_LONGTERM is specified.
 | |
|  */
 | |
| 
 | |
| static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
 | |
| {
 | |
| 	if (vm_fault & VM_FAULT_OOM)
 | |
| 		return -ENOMEM;
 | |
| 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
 | |
| 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
 | |
| 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
 | |
| 			void *data);
 | |
| extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
 | |
| 			       unsigned long size, pte_fn_t fn, void *data);
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_PAGE_POISONING
 | |
| extern bool page_poisoning_enabled(void);
 | |
| extern void kernel_poison_pages(struct page *page, int numpages, int enable);
 | |
| #else
 | |
| static inline bool page_poisoning_enabled(void) { return false; }
 | |
| static inline void kernel_poison_pages(struct page *page, int numpages,
 | |
| 					int enable) { }
 | |
| #endif
 | |
| 
 | |
| extern bool _debug_pagealloc_enabled;
 | |
| 
 | |
| static inline bool debug_pagealloc_enabled(void)
 | |
| {
 | |
| 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && _debug_pagealloc_enabled;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
 | |
| extern void __kernel_map_pages(struct page *page, int numpages, int enable);
 | |
| 
 | |
| static inline void
 | |
| kernel_map_pages(struct page *page, int numpages, int enable)
 | |
| {
 | |
| 	__kernel_map_pages(page, numpages, enable);
 | |
| }
 | |
| #ifdef CONFIG_HIBERNATION
 | |
| extern bool kernel_page_present(struct page *page);
 | |
| #endif	/* CONFIG_HIBERNATION */
 | |
| #else	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
 | |
| static inline void
 | |
| kernel_map_pages(struct page *page, int numpages, int enable) {}
 | |
| #ifdef CONFIG_HIBERNATION
 | |
| static inline bool kernel_page_present(struct page *page) { return true; }
 | |
| #endif	/* CONFIG_HIBERNATION */
 | |
| #endif	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
 | |
| 
 | |
| #ifdef __HAVE_ARCH_GATE_AREA
 | |
| extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
 | |
| extern int in_gate_area_no_mm(unsigned long addr);
 | |
| extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
 | |
| #else
 | |
| static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
 | |
| static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif	/* __HAVE_ARCH_GATE_AREA */
 | |
| 
 | |
| extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
 | |
| 
 | |
| #ifdef CONFIG_SYSCTL
 | |
| extern int sysctl_drop_caches;
 | |
| int drop_caches_sysctl_handler(struct ctl_table *, int,
 | |
| 					void __user *, size_t *, loff_t *);
 | |
| #endif
 | |
| 
 | |
| void drop_slab(void);
 | |
| void drop_slab_node(int nid);
 | |
| 
 | |
| #ifndef CONFIG_MMU
 | |
| #define randomize_va_space 0
 | |
| #else
 | |
| extern int randomize_va_space;
 | |
| #endif
 | |
| 
 | |
| const char * arch_vma_name(struct vm_area_struct *vma);
 | |
| void print_vma_addr(char *prefix, unsigned long rip);
 | |
| 
 | |
| void *sparse_buffer_alloc(unsigned long size);
 | |
| struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
 | |
| 		struct vmem_altmap *altmap);
 | |
| pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
 | |
| p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
 | |
| pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
 | |
| pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
 | |
| pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
 | |
| void *vmemmap_alloc_block(unsigned long size, int node);
 | |
| struct vmem_altmap;
 | |
| void *vmemmap_alloc_block_buf(unsigned long size, int node);
 | |
| void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
 | |
| void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
 | |
| int vmemmap_populate_basepages(unsigned long start, unsigned long end,
 | |
| 			       int node);
 | |
| int vmemmap_populate(unsigned long start, unsigned long end, int node,
 | |
| 		struct vmem_altmap *altmap);
 | |
| void vmemmap_populate_print_last(void);
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| void vmemmap_free(unsigned long start, unsigned long end,
 | |
| 		struct vmem_altmap *altmap);
 | |
| #endif
 | |
| void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
 | |
| 				  unsigned long nr_pages);
 | |
| 
 | |
| enum mf_flags {
 | |
| 	MF_COUNT_INCREASED = 1 << 0,
 | |
| 	MF_ACTION_REQUIRED = 1 << 1,
 | |
| 	MF_MUST_KILL = 1 << 2,
 | |
| 	MF_SOFT_OFFLINE = 1 << 3,
 | |
| };
 | |
| extern int memory_failure(unsigned long pfn, int flags);
 | |
| extern void memory_failure_queue(unsigned long pfn, int flags);
 | |
| extern int unpoison_memory(unsigned long pfn);
 | |
| extern int get_hwpoison_page(struct page *page);
 | |
| #define put_hwpoison_page(page)	put_page(page)
 | |
| extern int sysctl_memory_failure_early_kill;
 | |
| extern int sysctl_memory_failure_recovery;
 | |
| extern void shake_page(struct page *p, int access);
 | |
| extern atomic_long_t num_poisoned_pages __read_mostly;
 | |
| extern int soft_offline_page(struct page *page, int flags);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Error handlers for various types of pages.
 | |
|  */
 | |
| enum mf_result {
 | |
| 	MF_IGNORED,	/* Error: cannot be handled */
 | |
| 	MF_FAILED,	/* Error: handling failed */
 | |
| 	MF_DELAYED,	/* Will be handled later */
 | |
| 	MF_RECOVERED,	/* Successfully recovered */
 | |
| };
 | |
| 
 | |
| enum mf_action_page_type {
 | |
| 	MF_MSG_KERNEL,
 | |
| 	MF_MSG_KERNEL_HIGH_ORDER,
 | |
| 	MF_MSG_SLAB,
 | |
| 	MF_MSG_DIFFERENT_COMPOUND,
 | |
| 	MF_MSG_POISONED_HUGE,
 | |
| 	MF_MSG_HUGE,
 | |
| 	MF_MSG_FREE_HUGE,
 | |
| 	MF_MSG_NON_PMD_HUGE,
 | |
| 	MF_MSG_UNMAP_FAILED,
 | |
| 	MF_MSG_DIRTY_SWAPCACHE,
 | |
| 	MF_MSG_CLEAN_SWAPCACHE,
 | |
| 	MF_MSG_DIRTY_MLOCKED_LRU,
 | |
| 	MF_MSG_CLEAN_MLOCKED_LRU,
 | |
| 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
 | |
| 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
 | |
| 	MF_MSG_DIRTY_LRU,
 | |
| 	MF_MSG_CLEAN_LRU,
 | |
| 	MF_MSG_TRUNCATED_LRU,
 | |
| 	MF_MSG_BUDDY,
 | |
| 	MF_MSG_BUDDY_2ND,
 | |
| 	MF_MSG_DAX,
 | |
| 	MF_MSG_UNKNOWN,
 | |
| };
 | |
| 
 | |
| #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
 | |
| extern void clear_huge_page(struct page *page,
 | |
| 			    unsigned long addr_hint,
 | |
| 			    unsigned int pages_per_huge_page);
 | |
| extern void copy_user_huge_page(struct page *dst, struct page *src,
 | |
| 				unsigned long addr_hint,
 | |
| 				struct vm_area_struct *vma,
 | |
| 				unsigned int pages_per_huge_page);
 | |
| extern long copy_huge_page_from_user(struct page *dst_page,
 | |
| 				const void __user *usr_src,
 | |
| 				unsigned int pages_per_huge_page,
 | |
| 				bool allow_pagefault);
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
 | |
| 
 | |
| extern struct page_ext_operations debug_guardpage_ops;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| extern unsigned int _debug_guardpage_minorder;
 | |
| extern bool _debug_guardpage_enabled;
 | |
| 
 | |
| static inline unsigned int debug_guardpage_minorder(void)
 | |
| {
 | |
| 	return _debug_guardpage_minorder;
 | |
| }
 | |
| 
 | |
| static inline bool debug_guardpage_enabled(void)
 | |
| {
 | |
| 	return _debug_guardpage_enabled;
 | |
| }
 | |
| 
 | |
| static inline bool page_is_guard(struct page *page)
 | |
| {
 | |
| 	struct page_ext *page_ext;
 | |
| 
 | |
| 	if (!debug_guardpage_enabled())
 | |
| 		return false;
 | |
| 
 | |
| 	page_ext = lookup_page_ext(page);
 | |
| 	if (unlikely(!page_ext))
 | |
| 		return false;
 | |
| 
 | |
| 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 | |
| }
 | |
| #else
 | |
| static inline unsigned int debug_guardpage_minorder(void) { return 0; }
 | |
| static inline bool debug_guardpage_enabled(void) { return false; }
 | |
| static inline bool page_is_guard(struct page *page) { return false; }
 | |
| #endif /* CONFIG_DEBUG_PAGEALLOC */
 | |
| 
 | |
| #if MAX_NUMNODES > 1
 | |
| void __init setup_nr_node_ids(void);
 | |
| #else
 | |
| static inline void setup_nr_node_ids(void) {}
 | |
| #endif
 | |
| 
 | |
| #endif /* __KERNEL__ */
 | |
| #endif /* _LINUX_MM_H */
 |