forked from mirrors/linux
		
	Drop the doubled words "used" and "by". Drop the repeated acronym "TLB" and make several other fixes around it. (capital letters, spellos) Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: SeongJae Park <sjpark@amazon.de> Link: http://lkml.kernel.org/r/2bb6e13e-44df-4920-52d9-4d3539945f73@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1448 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1448 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* SPDX-License-Identifier: GPL-2.0 */
 | 
						|
#ifndef _LINUX_PGTABLE_H
 | 
						|
#define _LINUX_PGTABLE_H
 | 
						|
 | 
						|
#include <linux/pfn.h>
 | 
						|
#include <asm/pgtable.h>
 | 
						|
 | 
						|
#ifndef __ASSEMBLY__
 | 
						|
#ifdef CONFIG_MMU
 | 
						|
 | 
						|
#include <linux/mm_types.h>
 | 
						|
#include <linux/bug.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <asm-generic/pgtable_uffd.h>
 | 
						|
 | 
						|
#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
 | 
						|
	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
 | 
						|
#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * On almost all architectures and configurations, 0 can be used as the
 | 
						|
 * upper ceiling to free_pgtables(): on many architectures it has the same
 | 
						|
 * effect as using TASK_SIZE.  However, there is one configuration which
 | 
						|
 * must impose a more careful limit, to avoid freeing kernel pgtables.
 | 
						|
 */
 | 
						|
#ifndef USER_PGTABLES_CEILING
 | 
						|
#define USER_PGTABLES_CEILING	0UL
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
 | 
						|
 *
 | 
						|
 * The pXx_index() functions return the index of the entry in the page
 | 
						|
 * table page which would control the given virtual address
 | 
						|
 *
 | 
						|
 * As these functions may be used by the same code for different levels of
 | 
						|
 * the page table folding, they are always available, regardless of
 | 
						|
 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
 | 
						|
 * because in such cases PTRS_PER_PxD equals 1.
 | 
						|
 */
 | 
						|
 | 
						|
static inline unsigned long pte_index(unsigned long address)
 | 
						|
{
 | 
						|
	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef pmd_index
 | 
						|
static inline unsigned long pmd_index(unsigned long address)
 | 
						|
{
 | 
						|
	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
 | 
						|
}
 | 
						|
#define pmd_index pmd_index
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pud_index
 | 
						|
static inline unsigned long pud_index(unsigned long address)
 | 
						|
{
 | 
						|
	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
 | 
						|
}
 | 
						|
#define pud_index pud_index
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pgd_index
 | 
						|
/* Must be a compile-time constant, so implement it as a macro */
 | 
						|
#define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pte_offset_kernel
 | 
						|
static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
 | 
						|
{
 | 
						|
	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
 | 
						|
}
 | 
						|
#define pte_offset_kernel pte_offset_kernel
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(CONFIG_HIGHPTE)
 | 
						|
#define pte_offset_map(dir, address)				\
 | 
						|
	((pte_t *)kmap_atomic(pmd_page(*(dir))) +		\
 | 
						|
	 pte_index((address)))
 | 
						|
#define pte_unmap(pte) kunmap_atomic((pte))
 | 
						|
#else
 | 
						|
#define pte_offset_map(dir, address)	pte_offset_kernel((dir), (address))
 | 
						|
#define pte_unmap(pte) ((void)(pte))	/* NOP */
 | 
						|
#endif
 | 
						|
 | 
						|
/* Find an entry in the second-level page table.. */
 | 
						|
#ifndef pmd_offset
 | 
						|
static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
 | 
						|
{
 | 
						|
	return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
 | 
						|
}
 | 
						|
#define pmd_offset pmd_offset
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pud_offset
 | 
						|
static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
 | 
						|
{
 | 
						|
	return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
 | 
						|
}
 | 
						|
#define pud_offset pud_offset
 | 
						|
#endif
 | 
						|
 | 
						|
static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
 | 
						|
{
 | 
						|
	return (pgd + pgd_index(address));
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * a shortcut to get a pgd_t in a given mm
 | 
						|
 */
 | 
						|
#ifndef pgd_offset
 | 
						|
#define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * a shortcut which implies the use of the kernel's pgd, instead
 | 
						|
 * of a process's
 | 
						|
 */
 | 
						|
#define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
 | 
						|
 | 
						|
/*
 | 
						|
 * In many cases it is known that a virtual address is mapped at PMD or PTE
 | 
						|
 * level, so instead of traversing all the page table levels, we can get a
 | 
						|
 * pointer to the PMD entry in user or kernel page table or translate a virtual
 | 
						|
 * address to the pointer in the PTE in the kernel page tables with simple
 | 
						|
 * helpers.
 | 
						|
 */
 | 
						|
static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
 | 
						|
{
 | 
						|
	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
 | 
						|
}
 | 
						|
 | 
						|
static inline pmd_t *pmd_off_k(unsigned long va)
 | 
						|
{
 | 
						|
	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
 | 
						|
}
 | 
						|
 | 
						|
static inline pte_t *virt_to_kpte(unsigned long vaddr)
 | 
						|
{
 | 
						|
	pmd_t *pmd = pmd_off_k(vaddr);
 | 
						|
 | 
						|
	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 | 
						|
extern int ptep_set_access_flags(struct vm_area_struct *vma,
 | 
						|
				 unsigned long address, pte_t *ptep,
 | 
						|
				 pte_t entry, int dirty);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 | 
						|
				 unsigned long address, pmd_t *pmdp,
 | 
						|
				 pmd_t entry, int dirty);
 | 
						|
extern int pudp_set_access_flags(struct vm_area_struct *vma,
 | 
						|
				 unsigned long address, pud_t *pudp,
 | 
						|
				 pud_t entry, int dirty);
 | 
						|
#else
 | 
						|
static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
 | 
						|
					unsigned long address, pmd_t *pmdp,
 | 
						|
					pmd_t entry, int dirty)
 | 
						|
{
 | 
						|
	BUILD_BUG();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline int pudp_set_access_flags(struct vm_area_struct *vma,
 | 
						|
					unsigned long address, pud_t *pudp,
 | 
						|
					pud_t entry, int dirty)
 | 
						|
{
 | 
						|
	BUILD_BUG();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 | 
						|
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 | 
						|
					    unsigned long address,
 | 
						|
					    pte_t *ptep)
 | 
						|
{
 | 
						|
	pte_t pte = *ptep;
 | 
						|
	int r = 1;
 | 
						|
	if (!pte_young(pte))
 | 
						|
		r = 0;
 | 
						|
	else
 | 
						|
		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
 | 
						|
	return r;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 | 
						|
					    unsigned long address,
 | 
						|
					    pmd_t *pmdp)
 | 
						|
{
 | 
						|
	pmd_t pmd = *pmdp;
 | 
						|
	int r = 1;
 | 
						|
	if (!pmd_young(pmd))
 | 
						|
		r = 0;
 | 
						|
	else
 | 
						|
		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
 | 
						|
	return r;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 | 
						|
					    unsigned long address,
 | 
						|
					    pmd_t *pmdp)
 | 
						|
{
 | 
						|
	BUILD_BUG();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 | 
						|
int ptep_clear_flush_young(struct vm_area_struct *vma,
 | 
						|
			   unsigned long address, pte_t *ptep);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 | 
						|
				  unsigned long address, pmd_t *pmdp);
 | 
						|
#else
 | 
						|
/*
 | 
						|
 * Despite relevant to THP only, this API is called from generic rmap code
 | 
						|
 * under PageTransHuge(), hence needs a dummy implementation for !THP
 | 
						|
 */
 | 
						|
static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
 | 
						|
					 unsigned long address, pmd_t *pmdp)
 | 
						|
{
 | 
						|
	BUILD_BUG();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
 | 
						|
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 | 
						|
				       unsigned long address,
 | 
						|
				       pte_t *ptep)
 | 
						|
{
 | 
						|
	pte_t pte = *ptep;
 | 
						|
	pte_clear(mm, address, ptep);
 | 
						|
	return pte;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTEP_GET
 | 
						|
static inline pte_t ptep_get(pte_t *ptep)
 | 
						|
{
 | 
						|
	return READ_ONCE(*ptep);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
 | 
						|
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
 | 
						|
					    unsigned long address,
 | 
						|
					    pmd_t *pmdp)
 | 
						|
{
 | 
						|
	pmd_t pmd = *pmdp;
 | 
						|
	pmd_clear(pmdp);
 | 
						|
	return pmd;
 | 
						|
}
 | 
						|
#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
 | 
						|
#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
 | 
						|
static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
 | 
						|
					    unsigned long address,
 | 
						|
					    pud_t *pudp)
 | 
						|
{
 | 
						|
	pud_t pud = *pudp;
 | 
						|
 | 
						|
	pud_clear(pudp);
 | 
						|
	return pud;
 | 
						|
}
 | 
						|
#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
 | 
						|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
 | 
						|
static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
 | 
						|
					    unsigned long address, pmd_t *pmdp,
 | 
						|
					    int full)
 | 
						|
{
 | 
						|
	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
 | 
						|
static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
 | 
						|
					    unsigned long address, pud_t *pudp,
 | 
						|
					    int full)
 | 
						|
{
 | 
						|
	return pudp_huge_get_and_clear(mm, address, pudp);
 | 
						|
}
 | 
						|
#endif
 | 
						|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 | 
						|
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 | 
						|
					    unsigned long address, pte_t *ptep,
 | 
						|
					    int full)
 | 
						|
{
 | 
						|
	pte_t pte;
 | 
						|
	pte = ptep_get_and_clear(mm, address, ptep);
 | 
						|
	return pte;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * If two threads concurrently fault at the same page, the thread that
 | 
						|
 * won the race updates the PTE and its local TLB/Cache. The other thread
 | 
						|
 * gives up, simply does nothing, and continues; on architectures where
 | 
						|
 * software can update TLB,  local TLB can be updated here to avoid next page
 | 
						|
 * fault. This function updates TLB only, do nothing with cache or others.
 | 
						|
 * It is the difference with function update_mmu_cache.
 | 
						|
 */
 | 
						|
#ifndef __HAVE_ARCH_UPDATE_MMU_TLB
 | 
						|
static inline void update_mmu_tlb(struct vm_area_struct *vma,
 | 
						|
				unsigned long address, pte_t *ptep)
 | 
						|
{
 | 
						|
}
 | 
						|
#define __HAVE_ARCH_UPDATE_MMU_TLB
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Some architectures may be able to avoid expensive synchronization
 | 
						|
 * primitives when modifications are made to PTE's which are already
 | 
						|
 * not present, or in the process of an address space destruction.
 | 
						|
 */
 | 
						|
#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
 | 
						|
static inline void pte_clear_not_present_full(struct mm_struct *mm,
 | 
						|
					      unsigned long address,
 | 
						|
					      pte_t *ptep,
 | 
						|
					      int full)
 | 
						|
{
 | 
						|
	pte_clear(mm, address, ptep);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
 | 
						|
extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
 | 
						|
			      unsigned long address,
 | 
						|
			      pte_t *ptep);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
 | 
						|
extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
 | 
						|
			      unsigned long address,
 | 
						|
			      pmd_t *pmdp);
 | 
						|
extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
 | 
						|
			      unsigned long address,
 | 
						|
			      pud_t *pudp);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
 | 
						|
struct mm_struct;
 | 
						|
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
 | 
						|
{
 | 
						|
	pte_t old_pte = *ptep;
 | 
						|
	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * On some architectures hardware does not set page access bit when accessing
 | 
						|
 * memory page, it is responsibilty of software setting this bit. It brings
 | 
						|
 * out extra page fault penalty to track page access bit. For optimization page
 | 
						|
 * access bit can be set during all page fault flow on these arches.
 | 
						|
 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
 | 
						|
 * where software maintains page access bit.
 | 
						|
 */
 | 
						|
#ifndef pte_sw_mkyoung
 | 
						|
static inline pte_t pte_sw_mkyoung(pte_t pte)
 | 
						|
{
 | 
						|
	return pte;
 | 
						|
}
 | 
						|
#define pte_sw_mkyoung	pte_sw_mkyoung
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pte_savedwrite
 | 
						|
#define pte_savedwrite pte_write
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pte_mk_savedwrite
 | 
						|
#define pte_mk_savedwrite pte_mkwrite
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pte_clear_savedwrite
 | 
						|
#define pte_clear_savedwrite pte_wrprotect
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pmd_savedwrite
 | 
						|
#define pmd_savedwrite pmd_write
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pmd_mk_savedwrite
 | 
						|
#define pmd_mk_savedwrite pmd_mkwrite
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pmd_clear_savedwrite
 | 
						|
#define pmd_clear_savedwrite pmd_wrprotect
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 | 
						|
				      unsigned long address, pmd_t *pmdp)
 | 
						|
{
 | 
						|
	pmd_t old_pmd = *pmdp;
 | 
						|
	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 | 
						|
				      unsigned long address, pmd_t *pmdp)
 | 
						|
{
 | 
						|
	BUILD_BUG();
 | 
						|
}
 | 
						|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
#endif
 | 
						|
#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
 | 
						|
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 | 
						|
static inline void pudp_set_wrprotect(struct mm_struct *mm,
 | 
						|
				      unsigned long address, pud_t *pudp)
 | 
						|
{
 | 
						|
	pud_t old_pud = *pudp;
 | 
						|
 | 
						|
	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void pudp_set_wrprotect(struct mm_struct *mm,
 | 
						|
				      unsigned long address, pud_t *pudp)
 | 
						|
{
 | 
						|
	BUILD_BUG();
 | 
						|
}
 | 
						|
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pmdp_collapse_flush
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 | 
						|
				 unsigned long address, pmd_t *pmdp);
 | 
						|
#else
 | 
						|
static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 | 
						|
					unsigned long address,
 | 
						|
					pmd_t *pmdp)
 | 
						|
{
 | 
						|
	BUILD_BUG();
 | 
						|
	return *pmdp;
 | 
						|
}
 | 
						|
#define pmdp_collapse_flush pmdp_collapse_flush
 | 
						|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
 | 
						|
extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 | 
						|
				       pgtable_t pgtable);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
 | 
						|
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
/*
 | 
						|
 * This is an implementation of pmdp_establish() that is only suitable for an
 | 
						|
 * architecture that doesn't have hardware dirty/accessed bits. In this case we
 | 
						|
 * can't race with CPU which sets these bits and non-atomic aproach is fine.
 | 
						|
 */
 | 
						|
static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
 | 
						|
		unsigned long address, pmd_t *pmdp, pmd_t pmd)
 | 
						|
{
 | 
						|
	pmd_t old_pmd = *pmdp;
 | 
						|
	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 | 
						|
	return old_pmd;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PMDP_INVALIDATE
 | 
						|
extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 | 
						|
			    pmd_t *pmdp);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTE_SAME
 | 
						|
static inline int pte_same(pte_t pte_a, pte_t pte_b)
 | 
						|
{
 | 
						|
	return pte_val(pte_a) == pte_val(pte_b);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTE_UNUSED
 | 
						|
/*
 | 
						|
 * Some architectures provide facilities to virtualization guests
 | 
						|
 * so that they can flag allocated pages as unused. This allows the
 | 
						|
 * host to transparently reclaim unused pages. This function returns
 | 
						|
 * whether the pte's page is unused.
 | 
						|
 */
 | 
						|
static inline int pte_unused(pte_t pte)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pte_access_permitted
 | 
						|
#define pte_access_permitted(pte, write) \
 | 
						|
	(pte_present(pte) && (!(write) || pte_write(pte)))
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pmd_access_permitted
 | 
						|
#define pmd_access_permitted(pmd, write) \
 | 
						|
	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pud_access_permitted
 | 
						|
#define pud_access_permitted(pud, write) \
 | 
						|
	(pud_present(pud) && (!(write) || pud_write(pud)))
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef p4d_access_permitted
 | 
						|
#define p4d_access_permitted(p4d, write) \
 | 
						|
	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pgd_access_permitted
 | 
						|
#define pgd_access_permitted(pgd, write) \
 | 
						|
	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PMD_SAME
 | 
						|
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 | 
						|
{
 | 
						|
	return pmd_val(pmd_a) == pmd_val(pmd_b);
 | 
						|
}
 | 
						|
 | 
						|
static inline int pud_same(pud_t pud_a, pud_t pud_b)
 | 
						|
{
 | 
						|
	return pud_val(pud_a) == pud_val(pud_b);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_P4D_SAME
 | 
						|
static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
 | 
						|
{
 | 
						|
	return p4d_val(p4d_a) == p4d_val(p4d_b);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PGD_SAME
 | 
						|
static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
 | 
						|
{
 | 
						|
	return pgd_val(pgd_a) == pgd_val(pgd_b);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
 | 
						|
 * TLB flush will be required as a result of the "set". For example, use
 | 
						|
 * in scenarios where it is known ahead of time that the routine is
 | 
						|
 * setting non-present entries, or re-setting an existing entry to the
 | 
						|
 * same value. Otherwise, use the typical "set" helpers and flush the
 | 
						|
 * TLB.
 | 
						|
 */
 | 
						|
#define set_pte_safe(ptep, pte) \
 | 
						|
({ \
 | 
						|
	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
 | 
						|
	set_pte(ptep, pte); \
 | 
						|
})
 | 
						|
 | 
						|
#define set_pmd_safe(pmdp, pmd) \
 | 
						|
({ \
 | 
						|
	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
 | 
						|
	set_pmd(pmdp, pmd); \
 | 
						|
})
 | 
						|
 | 
						|
#define set_pud_safe(pudp, pud) \
 | 
						|
({ \
 | 
						|
	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
 | 
						|
	set_pud(pudp, pud); \
 | 
						|
})
 | 
						|
 | 
						|
#define set_p4d_safe(p4dp, p4d) \
 | 
						|
({ \
 | 
						|
	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
 | 
						|
	set_p4d(p4dp, p4d); \
 | 
						|
})
 | 
						|
 | 
						|
#define set_pgd_safe(pgdp, pgd) \
 | 
						|
({ \
 | 
						|
	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
 | 
						|
	set_pgd(pgdp, pgd); \
 | 
						|
})
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_DO_SWAP_PAGE
 | 
						|
/*
 | 
						|
 * Some architectures support metadata associated with a page. When a
 | 
						|
 * page is being swapped out, this metadata must be saved so it can be
 | 
						|
 * restored when the page is swapped back in. SPARC M7 and newer
 | 
						|
 * processors support an ADI (Application Data Integrity) tag for the
 | 
						|
 * page as metadata for the page. arch_do_swap_page() can restore this
 | 
						|
 * metadata when a page is swapped back in.
 | 
						|
 */
 | 
						|
static inline void arch_do_swap_page(struct mm_struct *mm,
 | 
						|
				     struct vm_area_struct *vma,
 | 
						|
				     unsigned long addr,
 | 
						|
				     pte_t pte, pte_t oldpte)
 | 
						|
{
 | 
						|
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_UNMAP_ONE
 | 
						|
/*
 | 
						|
 * Some architectures support metadata associated with a page. When a
 | 
						|
 * page is being swapped out, this metadata must be saved so it can be
 | 
						|
 * restored when the page is swapped back in. SPARC M7 and newer
 | 
						|
 * processors support an ADI (Application Data Integrity) tag for the
 | 
						|
 * page as metadata for the page. arch_unmap_one() can save this
 | 
						|
 * metadata on a swap-out of a page.
 | 
						|
 */
 | 
						|
static inline int arch_unmap_one(struct mm_struct *mm,
 | 
						|
				  struct vm_area_struct *vma,
 | 
						|
				  unsigned long addr,
 | 
						|
				  pte_t orig_pte)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
 | 
						|
#define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_MOVE_PTE
 | 
						|
#define move_pte(pte, prot, old_addr, new_addr)	(pte)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pte_accessible
 | 
						|
# define pte_accessible(mm, pte)	((void)(pte), 1)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef flush_tlb_fix_spurious_fault
 | 
						|
#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * When walking page tables, get the address of the next boundary,
 | 
						|
 * or the end address of the range if that comes earlier.  Although no
 | 
						|
 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
 | 
						|
 */
 | 
						|
 | 
						|
#define pgd_addr_end(addr, end)						\
 | 
						|
({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
 | 
						|
	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 | 
						|
})
 | 
						|
 | 
						|
#ifndef p4d_addr_end
 | 
						|
#define p4d_addr_end(addr, end)						\
 | 
						|
({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
 | 
						|
	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 | 
						|
})
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pud_addr_end
 | 
						|
#define pud_addr_end(addr, end)						\
 | 
						|
({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
 | 
						|
	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 | 
						|
})
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pmd_addr_end
 | 
						|
#define pmd_addr_end(addr, end)						\
 | 
						|
({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
 | 
						|
	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 | 
						|
})
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * When walking page tables, we usually want to skip any p?d_none entries;
 | 
						|
 * and any p?d_bad entries - reporting the error before resetting to none.
 | 
						|
 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
 | 
						|
 */
 | 
						|
void pgd_clear_bad(pgd_t *);
 | 
						|
 | 
						|
#ifndef __PAGETABLE_P4D_FOLDED
 | 
						|
void p4d_clear_bad(p4d_t *);
 | 
						|
#else
 | 
						|
#define p4d_clear_bad(p4d)        do { } while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __PAGETABLE_PUD_FOLDED
 | 
						|
void pud_clear_bad(pud_t *);
 | 
						|
#else
 | 
						|
#define pud_clear_bad(p4d)        do { } while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
void pmd_clear_bad(pmd_t *);
 | 
						|
 | 
						|
static inline int pgd_none_or_clear_bad(pgd_t *pgd)
 | 
						|
{
 | 
						|
	if (pgd_none(*pgd))
 | 
						|
		return 1;
 | 
						|
	if (unlikely(pgd_bad(*pgd))) {
 | 
						|
		pgd_clear_bad(pgd);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int p4d_none_or_clear_bad(p4d_t *p4d)
 | 
						|
{
 | 
						|
	if (p4d_none(*p4d))
 | 
						|
		return 1;
 | 
						|
	if (unlikely(p4d_bad(*p4d))) {
 | 
						|
		p4d_clear_bad(p4d);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int pud_none_or_clear_bad(pud_t *pud)
 | 
						|
{
 | 
						|
	if (pud_none(*pud))
 | 
						|
		return 1;
 | 
						|
	if (unlikely(pud_bad(*pud))) {
 | 
						|
		pud_clear_bad(pud);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int pmd_none_or_clear_bad(pmd_t *pmd)
 | 
						|
{
 | 
						|
	if (pmd_none(*pmd))
 | 
						|
		return 1;
 | 
						|
	if (unlikely(pmd_bad(*pmd))) {
 | 
						|
		pmd_clear_bad(pmd);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
 | 
						|
					     unsigned long addr,
 | 
						|
					     pte_t *ptep)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Get the current pte state, but zero it out to make it
 | 
						|
	 * non-present, preventing the hardware from asynchronously
 | 
						|
	 * updating it.
 | 
						|
	 */
 | 
						|
	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
 | 
						|
}
 | 
						|
 | 
						|
static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
 | 
						|
					     unsigned long addr,
 | 
						|
					     pte_t *ptep, pte_t pte)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * The pte is non-present, so there's no hardware state to
 | 
						|
	 * preserve.
 | 
						|
	 */
 | 
						|
	set_pte_at(vma->vm_mm, addr, ptep, pte);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
 | 
						|
/*
 | 
						|
 * Start a pte protection read-modify-write transaction, which
 | 
						|
 * protects against asynchronous hardware modifications to the pte.
 | 
						|
 * The intention is not to prevent the hardware from making pte
 | 
						|
 * updates, but to prevent any updates it may make from being lost.
 | 
						|
 *
 | 
						|
 * This does not protect against other software modifications of the
 | 
						|
 * pte; the appropriate pte lock must be held over the transation.
 | 
						|
 *
 | 
						|
 * Note that this interface is intended to be batchable, meaning that
 | 
						|
 * ptep_modify_prot_commit may not actually update the pte, but merely
 | 
						|
 * queue the update to be done at some later time.  The update must be
 | 
						|
 * actually committed before the pte lock is released, however.
 | 
						|
 */
 | 
						|
static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
 | 
						|
					   unsigned long addr,
 | 
						|
					   pte_t *ptep)
 | 
						|
{
 | 
						|
	return __ptep_modify_prot_start(vma, addr, ptep);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Commit an update to a pte, leaving any hardware-controlled bits in
 | 
						|
 * the PTE unmodified.
 | 
						|
 */
 | 
						|
static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
 | 
						|
					   unsigned long addr,
 | 
						|
					   pte_t *ptep, pte_t old_pte, pte_t pte)
 | 
						|
{
 | 
						|
	__ptep_modify_prot_commit(vma, addr, ptep, pte);
 | 
						|
}
 | 
						|
#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
 | 
						|
#endif /* CONFIG_MMU */
 | 
						|
 | 
						|
/*
 | 
						|
 * No-op macros that just return the current protection value. Defined here
 | 
						|
 * because these macros can be used even if CONFIG_MMU is not defined.
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef pgprot_nx
 | 
						|
#define pgprot_nx(prot)	(prot)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pgprot_noncached
 | 
						|
#define pgprot_noncached(prot)	(prot)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pgprot_writecombine
 | 
						|
#define pgprot_writecombine pgprot_noncached
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pgprot_writethrough
 | 
						|
#define pgprot_writethrough pgprot_noncached
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pgprot_device
 | 
						|
#define pgprot_device pgprot_noncached
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_MMU
 | 
						|
#ifndef pgprot_modify
 | 
						|
#define pgprot_modify pgprot_modify
 | 
						|
static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
 | 
						|
{
 | 
						|
	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
 | 
						|
		newprot = pgprot_noncached(newprot);
 | 
						|
	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
 | 
						|
		newprot = pgprot_writecombine(newprot);
 | 
						|
	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
 | 
						|
		newprot = pgprot_device(newprot);
 | 
						|
	return newprot;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#endif /* CONFIG_MMU */
 | 
						|
 | 
						|
#ifndef pgprot_encrypted
 | 
						|
#define pgprot_encrypted(prot)	(prot)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef pgprot_decrypted
 | 
						|
#define pgprot_decrypted(prot)	(prot)
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * A facility to provide lazy MMU batching.  This allows PTE updates and
 | 
						|
 * page invalidations to be delayed until a call to leave lazy MMU mode
 | 
						|
 * is issued.  Some architectures may benefit from doing this, and it is
 | 
						|
 * beneficial for both shadow and direct mode hypervisors, which may batch
 | 
						|
 * the PTE updates which happen during this window.  Note that using this
 | 
						|
 * interface requires that read hazards be removed from the code.  A read
 | 
						|
 * hazard could result in the direct mode hypervisor case, since the actual
 | 
						|
 * write to the page tables may not yet have taken place, so reads though
 | 
						|
 * a raw PTE pointer after it has been modified are not guaranteed to be
 | 
						|
 * up to date.  This mode can only be entered and left under the protection of
 | 
						|
 * the page table locks for all page tables which may be modified.  In the UP
 | 
						|
 * case, this is required so that preemption is disabled, and in the SMP case,
 | 
						|
 * it must synchronize the delayed page table writes properly on other CPUs.
 | 
						|
 */
 | 
						|
#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
 | 
						|
#define arch_enter_lazy_mmu_mode()	do {} while (0)
 | 
						|
#define arch_leave_lazy_mmu_mode()	do {} while (0)
 | 
						|
#define arch_flush_lazy_mmu_mode()	do {} while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * A facility to provide batching of the reload of page tables and
 | 
						|
 * other process state with the actual context switch code for
 | 
						|
 * paravirtualized guests.  By convention, only one of the batched
 | 
						|
 * update (lazy) modes (CPU, MMU) should be active at any given time,
 | 
						|
 * entry should never be nested, and entry and exits should always be
 | 
						|
 * paired.  This is for sanity of maintaining and reasoning about the
 | 
						|
 * kernel code.  In this case, the exit (end of the context switch) is
 | 
						|
 * in architecture-specific code, and so doesn't need a generic
 | 
						|
 * definition.
 | 
						|
 */
 | 
						|
#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
 | 
						|
#define arch_start_context_switch(prev)	do {} while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
 | 
						|
#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
 | 
						|
static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
 | 
						|
{
 | 
						|
	return pmd;
 | 
						|
}
 | 
						|
 | 
						|
static inline int pmd_swp_soft_dirty(pmd_t pmd)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
 | 
						|
{
 | 
						|
	return pmd;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
 | 
						|
static inline int pte_soft_dirty(pte_t pte)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int pmd_soft_dirty(pmd_t pmd)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline pte_t pte_mksoft_dirty(pte_t pte)
 | 
						|
{
 | 
						|
	return pte;
 | 
						|
}
 | 
						|
 | 
						|
static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 | 
						|
{
 | 
						|
	return pmd;
 | 
						|
}
 | 
						|
 | 
						|
static inline pte_t pte_clear_soft_dirty(pte_t pte)
 | 
						|
{
 | 
						|
	return pte;
 | 
						|
}
 | 
						|
 | 
						|
static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
 | 
						|
{
 | 
						|
	return pmd;
 | 
						|
}
 | 
						|
 | 
						|
static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
 | 
						|
{
 | 
						|
	return pte;
 | 
						|
}
 | 
						|
 | 
						|
static inline int pte_swp_soft_dirty(pte_t pte)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
 | 
						|
{
 | 
						|
	return pte;
 | 
						|
}
 | 
						|
 | 
						|
static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
 | 
						|
{
 | 
						|
	return pmd;
 | 
						|
}
 | 
						|
 | 
						|
static inline int pmd_swp_soft_dirty(pmd_t pmd)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
 | 
						|
{
 | 
						|
	return pmd;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef __HAVE_PFNMAP_TRACKING
 | 
						|
/*
 | 
						|
 * Interfaces that can be used by architecture code to keep track of
 | 
						|
 * memory type of pfn mappings specified by the remap_pfn_range,
 | 
						|
 * vmf_insert_pfn.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * track_pfn_remap is called when a _new_ pfn mapping is being established
 | 
						|
 * by remap_pfn_range() for physical range indicated by pfn and size.
 | 
						|
 */
 | 
						|
static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 | 
						|
				  unsigned long pfn, unsigned long addr,
 | 
						|
				  unsigned long size)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * track_pfn_insert is called when a _new_ single pfn is established
 | 
						|
 * by vmf_insert_pfn().
 | 
						|
 */
 | 
						|
static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
 | 
						|
				    pfn_t pfn)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * track_pfn_copy is called when vma that is covering the pfnmap gets
 | 
						|
 * copied through copy_page_range().
 | 
						|
 */
 | 
						|
static inline int track_pfn_copy(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * untrack_pfn is called while unmapping a pfnmap for a region.
 | 
						|
 * untrack can be called for a specific region indicated by pfn and size or
 | 
						|
 * can be for the entire vma (in which case pfn, size are zero).
 | 
						|
 */
 | 
						|
static inline void untrack_pfn(struct vm_area_struct *vma,
 | 
						|
			       unsigned long pfn, unsigned long size)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
 | 
						|
 */
 | 
						|
static inline void untrack_pfn_moved(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
}
 | 
						|
#else
 | 
						|
extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 | 
						|
			   unsigned long pfn, unsigned long addr,
 | 
						|
			   unsigned long size);
 | 
						|
extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
 | 
						|
			     pfn_t pfn);
 | 
						|
extern int track_pfn_copy(struct vm_area_struct *vma);
 | 
						|
extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
 | 
						|
			unsigned long size);
 | 
						|
extern void untrack_pfn_moved(struct vm_area_struct *vma);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __HAVE_COLOR_ZERO_PAGE
 | 
						|
static inline int is_zero_pfn(unsigned long pfn)
 | 
						|
{
 | 
						|
	extern unsigned long zero_pfn;
 | 
						|
	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
 | 
						|
	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
#define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
 | 
						|
 | 
						|
#else
 | 
						|
static inline int is_zero_pfn(unsigned long pfn)
 | 
						|
{
 | 
						|
	extern unsigned long zero_pfn;
 | 
						|
	return pfn == zero_pfn;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned long my_zero_pfn(unsigned long addr)
 | 
						|
{
 | 
						|
	extern unsigned long zero_pfn;
 | 
						|
	return zero_pfn;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_MMU
 | 
						|
 | 
						|
#ifndef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
static inline int pmd_trans_huge(pmd_t pmd)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#ifndef pmd_write
 | 
						|
static inline int pmd_write(pmd_t pmd)
 | 
						|
{
 | 
						|
	BUG();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif /* pmd_write */
 | 
						|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | 
						|
 | 
						|
#ifndef pud_write
 | 
						|
static inline int pud_write(pud_t pud)
 | 
						|
{
 | 
						|
	BUG();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif /* pud_write */
 | 
						|
 | 
						|
#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
 | 
						|
static inline int pmd_devmap(pmd_t pmd)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline int pud_devmap(pud_t pud)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline int pgd_devmap(pgd_t pgd)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
 | 
						|
	(defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
 | 
						|
	 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
 | 
						|
static inline int pud_trans_huge(pud_t pud)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
 | 
						|
static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
 | 
						|
{
 | 
						|
	pud_t pudval = READ_ONCE(*pud);
 | 
						|
 | 
						|
	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
 | 
						|
		return 1;
 | 
						|
	if (unlikely(pud_bad(pudval))) {
 | 
						|
		pud_clear_bad(pud);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* See pmd_trans_unstable for discussion. */
 | 
						|
static inline int pud_trans_unstable(pud_t *pud)
 | 
						|
{
 | 
						|
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
 | 
						|
	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
 | 
						|
	return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
 | 
						|
#else
 | 
						|
	return 0;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#ifndef pmd_read_atomic
 | 
						|
static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Depend on compiler for an atomic pmd read. NOTE: this is
 | 
						|
	 * only going to work, if the pmdval_t isn't larger than
 | 
						|
	 * an unsigned long.
 | 
						|
	 */
 | 
						|
	return *pmdp;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef arch_needs_pgtable_deposit
 | 
						|
#define arch_needs_pgtable_deposit() (false)
 | 
						|
#endif
 | 
						|
/*
 | 
						|
 * This function is meant to be used by sites walking pagetables with
 | 
						|
 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
 | 
						|
 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
 | 
						|
 * into a null pmd and the transhuge page fault can convert a null pmd
 | 
						|
 * into an hugepmd or into a regular pmd (if the hugepage allocation
 | 
						|
 * fails). While holding the mmap_lock in read mode the pmd becomes
 | 
						|
 * stable and stops changing under us only if it's not null and not a
 | 
						|
 * transhuge pmd. When those races occurs and this function makes a
 | 
						|
 * difference vs the standard pmd_none_or_clear_bad, the result is
 | 
						|
 * undefined so behaving like if the pmd was none is safe (because it
 | 
						|
 * can return none anyway). The compiler level barrier() is critically
 | 
						|
 * important to compute the two checks atomically on the same pmdval.
 | 
						|
 *
 | 
						|
 * For 32bit kernels with a 64bit large pmd_t this automatically takes
 | 
						|
 * care of reading the pmd atomically to avoid SMP race conditions
 | 
						|
 * against pmd_populate() when the mmap_lock is hold for reading by the
 | 
						|
 * caller (a special atomic read not done by "gcc" as in the generic
 | 
						|
 * version above, is also needed when THP is disabled because the page
 | 
						|
 * fault can populate the pmd from under us).
 | 
						|
 */
 | 
						|
static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
 | 
						|
{
 | 
						|
	pmd_t pmdval = pmd_read_atomic(pmd);
 | 
						|
	/*
 | 
						|
	 * The barrier will stabilize the pmdval in a register or on
 | 
						|
	 * the stack so that it will stop changing under the code.
 | 
						|
	 *
 | 
						|
	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
 | 
						|
	 * pmd_read_atomic is allowed to return a not atomic pmdval
 | 
						|
	 * (for example pointing to an hugepage that has never been
 | 
						|
	 * mapped in the pmd). The below checks will only care about
 | 
						|
	 * the low part of the pmd with 32bit PAE x86 anyway, with the
 | 
						|
	 * exception of pmd_none(). So the important thing is that if
 | 
						|
	 * the low part of the pmd is found null, the high part will
 | 
						|
	 * be also null or the pmd_none() check below would be
 | 
						|
	 * confused.
 | 
						|
	 */
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
	barrier();
 | 
						|
#endif
 | 
						|
	/*
 | 
						|
	 * !pmd_present() checks for pmd migration entries
 | 
						|
	 *
 | 
						|
	 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
 | 
						|
	 * But using that requires moving current function and pmd_trans_unstable()
 | 
						|
	 * to linux/swapops.h to resovle dependency, which is too much code move.
 | 
						|
	 *
 | 
						|
	 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
 | 
						|
	 * because !pmd_present() pages can only be under migration not swapped
 | 
						|
	 * out.
 | 
						|
	 *
 | 
						|
	 * pmd_none() is preseved for future condition checks on pmd migration
 | 
						|
	 * entries and not confusing with this function name, although it is
 | 
						|
	 * redundant with !pmd_present().
 | 
						|
	 */
 | 
						|
	if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
 | 
						|
		(IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
 | 
						|
		return 1;
 | 
						|
	if (unlikely(pmd_bad(pmdval))) {
 | 
						|
		pmd_clear_bad(pmd);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is a noop if Transparent Hugepage Support is not built into
 | 
						|
 * the kernel. Otherwise it is equivalent to
 | 
						|
 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
 | 
						|
 * places that already verified the pmd is not none and they want to
 | 
						|
 * walk ptes while holding the mmap sem in read mode (write mode don't
 | 
						|
 * need this). If THP is not enabled, the pmd can't go away under the
 | 
						|
 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
 | 
						|
 * run a pmd_trans_unstable before walking the ptes after
 | 
						|
 * split_huge_pmd returns (because it may have run when the pmd become
 | 
						|
 * null, but then a page fault can map in a THP and not a regular page).
 | 
						|
 */
 | 
						|
static inline int pmd_trans_unstable(pmd_t *pmd)
 | 
						|
{
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
	return pmd_none_or_trans_huge_or_clear_bad(pmd);
 | 
						|
#else
 | 
						|
	return 0;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#ifndef CONFIG_NUMA_BALANCING
 | 
						|
/*
 | 
						|
 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
 | 
						|
 * the only case the kernel cares is for NUMA balancing and is only ever set
 | 
						|
 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
 | 
						|
 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
 | 
						|
 * is the responsibility of the caller to distinguish between PROT_NONE
 | 
						|
 * protections and NUMA hinting fault protections.
 | 
						|
 */
 | 
						|
static inline int pte_protnone(pte_t pte)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int pmd_protnone(pmd_t pmd)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif /* CONFIG_NUMA_BALANCING */
 | 
						|
 | 
						|
#endif /* CONFIG_MMU */
 | 
						|
 | 
						|
#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
 | 
						|
 | 
						|
#ifndef __PAGETABLE_P4D_FOLDED
 | 
						|
int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
 | 
						|
int p4d_clear_huge(p4d_t *p4d);
 | 
						|
#else
 | 
						|
static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline int p4d_clear_huge(p4d_t *p4d)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif /* !__PAGETABLE_P4D_FOLDED */
 | 
						|
 | 
						|
int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
 | 
						|
int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
 | 
						|
int pud_clear_huge(pud_t *pud);
 | 
						|
int pmd_clear_huge(pmd_t *pmd);
 | 
						|
int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
 | 
						|
int pud_free_pmd_page(pud_t *pud, unsigned long addr);
 | 
						|
int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
 | 
						|
#else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
 | 
						|
static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline int p4d_clear_huge(p4d_t *p4d)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline int pud_clear_huge(pud_t *pud)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline int pmd_clear_huge(pmd_t *pmd)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
/*
 | 
						|
 * ARCHes with special requirements for evicting THP backing TLB entries can
 | 
						|
 * implement this. Otherwise also, it can help optimize normal TLB flush in
 | 
						|
 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
 | 
						|
 * entire TLB if flush span is greater than a threshold, which will
 | 
						|
 * likely be true for a single huge page. Thus a single THP flush will
 | 
						|
 * invalidate the entire TLB which is not desirable.
 | 
						|
 * e.g. see arch/arc: flush_pmd_tlb_range
 | 
						|
 */
 | 
						|
#define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
 | 
						|
#define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
 | 
						|
#else
 | 
						|
#define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
 | 
						|
#define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
struct file;
 | 
						|
int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
 | 
						|
			unsigned long size, pgprot_t *vma_prot);
 | 
						|
 | 
						|
#ifndef CONFIG_X86_ESPFIX64
 | 
						|
static inline void init_espfix_bsp(void) { }
 | 
						|
#endif
 | 
						|
 | 
						|
extern void __init pgtable_cache_init(void);
 | 
						|
 | 
						|
#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
 | 
						|
static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
 | 
						|
{
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool arch_has_pfn_modify_check(void)
 | 
						|
{
 | 
						|
	return false;
 | 
						|
}
 | 
						|
#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
 | 
						|
 | 
						|
/*
 | 
						|
 * Architecture PAGE_KERNEL_* fallbacks
 | 
						|
 *
 | 
						|
 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
 | 
						|
 * because they really don't support them, or the port needs to be updated to
 | 
						|
 * reflect the required functionality. Below are a set of relatively safe
 | 
						|
 * fallbacks, as best effort, which we can count on in lieu of the architectures
 | 
						|
 * not defining them on their own yet.
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef PAGE_KERNEL_RO
 | 
						|
# define PAGE_KERNEL_RO PAGE_KERNEL
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef PAGE_KERNEL_EXEC
 | 
						|
# define PAGE_KERNEL_EXEC PAGE_KERNEL
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Page Table Modification bits for pgtbl_mod_mask.
 | 
						|
 *
 | 
						|
 * These are used by the p?d_alloc_track*() set of functions an in the generic
 | 
						|
 * vmalloc/ioremap code to track at which page-table levels entries have been
 | 
						|
 * modified. Based on that the code can better decide when vmalloc and ioremap
 | 
						|
 * mapping changes need to be synchronized to other page-tables in the system.
 | 
						|
 */
 | 
						|
#define		__PGTBL_PGD_MODIFIED	0
 | 
						|
#define		__PGTBL_P4D_MODIFIED	1
 | 
						|
#define		__PGTBL_PUD_MODIFIED	2
 | 
						|
#define		__PGTBL_PMD_MODIFIED	3
 | 
						|
#define		__PGTBL_PTE_MODIFIED	4
 | 
						|
 | 
						|
#define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
 | 
						|
#define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
 | 
						|
#define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
 | 
						|
#define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
 | 
						|
#define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
 | 
						|
 | 
						|
/* Page-Table Modification Mask */
 | 
						|
typedef unsigned int pgtbl_mod_mask;
 | 
						|
 | 
						|
#endif /* !__ASSEMBLY__ */
 | 
						|
 | 
						|
#ifndef io_remap_pfn_range
 | 
						|
#define io_remap_pfn_range remap_pfn_range
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef has_transparent_hugepage
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
#define has_transparent_hugepage() 1
 | 
						|
#else
 | 
						|
#define has_transparent_hugepage() 0
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * On some architectures it depends on the mm if the p4d/pud or pmd
 | 
						|
 * layer of the page table hierarchy is folded or not.
 | 
						|
 */
 | 
						|
#ifndef mm_p4d_folded
 | 
						|
#define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef mm_pud_folded
 | 
						|
#define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef mm_pmd_folded
 | 
						|
#define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * p?d_leaf() - true if this entry is a final mapping to a physical address.
 | 
						|
 * This differs from p?d_huge() by the fact that they are always available (if
 | 
						|
 * the architecture supports large pages at the appropriate level) even
 | 
						|
 * if CONFIG_HUGETLB_PAGE is not defined.
 | 
						|
 * Only meaningful when called on a valid entry.
 | 
						|
 */
 | 
						|
#ifndef pgd_leaf
 | 
						|
#define pgd_leaf(x)	0
 | 
						|
#endif
 | 
						|
#ifndef p4d_leaf
 | 
						|
#define p4d_leaf(x)	0
 | 
						|
#endif
 | 
						|
#ifndef pud_leaf
 | 
						|
#define pud_leaf(x)	0
 | 
						|
#endif
 | 
						|
#ifndef pmd_leaf
 | 
						|
#define pmd_leaf(x)	0
 | 
						|
#endif
 | 
						|
 | 
						|
#endif /* _LINUX_PGTABLE_H */
 |