forked from mirrors/linux
		
	 cbd59c48ae
			
		
	
	
		cbd59c48ae
		
	
	
	
	
		
			
			Add filemap_get_read_batch() which returns the head pages which represent a contiguous array of bytes in the file. It also stops when encountering a page marked as Readahead or !Uptodate (but does return that page) so it can be handled appropriately by filemap_get_pages(). That lets us remove the loop in filemap_get_pages() and check only the last page. Link: https://lkml.kernel.org/r/20210122160140.223228-5-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Kent Overstreet <kent.overstreet@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			3717 lines
		
	
	
	
		
			103 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3717 lines
		
	
	
	
		
			103 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *	linux/mm/filemap.c
 | |
|  *
 | |
|  * Copyright (C) 1994-1999  Linus Torvalds
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file handles the generic file mmap semantics used by
 | |
|  * most "normal" filesystems (but you don't /have/ to use this:
 | |
|  * the NFS filesystem used to do this differently, for example)
 | |
|  */
 | |
| #include <linux/export.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/dax.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/uio.h>
 | |
| #include <linux/error-injection.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/writeback.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/cpuset.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/cleancache.h>
 | |
| #include <linux/shmem_fs.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/delayacct.h>
 | |
| #include <linux/psi.h>
 | |
| #include <linux/ramfs.h>
 | |
| #include <linux/page_idle.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/filemap.h>
 | |
| 
 | |
| /*
 | |
|  * FIXME: remove all knowledge of the buffer layer from the core VM
 | |
|  */
 | |
| #include <linux/buffer_head.h> /* for try_to_free_buffers */
 | |
| 
 | |
| #include <asm/mman.h>
 | |
| 
 | |
| /*
 | |
|  * Shared mappings implemented 30.11.1994. It's not fully working yet,
 | |
|  * though.
 | |
|  *
 | |
|  * Shared mappings now work. 15.8.1995  Bruno.
 | |
|  *
 | |
|  * finished 'unifying' the page and buffer cache and SMP-threaded the
 | |
|  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 | |
|  *
 | |
|  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Lock ordering:
 | |
|  *
 | |
|  *  ->i_mmap_rwsem		(truncate_pagecache)
 | |
|  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
 | |
|  *      ->swap_lock		(exclusive_swap_page, others)
 | |
|  *        ->i_pages lock
 | |
|  *
 | |
|  *  ->i_mutex
 | |
|  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
 | |
|  *
 | |
|  *  ->mmap_lock
 | |
|  *    ->i_mmap_rwsem
 | |
|  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
 | |
|  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
 | |
|  *
 | |
|  *  ->mmap_lock
 | |
|  *    ->lock_page		(access_process_vm)
 | |
|  *
 | |
|  *  ->i_mutex			(generic_perform_write)
 | |
|  *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
 | |
|  *
 | |
|  *  bdi->wb.list_lock
 | |
|  *    sb_lock			(fs/fs-writeback.c)
 | |
|  *    ->i_pages lock		(__sync_single_inode)
 | |
|  *
 | |
|  *  ->i_mmap_rwsem
 | |
|  *    ->anon_vma.lock		(vma_adjust)
 | |
|  *
 | |
|  *  ->anon_vma.lock
 | |
|  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 | |
|  *
 | |
|  *  ->page_table_lock or pte_lock
 | |
|  *    ->swap_lock		(try_to_unmap_one)
 | |
|  *    ->private_lock		(try_to_unmap_one)
 | |
|  *    ->i_pages lock		(try_to_unmap_one)
 | |
|  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
 | |
|  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
 | |
|  *    ->private_lock		(page_remove_rmap->set_page_dirty)
 | |
|  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 | |
|  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 | |
|  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 | |
|  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 | |
|  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 | |
|  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 | |
|  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 | |
|  *
 | |
|  * ->i_mmap_rwsem
 | |
|  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 | |
|  */
 | |
| 
 | |
| static void page_cache_delete(struct address_space *mapping,
 | |
| 				   struct page *page, void *shadow)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, page->index);
 | |
| 	unsigned int nr = 1;
 | |
| 
 | |
| 	mapping_set_update(&xas, mapping);
 | |
| 
 | |
| 	/* hugetlb pages are represented by a single entry in the xarray */
 | |
| 	if (!PageHuge(page)) {
 | |
| 		xas_set_order(&xas, page->index, compound_order(page));
 | |
| 		nr = compound_nr(page);
 | |
| 	}
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | |
| 	VM_BUG_ON_PAGE(PageTail(page), page);
 | |
| 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 | |
| 
 | |
| 	xas_store(&xas, shadow);
 | |
| 	xas_init_marks(&xas);
 | |
| 
 | |
| 	page->mapping = NULL;
 | |
| 	/* Leave page->index set: truncation lookup relies upon it */
 | |
| 
 | |
| 	if (shadow) {
 | |
| 		mapping->nrexceptional += nr;
 | |
| 		/*
 | |
| 		 * Make sure the nrexceptional update is committed before
 | |
| 		 * the nrpages update so that final truncate racing
 | |
| 		 * with reclaim does not see both counters 0 at the
 | |
| 		 * same time and miss a shadow entry.
 | |
| 		 */
 | |
| 		smp_wmb();
 | |
| 	}
 | |
| 	mapping->nrpages -= nr;
 | |
| }
 | |
| 
 | |
| static void unaccount_page_cache_page(struct address_space *mapping,
 | |
| 				      struct page *page)
 | |
| {
 | |
| 	int nr;
 | |
| 
 | |
| 	/*
 | |
| 	 * if we're uptodate, flush out into the cleancache, otherwise
 | |
| 	 * invalidate any existing cleancache entries.  We can't leave
 | |
| 	 * stale data around in the cleancache once our page is gone
 | |
| 	 */
 | |
| 	if (PageUptodate(page) && PageMappedToDisk(page))
 | |
| 		cleancache_put_page(page);
 | |
| 	else
 | |
| 		cleancache_invalidate_page(mapping, page);
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(PageTail(page), page);
 | |
| 	VM_BUG_ON_PAGE(page_mapped(page), page);
 | |
| 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 | |
| 		int mapcount;
 | |
| 
 | |
| 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 | |
| 			 current->comm, page_to_pfn(page));
 | |
| 		dump_page(page, "still mapped when deleted");
 | |
| 		dump_stack();
 | |
| 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 | |
| 
 | |
| 		mapcount = page_mapcount(page);
 | |
| 		if (mapping_exiting(mapping) &&
 | |
| 		    page_count(page) >= mapcount + 2) {
 | |
| 			/*
 | |
| 			 * All vmas have already been torn down, so it's
 | |
| 			 * a good bet that actually the page is unmapped,
 | |
| 			 * and we'd prefer not to leak it: if we're wrong,
 | |
| 			 * some other bad page check should catch it later.
 | |
| 			 */
 | |
| 			page_mapcount_reset(page);
 | |
| 			page_ref_sub(page, mapcount);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* hugetlb pages do not participate in page cache accounting. */
 | |
| 	if (PageHuge(page))
 | |
| 		return;
 | |
| 
 | |
| 	nr = thp_nr_pages(page);
 | |
| 
 | |
| 	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
 | |
| 	if (PageSwapBacked(page)) {
 | |
| 		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
 | |
| 		if (PageTransHuge(page))
 | |
| 			__dec_lruvec_page_state(page, NR_SHMEM_THPS);
 | |
| 	} else if (PageTransHuge(page)) {
 | |
| 		__dec_lruvec_page_state(page, NR_FILE_THPS);
 | |
| 		filemap_nr_thps_dec(mapping);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point page must be either written or cleaned by
 | |
| 	 * truncate.  Dirty page here signals a bug and loss of
 | |
| 	 * unwritten data.
 | |
| 	 *
 | |
| 	 * This fixes dirty accounting after removing the page entirely
 | |
| 	 * but leaves PageDirty set: it has no effect for truncated
 | |
| 	 * page and anyway will be cleared before returning page into
 | |
| 	 * buddy allocator.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(PageDirty(page)))
 | |
| 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Delete a page from the page cache and free it. Caller has to make
 | |
|  * sure the page is locked and that nobody else uses it - or that usage
 | |
|  * is safe.  The caller must hold the i_pages lock.
 | |
|  */
 | |
| void __delete_from_page_cache(struct page *page, void *shadow)
 | |
| {
 | |
| 	struct address_space *mapping = page->mapping;
 | |
| 
 | |
| 	trace_mm_filemap_delete_from_page_cache(page);
 | |
| 
 | |
| 	unaccount_page_cache_page(mapping, page);
 | |
| 	page_cache_delete(mapping, page, shadow);
 | |
| }
 | |
| 
 | |
| static void page_cache_free_page(struct address_space *mapping,
 | |
| 				struct page *page)
 | |
| {
 | |
| 	void (*freepage)(struct page *);
 | |
| 
 | |
| 	freepage = mapping->a_ops->freepage;
 | |
| 	if (freepage)
 | |
| 		freepage(page);
 | |
| 
 | |
| 	if (PageTransHuge(page) && !PageHuge(page)) {
 | |
| 		page_ref_sub(page, thp_nr_pages(page));
 | |
| 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 | |
| 	} else {
 | |
| 		put_page(page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * delete_from_page_cache - delete page from page cache
 | |
|  * @page: the page which the kernel is trying to remove from page cache
 | |
|  *
 | |
|  * This must be called only on pages that have been verified to be in the page
 | |
|  * cache and locked.  It will never put the page into the free list, the caller
 | |
|  * has a reference on the page.
 | |
|  */
 | |
| void delete_from_page_cache(struct page *page)
 | |
| {
 | |
| 	struct address_space *mapping = page_mapping(page);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	BUG_ON(!PageLocked(page));
 | |
| 	xa_lock_irqsave(&mapping->i_pages, flags);
 | |
| 	__delete_from_page_cache(page, NULL);
 | |
| 	xa_unlock_irqrestore(&mapping->i_pages, flags);
 | |
| 
 | |
| 	page_cache_free_page(mapping, page);
 | |
| }
 | |
| EXPORT_SYMBOL(delete_from_page_cache);
 | |
| 
 | |
| /*
 | |
|  * page_cache_delete_batch - delete several pages from page cache
 | |
|  * @mapping: the mapping to which pages belong
 | |
|  * @pvec: pagevec with pages to delete
 | |
|  *
 | |
|  * The function walks over mapping->i_pages and removes pages passed in @pvec
 | |
|  * from the mapping. The function expects @pvec to be sorted by page index
 | |
|  * and is optimised for it to be dense.
 | |
|  * It tolerates holes in @pvec (mapping entries at those indices are not
 | |
|  * modified). The function expects only THP head pages to be present in the
 | |
|  * @pvec.
 | |
|  *
 | |
|  * The function expects the i_pages lock to be held.
 | |
|  */
 | |
| static void page_cache_delete_batch(struct address_space *mapping,
 | |
| 			     struct pagevec *pvec)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
 | |
| 	int total_pages = 0;
 | |
| 	int i = 0;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	mapping_set_update(&xas, mapping);
 | |
| 	xas_for_each(&xas, page, ULONG_MAX) {
 | |
| 		if (i >= pagevec_count(pvec))
 | |
| 			break;
 | |
| 
 | |
| 		/* A swap/dax/shadow entry got inserted? Skip it. */
 | |
| 		if (xa_is_value(page))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * A page got inserted in our range? Skip it. We have our
 | |
| 		 * pages locked so they are protected from being removed.
 | |
| 		 * If we see a page whose index is higher than ours, it
 | |
| 		 * means our page has been removed, which shouldn't be
 | |
| 		 * possible because we're holding the PageLock.
 | |
| 		 */
 | |
| 		if (page != pvec->pages[i]) {
 | |
| 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
 | |
| 					page);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		WARN_ON_ONCE(!PageLocked(page));
 | |
| 
 | |
| 		if (page->index == xas.xa_index)
 | |
| 			page->mapping = NULL;
 | |
| 		/* Leave page->index set: truncation lookup relies on it */
 | |
| 
 | |
| 		/*
 | |
| 		 * Move to the next page in the vector if this is a regular
 | |
| 		 * page or the index is of the last sub-page of this compound
 | |
| 		 * page.
 | |
| 		 */
 | |
| 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
 | |
| 			i++;
 | |
| 		xas_store(&xas, NULL);
 | |
| 		total_pages++;
 | |
| 	}
 | |
| 	mapping->nrpages -= total_pages;
 | |
| }
 | |
| 
 | |
| void delete_from_page_cache_batch(struct address_space *mapping,
 | |
| 				  struct pagevec *pvec)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!pagevec_count(pvec))
 | |
| 		return;
 | |
| 
 | |
| 	xa_lock_irqsave(&mapping->i_pages, flags);
 | |
| 	for (i = 0; i < pagevec_count(pvec); i++) {
 | |
| 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 | |
| 
 | |
| 		unaccount_page_cache_page(mapping, pvec->pages[i]);
 | |
| 	}
 | |
| 	page_cache_delete_batch(mapping, pvec);
 | |
| 	xa_unlock_irqrestore(&mapping->i_pages, flags);
 | |
| 
 | |
| 	for (i = 0; i < pagevec_count(pvec); i++)
 | |
| 		page_cache_free_page(mapping, pvec->pages[i]);
 | |
| }
 | |
| 
 | |
| int filemap_check_errors(struct address_space *mapping)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	/* Check for outstanding write errors */
 | |
| 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 | |
| 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 | |
| 		ret = -ENOSPC;
 | |
| 	if (test_bit(AS_EIO, &mapping->flags) &&
 | |
| 	    test_and_clear_bit(AS_EIO, &mapping->flags))
 | |
| 		ret = -EIO;
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_check_errors);
 | |
| 
 | |
| static int filemap_check_and_keep_errors(struct address_space *mapping)
 | |
| {
 | |
| 	/* Check for outstanding write errors */
 | |
| 	if (test_bit(AS_EIO, &mapping->flags))
 | |
| 		return -EIO;
 | |
| 	if (test_bit(AS_ENOSPC, &mapping->flags))
 | |
| 		return -ENOSPC;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 | |
|  * @mapping:	address space structure to write
 | |
|  * @start:	offset in bytes where the range starts
 | |
|  * @end:	offset in bytes where the range ends (inclusive)
 | |
|  * @sync_mode:	enable synchronous operation
 | |
|  *
 | |
|  * Start writeback against all of a mapping's dirty pages that lie
 | |
|  * within the byte offsets <start, end> inclusive.
 | |
|  *
 | |
|  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 | |
|  * opposed to a regular memory cleansing writeback.  The difference between
 | |
|  * these two operations is that if a dirty page/buffer is encountered, it must
 | |
|  * be waited upon, and not just skipped over.
 | |
|  *
 | |
|  * Return: %0 on success, negative error code otherwise.
 | |
|  */
 | |
| int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 | |
| 				loff_t end, int sync_mode)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct writeback_control wbc = {
 | |
| 		.sync_mode = sync_mode,
 | |
| 		.nr_to_write = LONG_MAX,
 | |
| 		.range_start = start,
 | |
| 		.range_end = end,
 | |
| 	};
 | |
| 
 | |
| 	if (!mapping_can_writeback(mapping) ||
 | |
| 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 | |
| 		return 0;
 | |
| 
 | |
| 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 | |
| 	ret = do_writepages(mapping, &wbc);
 | |
| 	wbc_detach_inode(&wbc);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int __filemap_fdatawrite(struct address_space *mapping,
 | |
| 	int sync_mode)
 | |
| {
 | |
| 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 | |
| }
 | |
| 
 | |
| int filemap_fdatawrite(struct address_space *mapping)
 | |
| {
 | |
| 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fdatawrite);
 | |
| 
 | |
| int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 | |
| 				loff_t end)
 | |
| {
 | |
| 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fdatawrite_range);
 | |
| 
 | |
| /**
 | |
|  * filemap_flush - mostly a non-blocking flush
 | |
|  * @mapping:	target address_space
 | |
|  *
 | |
|  * This is a mostly non-blocking flush.  Not suitable for data-integrity
 | |
|  * purposes - I/O may not be started against all dirty pages.
 | |
|  *
 | |
|  * Return: %0 on success, negative error code otherwise.
 | |
|  */
 | |
| int filemap_flush(struct address_space *mapping)
 | |
| {
 | |
| 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_flush);
 | |
| 
 | |
| /**
 | |
|  * filemap_range_has_page - check if a page exists in range.
 | |
|  * @mapping:           address space within which to check
 | |
|  * @start_byte:        offset in bytes where the range starts
 | |
|  * @end_byte:          offset in bytes where the range ends (inclusive)
 | |
|  *
 | |
|  * Find at least one page in the range supplied, usually used to check if
 | |
|  * direct writing in this range will trigger a writeback.
 | |
|  *
 | |
|  * Return: %true if at least one page exists in the specified range,
 | |
|  * %false otherwise.
 | |
|  */
 | |
| bool filemap_range_has_page(struct address_space *mapping,
 | |
| 			   loff_t start_byte, loff_t end_byte)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 | |
| 	pgoff_t max = end_byte >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (end_byte < start_byte)
 | |
| 		return false;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (;;) {
 | |
| 		page = xas_find(&xas, max);
 | |
| 		if (xas_retry(&xas, page))
 | |
| 			continue;
 | |
| 		/* Shadow entries don't count */
 | |
| 		if (xa_is_value(page))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * We don't need to try to pin this page; we're about to
 | |
| 		 * release the RCU lock anyway.  It is enough to know that
 | |
| 		 * there was a page here recently.
 | |
| 		 */
 | |
| 		break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return page != NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_range_has_page);
 | |
| 
 | |
| static void __filemap_fdatawait_range(struct address_space *mapping,
 | |
| 				     loff_t start_byte, loff_t end_byte)
 | |
| {
 | |
| 	pgoff_t index = start_byte >> PAGE_SHIFT;
 | |
| 	pgoff_t end = end_byte >> PAGE_SHIFT;
 | |
| 	struct pagevec pvec;
 | |
| 	int nr_pages;
 | |
| 
 | |
| 	if (end_byte < start_byte)
 | |
| 		return;
 | |
| 
 | |
| 	pagevec_init(&pvec);
 | |
| 	while (index <= end) {
 | |
| 		unsigned i;
 | |
| 
 | |
| 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 | |
| 				end, PAGECACHE_TAG_WRITEBACK);
 | |
| 		if (!nr_pages)
 | |
| 			break;
 | |
| 
 | |
| 		for (i = 0; i < nr_pages; i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 
 | |
| 			wait_on_page_writeback(page);
 | |
| 			ClearPageError(page);
 | |
| 		}
 | |
| 		pagevec_release(&pvec);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * filemap_fdatawait_range - wait for writeback to complete
 | |
|  * @mapping:		address space structure to wait for
 | |
|  * @start_byte:		offset in bytes where the range starts
 | |
|  * @end_byte:		offset in bytes where the range ends (inclusive)
 | |
|  *
 | |
|  * Walk the list of under-writeback pages of the given address space
 | |
|  * in the given range and wait for all of them.  Check error status of
 | |
|  * the address space and return it.
 | |
|  *
 | |
|  * Since the error status of the address space is cleared by this function,
 | |
|  * callers are responsible for checking the return value and handling and/or
 | |
|  * reporting the error.
 | |
|  *
 | |
|  * Return: error status of the address space.
 | |
|  */
 | |
| int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 | |
| 			    loff_t end_byte)
 | |
| {
 | |
| 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 | |
| 	return filemap_check_errors(mapping);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fdatawait_range);
 | |
| 
 | |
| /**
 | |
|  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 | |
|  * @mapping:		address space structure to wait for
 | |
|  * @start_byte:		offset in bytes where the range starts
 | |
|  * @end_byte:		offset in bytes where the range ends (inclusive)
 | |
|  *
 | |
|  * Walk the list of under-writeback pages of the given address space in the
 | |
|  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 | |
|  * this function does not clear error status of the address space.
 | |
|  *
 | |
|  * Use this function if callers don't handle errors themselves.  Expected
 | |
|  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 | |
|  * fsfreeze(8)
 | |
|  */
 | |
| int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 | |
| 		loff_t start_byte, loff_t end_byte)
 | |
| {
 | |
| 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 | |
| 	return filemap_check_and_keep_errors(mapping);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 | |
| 
 | |
| /**
 | |
|  * file_fdatawait_range - wait for writeback to complete
 | |
|  * @file:		file pointing to address space structure to wait for
 | |
|  * @start_byte:		offset in bytes where the range starts
 | |
|  * @end_byte:		offset in bytes where the range ends (inclusive)
 | |
|  *
 | |
|  * Walk the list of under-writeback pages of the address space that file
 | |
|  * refers to, in the given range and wait for all of them.  Check error
 | |
|  * status of the address space vs. the file->f_wb_err cursor and return it.
 | |
|  *
 | |
|  * Since the error status of the file is advanced by this function,
 | |
|  * callers are responsible for checking the return value and handling and/or
 | |
|  * reporting the error.
 | |
|  *
 | |
|  * Return: error status of the address space vs. the file->f_wb_err cursor.
 | |
|  */
 | |
| int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 | |
| {
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 
 | |
| 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 | |
| 	return file_check_and_advance_wb_err(file);
 | |
| }
 | |
| EXPORT_SYMBOL(file_fdatawait_range);
 | |
| 
 | |
| /**
 | |
|  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 | |
|  * @mapping: address space structure to wait for
 | |
|  *
 | |
|  * Walk the list of under-writeback pages of the given address space
 | |
|  * and wait for all of them.  Unlike filemap_fdatawait(), this function
 | |
|  * does not clear error status of the address space.
 | |
|  *
 | |
|  * Use this function if callers don't handle errors themselves.  Expected
 | |
|  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 | |
|  * fsfreeze(8)
 | |
|  *
 | |
|  * Return: error status of the address space.
 | |
|  */
 | |
| int filemap_fdatawait_keep_errors(struct address_space *mapping)
 | |
| {
 | |
| 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 | |
| 	return filemap_check_and_keep_errors(mapping);
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 | |
| 
 | |
| /* Returns true if writeback might be needed or already in progress. */
 | |
| static bool mapping_needs_writeback(struct address_space *mapping)
 | |
| {
 | |
| 	if (dax_mapping(mapping))
 | |
| 		return mapping->nrexceptional;
 | |
| 
 | |
| 	return mapping->nrpages;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * filemap_write_and_wait_range - write out & wait on a file range
 | |
|  * @mapping:	the address_space for the pages
 | |
|  * @lstart:	offset in bytes where the range starts
 | |
|  * @lend:	offset in bytes where the range ends (inclusive)
 | |
|  *
 | |
|  * Write out and wait upon file offsets lstart->lend, inclusive.
 | |
|  *
 | |
|  * Note that @lend is inclusive (describes the last byte to be written) so
 | |
|  * that this function can be used to write to the very end-of-file (end = -1).
 | |
|  *
 | |
|  * Return: error status of the address space.
 | |
|  */
 | |
| int filemap_write_and_wait_range(struct address_space *mapping,
 | |
| 				 loff_t lstart, loff_t lend)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (mapping_needs_writeback(mapping)) {
 | |
| 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 | |
| 						 WB_SYNC_ALL);
 | |
| 		/*
 | |
| 		 * Even if the above returned error, the pages may be
 | |
| 		 * written partially (e.g. -ENOSPC), so we wait for it.
 | |
| 		 * But the -EIO is special case, it may indicate the worst
 | |
| 		 * thing (e.g. bug) happened, so we avoid waiting for it.
 | |
| 		 */
 | |
| 		if (err != -EIO) {
 | |
| 			int err2 = filemap_fdatawait_range(mapping,
 | |
| 						lstart, lend);
 | |
| 			if (!err)
 | |
| 				err = err2;
 | |
| 		} else {
 | |
| 			/* Clear any previously stored errors */
 | |
| 			filemap_check_errors(mapping);
 | |
| 		}
 | |
| 	} else {
 | |
| 		err = filemap_check_errors(mapping);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_write_and_wait_range);
 | |
| 
 | |
| void __filemap_set_wb_err(struct address_space *mapping, int err)
 | |
| {
 | |
| 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 | |
| 
 | |
| 	trace_filemap_set_wb_err(mapping, eseq);
 | |
| }
 | |
| EXPORT_SYMBOL(__filemap_set_wb_err);
 | |
| 
 | |
| /**
 | |
|  * file_check_and_advance_wb_err - report wb error (if any) that was previously
 | |
|  * 				   and advance wb_err to current one
 | |
|  * @file: struct file on which the error is being reported
 | |
|  *
 | |
|  * When userland calls fsync (or something like nfsd does the equivalent), we
 | |
|  * want to report any writeback errors that occurred since the last fsync (or
 | |
|  * since the file was opened if there haven't been any).
 | |
|  *
 | |
|  * Grab the wb_err from the mapping. If it matches what we have in the file,
 | |
|  * then just quickly return 0. The file is all caught up.
 | |
|  *
 | |
|  * If it doesn't match, then take the mapping value, set the "seen" flag in
 | |
|  * it and try to swap it into place. If it works, or another task beat us
 | |
|  * to it with the new value, then update the f_wb_err and return the error
 | |
|  * portion. The error at this point must be reported via proper channels
 | |
|  * (a'la fsync, or NFS COMMIT operation, etc.).
 | |
|  *
 | |
|  * While we handle mapping->wb_err with atomic operations, the f_wb_err
 | |
|  * value is protected by the f_lock since we must ensure that it reflects
 | |
|  * the latest value swapped in for this file descriptor.
 | |
|  *
 | |
|  * Return: %0 on success, negative error code otherwise.
 | |
|  */
 | |
| int file_check_and_advance_wb_err(struct file *file)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	errseq_t old = READ_ONCE(file->f_wb_err);
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 
 | |
| 	/* Locklessly handle the common case where nothing has changed */
 | |
| 	if (errseq_check(&mapping->wb_err, old)) {
 | |
| 		/* Something changed, must use slow path */
 | |
| 		spin_lock(&file->f_lock);
 | |
| 		old = file->f_wb_err;
 | |
| 		err = errseq_check_and_advance(&mapping->wb_err,
 | |
| 						&file->f_wb_err);
 | |
| 		trace_file_check_and_advance_wb_err(file, old);
 | |
| 		spin_unlock(&file->f_lock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We're mostly using this function as a drop in replacement for
 | |
| 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 | |
| 	 * that the legacy code would have had on these flags.
 | |
| 	 */
 | |
| 	clear_bit(AS_EIO, &mapping->flags);
 | |
| 	clear_bit(AS_ENOSPC, &mapping->flags);
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(file_check_and_advance_wb_err);
 | |
| 
 | |
| /**
 | |
|  * file_write_and_wait_range - write out & wait on a file range
 | |
|  * @file:	file pointing to address_space with pages
 | |
|  * @lstart:	offset in bytes where the range starts
 | |
|  * @lend:	offset in bytes where the range ends (inclusive)
 | |
|  *
 | |
|  * Write out and wait upon file offsets lstart->lend, inclusive.
 | |
|  *
 | |
|  * Note that @lend is inclusive (describes the last byte to be written) so
 | |
|  * that this function can be used to write to the very end-of-file (end = -1).
 | |
|  *
 | |
|  * After writing out and waiting on the data, we check and advance the
 | |
|  * f_wb_err cursor to the latest value, and return any errors detected there.
 | |
|  *
 | |
|  * Return: %0 on success, negative error code otherwise.
 | |
|  */
 | |
| int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 | |
| {
 | |
| 	int err = 0, err2;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 
 | |
| 	if (mapping_needs_writeback(mapping)) {
 | |
| 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 | |
| 						 WB_SYNC_ALL);
 | |
| 		/* See comment of filemap_write_and_wait() */
 | |
| 		if (err != -EIO)
 | |
| 			__filemap_fdatawait_range(mapping, lstart, lend);
 | |
| 	}
 | |
| 	err2 = file_check_and_advance_wb_err(file);
 | |
| 	if (!err)
 | |
| 		err = err2;
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(file_write_and_wait_range);
 | |
| 
 | |
| /**
 | |
|  * replace_page_cache_page - replace a pagecache page with a new one
 | |
|  * @old:	page to be replaced
 | |
|  * @new:	page to replace with
 | |
|  *
 | |
|  * This function replaces a page in the pagecache with a new one.  On
 | |
|  * success it acquires the pagecache reference for the new page and
 | |
|  * drops it for the old page.  Both the old and new pages must be
 | |
|  * locked.  This function does not add the new page to the LRU, the
 | |
|  * caller must do that.
 | |
|  *
 | |
|  * The remove + add is atomic.  This function cannot fail.
 | |
|  */
 | |
| void replace_page_cache_page(struct page *old, struct page *new)
 | |
| {
 | |
| 	struct address_space *mapping = old->mapping;
 | |
| 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
 | |
| 	pgoff_t offset = old->index;
 | |
| 	XA_STATE(xas, &mapping->i_pages, offset);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(!PageLocked(old), old);
 | |
| 	VM_BUG_ON_PAGE(!PageLocked(new), new);
 | |
| 	VM_BUG_ON_PAGE(new->mapping, new);
 | |
| 
 | |
| 	get_page(new);
 | |
| 	new->mapping = mapping;
 | |
| 	new->index = offset;
 | |
| 
 | |
| 	mem_cgroup_migrate(old, new);
 | |
| 
 | |
| 	xas_lock_irqsave(&xas, flags);
 | |
| 	xas_store(&xas, new);
 | |
| 
 | |
| 	old->mapping = NULL;
 | |
| 	/* hugetlb pages do not participate in page cache accounting. */
 | |
| 	if (!PageHuge(old))
 | |
| 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
 | |
| 	if (!PageHuge(new))
 | |
| 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
 | |
| 	if (PageSwapBacked(old))
 | |
| 		__dec_lruvec_page_state(old, NR_SHMEM);
 | |
| 	if (PageSwapBacked(new))
 | |
| 		__inc_lruvec_page_state(new, NR_SHMEM);
 | |
| 	xas_unlock_irqrestore(&xas, flags);
 | |
| 	if (freepage)
 | |
| 		freepage(old);
 | |
| 	put_page(old);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(replace_page_cache_page);
 | |
| 
 | |
| noinline int __add_to_page_cache_locked(struct page *page,
 | |
| 					struct address_space *mapping,
 | |
| 					pgoff_t offset, gfp_t gfp,
 | |
| 					void **shadowp)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, offset);
 | |
| 	int huge = PageHuge(page);
 | |
| 	int error;
 | |
| 	bool charged = false;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | |
| 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 | |
| 	mapping_set_update(&xas, mapping);
 | |
| 
 | |
| 	get_page(page);
 | |
| 	page->mapping = mapping;
 | |
| 	page->index = offset;
 | |
| 
 | |
| 	if (!huge) {
 | |
| 		error = mem_cgroup_charge(page, current->mm, gfp);
 | |
| 		if (error)
 | |
| 			goto error;
 | |
| 		charged = true;
 | |
| 	}
 | |
| 
 | |
| 	gfp &= GFP_RECLAIM_MASK;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
 | |
| 		void *entry, *old = NULL;
 | |
| 
 | |
| 		if (order > thp_order(page))
 | |
| 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
 | |
| 					order, gfp);
 | |
| 		xas_lock_irq(&xas);
 | |
| 		xas_for_each_conflict(&xas, entry) {
 | |
| 			old = entry;
 | |
| 			if (!xa_is_value(entry)) {
 | |
| 				xas_set_err(&xas, -EEXIST);
 | |
| 				goto unlock;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (old) {
 | |
| 			if (shadowp)
 | |
| 				*shadowp = old;
 | |
| 			/* entry may have been split before we acquired lock */
 | |
| 			order = xa_get_order(xas.xa, xas.xa_index);
 | |
| 			if (order > thp_order(page)) {
 | |
| 				xas_split(&xas, old, order);
 | |
| 				xas_reset(&xas);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		xas_store(&xas, page);
 | |
| 		if (xas_error(&xas))
 | |
| 			goto unlock;
 | |
| 
 | |
| 		if (old)
 | |
| 			mapping->nrexceptional--;
 | |
| 		mapping->nrpages++;
 | |
| 
 | |
| 		/* hugetlb pages do not participate in page cache accounting */
 | |
| 		if (!huge)
 | |
| 			__inc_lruvec_page_state(page, NR_FILE_PAGES);
 | |
| unlock:
 | |
| 		xas_unlock_irq(&xas);
 | |
| 	} while (xas_nomem(&xas, gfp));
 | |
| 
 | |
| 	if (xas_error(&xas)) {
 | |
| 		error = xas_error(&xas);
 | |
| 		if (charged)
 | |
| 			mem_cgroup_uncharge(page);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	trace_mm_filemap_add_to_page_cache(page);
 | |
| 	return 0;
 | |
| error:
 | |
| 	page->mapping = NULL;
 | |
| 	/* Leave page->index set: truncation relies upon it */
 | |
| 	put_page(page);
 | |
| 	return error;
 | |
| }
 | |
| ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
 | |
| 
 | |
| /**
 | |
|  * add_to_page_cache_locked - add a locked page to the pagecache
 | |
|  * @page:	page to add
 | |
|  * @mapping:	the page's address_space
 | |
|  * @offset:	page index
 | |
|  * @gfp_mask:	page allocation mode
 | |
|  *
 | |
|  * This function is used to add a page to the pagecache. It must be locked.
 | |
|  * This function does not add the page to the LRU.  The caller must do that.
 | |
|  *
 | |
|  * Return: %0 on success, negative error code otherwise.
 | |
|  */
 | |
| int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 | |
| 		pgoff_t offset, gfp_t gfp_mask)
 | |
| {
 | |
| 	return __add_to_page_cache_locked(page, mapping, offset,
 | |
| 					  gfp_mask, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL(add_to_page_cache_locked);
 | |
| 
 | |
| int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 | |
| 				pgoff_t offset, gfp_t gfp_mask)
 | |
| {
 | |
| 	void *shadow = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	__SetPageLocked(page);
 | |
| 	ret = __add_to_page_cache_locked(page, mapping, offset,
 | |
| 					 gfp_mask, &shadow);
 | |
| 	if (unlikely(ret))
 | |
| 		__ClearPageLocked(page);
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * The page might have been evicted from cache only
 | |
| 		 * recently, in which case it should be activated like
 | |
| 		 * any other repeatedly accessed page.
 | |
| 		 * The exception is pages getting rewritten; evicting other
 | |
| 		 * data from the working set, only to cache data that will
 | |
| 		 * get overwritten with something else, is a waste of memory.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(PageActive(page));
 | |
| 		if (!(gfp_mask & __GFP_WRITE) && shadow)
 | |
| 			workingset_refault(page, shadow);
 | |
| 		lru_cache_add(page);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| struct page *__page_cache_alloc(gfp_t gfp)
 | |
| {
 | |
| 	int n;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (cpuset_do_page_mem_spread()) {
 | |
| 		unsigned int cpuset_mems_cookie;
 | |
| 		do {
 | |
| 			cpuset_mems_cookie = read_mems_allowed_begin();
 | |
| 			n = cpuset_mem_spread_node();
 | |
| 			page = __alloc_pages_node(n, gfp, 0);
 | |
| 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 | |
| 
 | |
| 		return page;
 | |
| 	}
 | |
| 	return alloc_pages(gfp, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(__page_cache_alloc);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * In order to wait for pages to become available there must be
 | |
|  * waitqueues associated with pages. By using a hash table of
 | |
|  * waitqueues where the bucket discipline is to maintain all
 | |
|  * waiters on the same queue and wake all when any of the pages
 | |
|  * become available, and for the woken contexts to check to be
 | |
|  * sure the appropriate page became available, this saves space
 | |
|  * at a cost of "thundering herd" phenomena during rare hash
 | |
|  * collisions.
 | |
|  */
 | |
| #define PAGE_WAIT_TABLE_BITS 8
 | |
| #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 | |
| static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 | |
| 
 | |
| static wait_queue_head_t *page_waitqueue(struct page *page)
 | |
| {
 | |
| 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
 | |
| }
 | |
| 
 | |
| void __init pagecache_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
 | |
| 		init_waitqueue_head(&page_wait_table[i]);
 | |
| 
 | |
| 	page_writeback_init();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The page wait code treats the "wait->flags" somewhat unusually, because
 | |
|  * we have multiple different kinds of waits, not just the usual "exclusive"
 | |
|  * one.
 | |
|  *
 | |
|  * We have:
 | |
|  *
 | |
|  *  (a) no special bits set:
 | |
|  *
 | |
|  *	We're just waiting for the bit to be released, and when a waker
 | |
|  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
 | |
|  *	and remove it from the wait queue.
 | |
|  *
 | |
|  *	Simple and straightforward.
 | |
|  *
 | |
|  *  (b) WQ_FLAG_EXCLUSIVE:
 | |
|  *
 | |
|  *	The waiter is waiting to get the lock, and only one waiter should
 | |
|  *	be woken up to avoid any thundering herd behavior. We'll set the
 | |
|  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
 | |
|  *
 | |
|  *	This is the traditional exclusive wait.
 | |
|  *
 | |
|  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
 | |
|  *
 | |
|  *	The waiter is waiting to get the bit, and additionally wants the
 | |
|  *	lock to be transferred to it for fair lock behavior. If the lock
 | |
|  *	cannot be taken, we stop walking the wait queue without waking
 | |
|  *	the waiter.
 | |
|  *
 | |
|  *	This is the "fair lock handoff" case, and in addition to setting
 | |
|  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
 | |
|  *	that it now has the lock.
 | |
|  */
 | |
| static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
 | |
| {
 | |
| 	unsigned int flags;
 | |
| 	struct wait_page_key *key = arg;
 | |
| 	struct wait_page_queue *wait_page
 | |
| 		= container_of(wait, struct wait_page_queue, wait);
 | |
| 
 | |
| 	if (!wake_page_match(wait_page, key))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If it's a lock handoff wait, we get the bit for it, and
 | |
| 	 * stop walking (and do not wake it up) if we can't.
 | |
| 	 */
 | |
| 	flags = wait->flags;
 | |
| 	if (flags & WQ_FLAG_EXCLUSIVE) {
 | |
| 		if (test_bit(key->bit_nr, &key->page->flags))
 | |
| 			return -1;
 | |
| 		if (flags & WQ_FLAG_CUSTOM) {
 | |
| 			if (test_and_set_bit(key->bit_nr, &key->page->flags))
 | |
| 				return -1;
 | |
| 			flags |= WQ_FLAG_DONE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We are holding the wait-queue lock, but the waiter that
 | |
| 	 * is waiting for this will be checking the flags without
 | |
| 	 * any locking.
 | |
| 	 *
 | |
| 	 * So update the flags atomically, and wake up the waiter
 | |
| 	 * afterwards to avoid any races. This store-release pairs
 | |
| 	 * with the load-acquire in wait_on_page_bit_common().
 | |
| 	 */
 | |
| 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
 | |
| 	wake_up_state(wait->private, mode);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok, we have successfully done what we're waiting for,
 | |
| 	 * and we can unconditionally remove the wait entry.
 | |
| 	 *
 | |
| 	 * Note that this pairs with the "finish_wait()" in the
 | |
| 	 * waiter, and has to be the absolute last thing we do.
 | |
| 	 * After this list_del_init(&wait->entry) the wait entry
 | |
| 	 * might be de-allocated and the process might even have
 | |
| 	 * exited.
 | |
| 	 */
 | |
| 	list_del_init_careful(&wait->entry);
 | |
| 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
 | |
| }
 | |
| 
 | |
| static void wake_up_page_bit(struct page *page, int bit_nr)
 | |
| {
 | |
| 	wait_queue_head_t *q = page_waitqueue(page);
 | |
| 	struct wait_page_key key;
 | |
| 	unsigned long flags;
 | |
| 	wait_queue_entry_t bookmark;
 | |
| 
 | |
| 	key.page = page;
 | |
| 	key.bit_nr = bit_nr;
 | |
| 	key.page_match = 0;
 | |
| 
 | |
| 	bookmark.flags = 0;
 | |
| 	bookmark.private = NULL;
 | |
| 	bookmark.func = NULL;
 | |
| 	INIT_LIST_HEAD(&bookmark.entry);
 | |
| 
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
 | |
| 
 | |
| 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
 | |
| 		/*
 | |
| 		 * Take a breather from holding the lock,
 | |
| 		 * allow pages that finish wake up asynchronously
 | |
| 		 * to acquire the lock and remove themselves
 | |
| 		 * from wait queue
 | |
| 		 */
 | |
| 		spin_unlock_irqrestore(&q->lock, flags);
 | |
| 		cpu_relax();
 | |
| 		spin_lock_irqsave(&q->lock, flags);
 | |
| 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It is possible for other pages to have collided on the waitqueue
 | |
| 	 * hash, so in that case check for a page match. That prevents a long-
 | |
| 	 * term waiter
 | |
| 	 *
 | |
| 	 * It is still possible to miss a case here, when we woke page waiters
 | |
| 	 * and removed them from the waitqueue, but there are still other
 | |
| 	 * page waiters.
 | |
| 	 */
 | |
| 	if (!waitqueue_active(q) || !key.page_match) {
 | |
| 		ClearPageWaiters(page);
 | |
| 		/*
 | |
| 		 * It's possible to miss clearing Waiters here, when we woke
 | |
| 		 * our page waiters, but the hashed waitqueue has waiters for
 | |
| 		 * other pages on it.
 | |
| 		 *
 | |
| 		 * That's okay, it's a rare case. The next waker will clear it.
 | |
| 		 */
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| }
 | |
| 
 | |
| static void wake_up_page(struct page *page, int bit)
 | |
| {
 | |
| 	if (!PageWaiters(page))
 | |
| 		return;
 | |
| 	wake_up_page_bit(page, bit);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A choice of three behaviors for wait_on_page_bit_common():
 | |
|  */
 | |
| enum behavior {
 | |
| 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
 | |
| 			 * __lock_page() waiting on then setting PG_locked.
 | |
| 			 */
 | |
| 	SHARED,		/* Hold ref to page and check the bit when woken, like
 | |
| 			 * wait_on_page_writeback() waiting on PG_writeback.
 | |
| 			 */
 | |
| 	DROP,		/* Drop ref to page before wait, no check when woken,
 | |
| 			 * like put_and_wait_on_page_locked() on PG_locked.
 | |
| 			 */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Attempt to check (or get) the page bit, and mark us done
 | |
|  * if successful.
 | |
|  */
 | |
| static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
 | |
| 					struct wait_queue_entry *wait)
 | |
| {
 | |
| 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
 | |
| 		if (test_and_set_bit(bit_nr, &page->flags))
 | |
| 			return false;
 | |
| 	} else if (test_bit(bit_nr, &page->flags))
 | |
| 		return false;
 | |
| 
 | |
| 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* How many times do we accept lock stealing from under a waiter? */
 | |
| int sysctl_page_lock_unfairness = 5;
 | |
| 
 | |
| static inline int wait_on_page_bit_common(wait_queue_head_t *q,
 | |
| 	struct page *page, int bit_nr, int state, enum behavior behavior)
 | |
| {
 | |
| 	int unfairness = sysctl_page_lock_unfairness;
 | |
| 	struct wait_page_queue wait_page;
 | |
| 	wait_queue_entry_t *wait = &wait_page.wait;
 | |
| 	bool thrashing = false;
 | |
| 	bool delayacct = false;
 | |
| 	unsigned long pflags;
 | |
| 
 | |
| 	if (bit_nr == PG_locked &&
 | |
| 	    !PageUptodate(page) && PageWorkingset(page)) {
 | |
| 		if (!PageSwapBacked(page)) {
 | |
| 			delayacct_thrashing_start();
 | |
| 			delayacct = true;
 | |
| 		}
 | |
| 		psi_memstall_enter(&pflags);
 | |
| 		thrashing = true;
 | |
| 	}
 | |
| 
 | |
| 	init_wait(wait);
 | |
| 	wait->func = wake_page_function;
 | |
| 	wait_page.page = page;
 | |
| 	wait_page.bit_nr = bit_nr;
 | |
| 
 | |
| repeat:
 | |
| 	wait->flags = 0;
 | |
| 	if (behavior == EXCLUSIVE) {
 | |
| 		wait->flags = WQ_FLAG_EXCLUSIVE;
 | |
| 		if (--unfairness < 0)
 | |
| 			wait->flags |= WQ_FLAG_CUSTOM;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Do one last check whether we can get the
 | |
| 	 * page bit synchronously.
 | |
| 	 *
 | |
| 	 * Do the SetPageWaiters() marking before that
 | |
| 	 * to let any waker we _just_ missed know they
 | |
| 	 * need to wake us up (otherwise they'll never
 | |
| 	 * even go to the slow case that looks at the
 | |
| 	 * page queue), and add ourselves to the wait
 | |
| 	 * queue if we need to sleep.
 | |
| 	 *
 | |
| 	 * This part needs to be done under the queue
 | |
| 	 * lock to avoid races.
 | |
| 	 */
 | |
| 	spin_lock_irq(&q->lock);
 | |
| 	SetPageWaiters(page);
 | |
| 	if (!trylock_page_bit_common(page, bit_nr, wait))
 | |
| 		__add_wait_queue_entry_tail(q, wait);
 | |
| 	spin_unlock_irq(&q->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * From now on, all the logic will be based on
 | |
| 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
 | |
| 	 * see whether the page bit testing has already
 | |
| 	 * been done by the wake function.
 | |
| 	 *
 | |
| 	 * We can drop our reference to the page.
 | |
| 	 */
 | |
| 	if (behavior == DROP)
 | |
| 		put_page(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that until the "finish_wait()", or until
 | |
| 	 * we see the WQ_FLAG_WOKEN flag, we need to
 | |
| 	 * be very careful with the 'wait->flags', because
 | |
| 	 * we may race with a waker that sets them.
 | |
| 	 */
 | |
| 	for (;;) {
 | |
| 		unsigned int flags;
 | |
| 
 | |
| 		set_current_state(state);
 | |
| 
 | |
| 		/* Loop until we've been woken or interrupted */
 | |
| 		flags = smp_load_acquire(&wait->flags);
 | |
| 		if (!(flags & WQ_FLAG_WOKEN)) {
 | |
| 			if (signal_pending_state(state, current))
 | |
| 				break;
 | |
| 
 | |
| 			io_schedule();
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* If we were non-exclusive, we're done */
 | |
| 		if (behavior != EXCLUSIVE)
 | |
| 			break;
 | |
| 
 | |
| 		/* If the waker got the lock for us, we're done */
 | |
| 		if (flags & WQ_FLAG_DONE)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Otherwise, if we're getting the lock, we need to
 | |
| 		 * try to get it ourselves.
 | |
| 		 *
 | |
| 		 * And if that fails, we'll have to retry this all.
 | |
| 		 */
 | |
| 		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
 | |
| 			goto repeat;
 | |
| 
 | |
| 		wait->flags |= WQ_FLAG_DONE;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If a signal happened, this 'finish_wait()' may remove the last
 | |
| 	 * waiter from the wait-queues, but the PageWaiters bit will remain
 | |
| 	 * set. That's ok. The next wakeup will take care of it, and trying
 | |
| 	 * to do it here would be difficult and prone to races.
 | |
| 	 */
 | |
| 	finish_wait(q, wait);
 | |
| 
 | |
| 	if (thrashing) {
 | |
| 		if (delayacct)
 | |
| 			delayacct_thrashing_end();
 | |
| 		psi_memstall_leave(&pflags);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * NOTE! The wait->flags weren't stable until we've done the
 | |
| 	 * 'finish_wait()', and we could have exited the loop above due
 | |
| 	 * to a signal, and had a wakeup event happen after the signal
 | |
| 	 * test but before the 'finish_wait()'.
 | |
| 	 *
 | |
| 	 * So only after the finish_wait() can we reliably determine
 | |
| 	 * if we got woken up or not, so we can now figure out the final
 | |
| 	 * return value based on that state without races.
 | |
| 	 *
 | |
| 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
 | |
| 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
 | |
| 	 */
 | |
| 	if (behavior == EXCLUSIVE)
 | |
| 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
 | |
| 
 | |
| 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
 | |
| }
 | |
| 
 | |
| void wait_on_page_bit(struct page *page, int bit_nr)
 | |
| {
 | |
| 	wait_queue_head_t *q = page_waitqueue(page);
 | |
| 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
 | |
| }
 | |
| EXPORT_SYMBOL(wait_on_page_bit);
 | |
| 
 | |
| int wait_on_page_bit_killable(struct page *page, int bit_nr)
 | |
| {
 | |
| 	wait_queue_head_t *q = page_waitqueue(page);
 | |
| 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
 | |
| }
 | |
| EXPORT_SYMBOL(wait_on_page_bit_killable);
 | |
| 
 | |
| static int __wait_on_page_locked_async(struct page *page,
 | |
| 				       struct wait_page_queue *wait, bool set)
 | |
| {
 | |
| 	struct wait_queue_head *q = page_waitqueue(page);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	wait->page = page;
 | |
| 	wait->bit_nr = PG_locked;
 | |
| 
 | |
| 	spin_lock_irq(&q->lock);
 | |
| 	__add_wait_queue_entry_tail(q, &wait->wait);
 | |
| 	SetPageWaiters(page);
 | |
| 	if (set)
 | |
| 		ret = !trylock_page(page);
 | |
| 	else
 | |
| 		ret = PageLocked(page);
 | |
| 	/*
 | |
| 	 * If we were successful now, we know we're still on the
 | |
| 	 * waitqueue as we're still under the lock. This means it's
 | |
| 	 * safe to remove and return success, we know the callback
 | |
| 	 * isn't going to trigger.
 | |
| 	 */
 | |
| 	if (!ret)
 | |
| 		__remove_wait_queue(q, &wait->wait);
 | |
| 	else
 | |
| 		ret = -EIOCBQUEUED;
 | |
| 	spin_unlock_irq(&q->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int wait_on_page_locked_async(struct page *page,
 | |
| 				     struct wait_page_queue *wait)
 | |
| {
 | |
| 	if (!PageLocked(page))
 | |
| 		return 0;
 | |
| 	return __wait_on_page_locked_async(compound_head(page), wait, false);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
 | |
|  * @page: The page to wait for.
 | |
|  *
 | |
|  * The caller should hold a reference on @page.  They expect the page to
 | |
|  * become unlocked relatively soon, but do not wish to hold up migration
 | |
|  * (for example) by holding the reference while waiting for the page to
 | |
|  * come unlocked.  After this function returns, the caller should not
 | |
|  * dereference @page.
 | |
|  */
 | |
| void put_and_wait_on_page_locked(struct page *page)
 | |
| {
 | |
| 	wait_queue_head_t *q;
 | |
| 
 | |
| 	page = compound_head(page);
 | |
| 	q = page_waitqueue(page);
 | |
| 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 | |
|  * @page: Page defining the wait queue of interest
 | |
|  * @waiter: Waiter to add to the queue
 | |
|  *
 | |
|  * Add an arbitrary @waiter to the wait queue for the nominated @page.
 | |
|  */
 | |
| void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
 | |
| {
 | |
| 	wait_queue_head_t *q = page_waitqueue(page);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	__add_wait_queue_entry_tail(q, waiter);
 | |
| 	SetPageWaiters(page);
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(add_page_wait_queue);
 | |
| 
 | |
| #ifndef clear_bit_unlock_is_negative_byte
 | |
| 
 | |
| /*
 | |
|  * PG_waiters is the high bit in the same byte as PG_lock.
 | |
|  *
 | |
|  * On x86 (and on many other architectures), we can clear PG_lock and
 | |
|  * test the sign bit at the same time. But if the architecture does
 | |
|  * not support that special operation, we just do this all by hand
 | |
|  * instead.
 | |
|  *
 | |
|  * The read of PG_waiters has to be after (or concurrently with) PG_locked
 | |
|  * being cleared, but a memory barrier should be unnecessary since it is
 | |
|  * in the same byte as PG_locked.
 | |
|  */
 | |
| static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
 | |
| {
 | |
| 	clear_bit_unlock(nr, mem);
 | |
| 	/* smp_mb__after_atomic(); */
 | |
| 	return test_bit(PG_waiters, mem);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * unlock_page - unlock a locked page
 | |
|  * @page: the page
 | |
|  *
 | |
|  * Unlocks the page and wakes up sleepers in wait_on_page_locked().
 | |
|  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 | |
|  * mechanism between PageLocked pages and PageWriteback pages is shared.
 | |
|  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 | |
|  *
 | |
|  * Note that this depends on PG_waiters being the sign bit in the byte
 | |
|  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
 | |
|  * clear the PG_locked bit and test PG_waiters at the same time fairly
 | |
|  * portably (architectures that do LL/SC can test any bit, while x86 can
 | |
|  * test the sign bit).
 | |
|  */
 | |
| void unlock_page(struct page *page)
 | |
| {
 | |
| 	BUILD_BUG_ON(PG_waiters != 7);
 | |
| 	page = compound_head(page);
 | |
| 	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | |
| 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
 | |
| 		wake_up_page_bit(page, PG_locked);
 | |
| }
 | |
| EXPORT_SYMBOL(unlock_page);
 | |
| 
 | |
| /**
 | |
|  * end_page_writeback - end writeback against a page
 | |
|  * @page: the page
 | |
|  */
 | |
| void end_page_writeback(struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * TestClearPageReclaim could be used here but it is an atomic
 | |
| 	 * operation and overkill in this particular case. Failing to
 | |
| 	 * shuffle a page marked for immediate reclaim is too mild to
 | |
| 	 * justify taking an atomic operation penalty at the end of
 | |
| 	 * ever page writeback.
 | |
| 	 */
 | |
| 	if (PageReclaim(page)) {
 | |
| 		ClearPageReclaim(page);
 | |
| 		rotate_reclaimable_page(page);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Writeback does not hold a page reference of its own, relying
 | |
| 	 * on truncation to wait for the clearing of PG_writeback.
 | |
| 	 * But here we must make sure that the page is not freed and
 | |
| 	 * reused before the wake_up_page().
 | |
| 	 */
 | |
| 	get_page(page);
 | |
| 	if (!test_clear_page_writeback(page))
 | |
| 		BUG();
 | |
| 
 | |
| 	smp_mb__after_atomic();
 | |
| 	wake_up_page(page, PG_writeback);
 | |
| 	put_page(page);
 | |
| }
 | |
| EXPORT_SYMBOL(end_page_writeback);
 | |
| 
 | |
| /*
 | |
|  * After completing I/O on a page, call this routine to update the page
 | |
|  * flags appropriately
 | |
|  */
 | |
| void page_endio(struct page *page, bool is_write, int err)
 | |
| {
 | |
| 	if (!is_write) {
 | |
| 		if (!err) {
 | |
| 			SetPageUptodate(page);
 | |
| 		} else {
 | |
| 			ClearPageUptodate(page);
 | |
| 			SetPageError(page);
 | |
| 		}
 | |
| 		unlock_page(page);
 | |
| 	} else {
 | |
| 		if (err) {
 | |
| 			struct address_space *mapping;
 | |
| 
 | |
| 			SetPageError(page);
 | |
| 			mapping = page_mapping(page);
 | |
| 			if (mapping)
 | |
| 				mapping_set_error(mapping, err);
 | |
| 		}
 | |
| 		end_page_writeback(page);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(page_endio);
 | |
| 
 | |
| /**
 | |
|  * __lock_page - get a lock on the page, assuming we need to sleep to get it
 | |
|  * @__page: the page to lock
 | |
|  */
 | |
| void __lock_page(struct page *__page)
 | |
| {
 | |
| 	struct page *page = compound_head(__page);
 | |
| 	wait_queue_head_t *q = page_waitqueue(page);
 | |
| 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
 | |
| 				EXCLUSIVE);
 | |
| }
 | |
| EXPORT_SYMBOL(__lock_page);
 | |
| 
 | |
| int __lock_page_killable(struct page *__page)
 | |
| {
 | |
| 	struct page *page = compound_head(__page);
 | |
| 	wait_queue_head_t *q = page_waitqueue(page);
 | |
| 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
 | |
| 					EXCLUSIVE);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__lock_page_killable);
 | |
| 
 | |
| int __lock_page_async(struct page *page, struct wait_page_queue *wait)
 | |
| {
 | |
| 	return __wait_on_page_locked_async(page, wait, true);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return values:
 | |
|  * 1 - page is locked; mmap_lock is still held.
 | |
|  * 0 - page is not locked.
 | |
|  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
 | |
|  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
 | |
|  *     which case mmap_lock is still held.
 | |
|  *
 | |
|  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
 | |
|  * with the page locked and the mmap_lock unperturbed.
 | |
|  */
 | |
| int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 | |
| 			 unsigned int flags)
 | |
| {
 | |
| 	if (fault_flag_allow_retry_first(flags)) {
 | |
| 		/*
 | |
| 		 * CAUTION! In this case, mmap_lock is not released
 | |
| 		 * even though return 0.
 | |
| 		 */
 | |
| 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
 | |
| 			return 0;
 | |
| 
 | |
| 		mmap_read_unlock(mm);
 | |
| 		if (flags & FAULT_FLAG_KILLABLE)
 | |
| 			wait_on_page_locked_killable(page);
 | |
| 		else
 | |
| 			wait_on_page_locked(page);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (flags & FAULT_FLAG_KILLABLE) {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = __lock_page_killable(page);
 | |
| 		if (ret) {
 | |
| 			mmap_read_unlock(mm);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	} else {
 | |
| 		__lock_page(page);
 | |
| 	}
 | |
| 	return 1;
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * page_cache_next_miss() - Find the next gap in the page cache.
 | |
|  * @mapping: Mapping.
 | |
|  * @index: Index.
 | |
|  * @max_scan: Maximum range to search.
 | |
|  *
 | |
|  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
 | |
|  * gap with the lowest index.
 | |
|  *
 | |
|  * This function may be called under the rcu_read_lock.  However, this will
 | |
|  * not atomically search a snapshot of the cache at a single point in time.
 | |
|  * For example, if a gap is created at index 5, then subsequently a gap is
 | |
|  * created at index 10, page_cache_next_miss covering both indices may
 | |
|  * return 10 if called under the rcu_read_lock.
 | |
|  *
 | |
|  * Return: The index of the gap if found, otherwise an index outside the
 | |
|  * range specified (in which case 'return - index >= max_scan' will be true).
 | |
|  * In the rare case of index wrap-around, 0 will be returned.
 | |
|  */
 | |
| pgoff_t page_cache_next_miss(struct address_space *mapping,
 | |
| 			     pgoff_t index, unsigned long max_scan)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, index);
 | |
| 
 | |
| 	while (max_scan--) {
 | |
| 		void *entry = xas_next(&xas);
 | |
| 		if (!entry || xa_is_value(entry))
 | |
| 			break;
 | |
| 		if (xas.xa_index == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return xas.xa_index;
 | |
| }
 | |
| EXPORT_SYMBOL(page_cache_next_miss);
 | |
| 
 | |
| /**
 | |
|  * page_cache_prev_miss() - Find the previous gap in the page cache.
 | |
|  * @mapping: Mapping.
 | |
|  * @index: Index.
 | |
|  * @max_scan: Maximum range to search.
 | |
|  *
 | |
|  * Search the range [max(index - max_scan + 1, 0), index] for the
 | |
|  * gap with the highest index.
 | |
|  *
 | |
|  * This function may be called under the rcu_read_lock.  However, this will
 | |
|  * not atomically search a snapshot of the cache at a single point in time.
 | |
|  * For example, if a gap is created at index 10, then subsequently a gap is
 | |
|  * created at index 5, page_cache_prev_miss() covering both indices may
 | |
|  * return 5 if called under the rcu_read_lock.
 | |
|  *
 | |
|  * Return: The index of the gap if found, otherwise an index outside the
 | |
|  * range specified (in which case 'index - return >= max_scan' will be true).
 | |
|  * In the rare case of wrap-around, ULONG_MAX will be returned.
 | |
|  */
 | |
| pgoff_t page_cache_prev_miss(struct address_space *mapping,
 | |
| 			     pgoff_t index, unsigned long max_scan)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, index);
 | |
| 
 | |
| 	while (max_scan--) {
 | |
| 		void *entry = xas_prev(&xas);
 | |
| 		if (!entry || xa_is_value(entry))
 | |
| 			break;
 | |
| 		if (xas.xa_index == ULONG_MAX)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return xas.xa_index;
 | |
| }
 | |
| EXPORT_SYMBOL(page_cache_prev_miss);
 | |
| 
 | |
| /**
 | |
|  * find_get_entry - find and get a page cache entry
 | |
|  * @mapping: the address_space to search
 | |
|  * @index: The page cache index.
 | |
|  *
 | |
|  * Looks up the page cache slot at @mapping & @offset.  If there is a
 | |
|  * page cache page, the head page is returned with an increased refcount.
 | |
|  *
 | |
|  * If the slot holds a shadow entry of a previously evicted page, or a
 | |
|  * swap entry from shmem/tmpfs, it is returned.
 | |
|  *
 | |
|  * Return: The head page or shadow entry, %NULL if nothing is found.
 | |
|  */
 | |
| struct page *find_get_entry(struct address_space *mapping, pgoff_t index)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, index);
 | |
| 	struct page *page;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| repeat:
 | |
| 	xas_reset(&xas);
 | |
| 	page = xas_load(&xas);
 | |
| 	if (xas_retry(&xas, page))
 | |
| 		goto repeat;
 | |
| 	/*
 | |
| 	 * A shadow entry of a recently evicted page, or a swap entry from
 | |
| 	 * shmem/tmpfs.  Return it without attempting to raise page count.
 | |
| 	 */
 | |
| 	if (!page || xa_is_value(page))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!page_cache_get_speculative(page))
 | |
| 		goto repeat;
 | |
| 
 | |
| 	/*
 | |
| 	 * Has the page moved or been split?
 | |
| 	 * This is part of the lockless pagecache protocol. See
 | |
| 	 * include/linux/pagemap.h for details.
 | |
| 	 */
 | |
| 	if (unlikely(page != xas_reload(&xas))) {
 | |
| 		put_page(page);
 | |
| 		goto repeat;
 | |
| 	}
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_lock_entry - Locate and lock a page cache entry.
 | |
|  * @mapping: The address_space to search.
 | |
|  * @index: The page cache index.
 | |
|  *
 | |
|  * Looks up the page at @mapping & @index.  If there is a page in the
 | |
|  * cache, the head page is returned locked and with an increased refcount.
 | |
|  *
 | |
|  * If the slot holds a shadow entry of a previously evicted page, or a
 | |
|  * swap entry from shmem/tmpfs, it is returned.
 | |
|  *
 | |
|  * Context: May sleep.
 | |
|  * Return: The head page or shadow entry, %NULL if nothing is found.
 | |
|  */
 | |
| struct page *find_lock_entry(struct address_space *mapping, pgoff_t index)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| repeat:
 | |
| 	page = find_get_entry(mapping, index);
 | |
| 	if (page && !xa_is_value(page)) {
 | |
| 		lock_page(page);
 | |
| 		/* Has the page been truncated? */
 | |
| 		if (unlikely(page->mapping != mapping)) {
 | |
| 			unlock_page(page);
 | |
| 			put_page(page);
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pagecache_get_page - Find and get a reference to a page.
 | |
|  * @mapping: The address_space to search.
 | |
|  * @index: The page index.
 | |
|  * @fgp_flags: %FGP flags modify how the page is returned.
 | |
|  * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
 | |
|  *
 | |
|  * Looks up the page cache entry at @mapping & @index.
 | |
|  *
 | |
|  * @fgp_flags can be zero or more of these flags:
 | |
|  *
 | |
|  * * %FGP_ACCESSED - The page will be marked accessed.
 | |
|  * * %FGP_LOCK - The page is returned locked.
 | |
|  * * %FGP_HEAD - If the page is present and a THP, return the head page
 | |
|  *   rather than the exact page specified by the index.
 | |
|  * * %FGP_CREAT - If no page is present then a new page is allocated using
 | |
|  *   @gfp_mask and added to the page cache and the VM's LRU list.
 | |
|  *   The page is returned locked and with an increased refcount.
 | |
|  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
 | |
|  *   page is already in cache.  If the page was allocated, unlock it before
 | |
|  *   returning so the caller can do the same dance.
 | |
|  * * %FGP_WRITE - The page will be written
 | |
|  * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
 | |
|  * * %FGP_NOWAIT - Don't get blocked by page lock
 | |
|  *
 | |
|  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
 | |
|  * if the %GFP flags specified for %FGP_CREAT are atomic.
 | |
|  *
 | |
|  * If there is a page cache page, it is returned with an increased refcount.
 | |
|  *
 | |
|  * Return: The found page or %NULL otherwise.
 | |
|  */
 | |
| struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
 | |
| 		int fgp_flags, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| repeat:
 | |
| 	page = find_get_entry(mapping, index);
 | |
| 	if (xa_is_value(page))
 | |
| 		page = NULL;
 | |
| 	if (!page)
 | |
| 		goto no_page;
 | |
| 
 | |
| 	if (fgp_flags & FGP_LOCK) {
 | |
| 		if (fgp_flags & FGP_NOWAIT) {
 | |
| 			if (!trylock_page(page)) {
 | |
| 				put_page(page);
 | |
| 				return NULL;
 | |
| 			}
 | |
| 		} else {
 | |
| 			lock_page(page);
 | |
| 		}
 | |
| 
 | |
| 		/* Has the page been truncated? */
 | |
| 		if (unlikely(page->mapping != mapping)) {
 | |
| 			unlock_page(page);
 | |
| 			put_page(page);
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
 | |
| 	}
 | |
| 
 | |
| 	if (fgp_flags & FGP_ACCESSED)
 | |
| 		mark_page_accessed(page);
 | |
| 	else if (fgp_flags & FGP_WRITE) {
 | |
| 		/* Clear idle flag for buffer write */
 | |
| 		if (page_is_idle(page))
 | |
| 			clear_page_idle(page);
 | |
| 	}
 | |
| 	if (!(fgp_flags & FGP_HEAD))
 | |
| 		page = find_subpage(page, index);
 | |
| 
 | |
| no_page:
 | |
| 	if (!page && (fgp_flags & FGP_CREAT)) {
 | |
| 		int err;
 | |
| 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
 | |
| 			gfp_mask |= __GFP_WRITE;
 | |
| 		if (fgp_flags & FGP_NOFS)
 | |
| 			gfp_mask &= ~__GFP_FS;
 | |
| 
 | |
| 		page = __page_cache_alloc(gfp_mask);
 | |
| 		if (!page)
 | |
| 			return NULL;
 | |
| 
 | |
| 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
 | |
| 			fgp_flags |= FGP_LOCK;
 | |
| 
 | |
| 		/* Init accessed so avoid atomic mark_page_accessed later */
 | |
| 		if (fgp_flags & FGP_ACCESSED)
 | |
| 			__SetPageReferenced(page);
 | |
| 
 | |
| 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
 | |
| 		if (unlikely(err)) {
 | |
| 			put_page(page);
 | |
| 			page = NULL;
 | |
| 			if (err == -EEXIST)
 | |
| 				goto repeat;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * add_to_page_cache_lru locks the page, and for mmap we expect
 | |
| 		 * an unlocked page.
 | |
| 		 */
 | |
| 		if (page && (fgp_flags & FGP_FOR_MMAP))
 | |
| 			unlock_page(page);
 | |
| 	}
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL(pagecache_get_page);
 | |
| 
 | |
| /**
 | |
|  * find_get_entries - gang pagecache lookup
 | |
|  * @mapping:	The address_space to search
 | |
|  * @start:	The starting page cache index
 | |
|  * @nr_entries:	The maximum number of entries
 | |
|  * @entries:	Where the resulting entries are placed
 | |
|  * @indices:	The cache indices corresponding to the entries in @entries
 | |
|  *
 | |
|  * find_get_entries() will search for and return a group of up to
 | |
|  * @nr_entries entries in the mapping.  The entries are placed at
 | |
|  * @entries.  find_get_entries() takes a reference against any actual
 | |
|  * pages it returns.
 | |
|  *
 | |
|  * The search returns a group of mapping-contiguous page cache entries
 | |
|  * with ascending indexes.  There may be holes in the indices due to
 | |
|  * not-present pages.
 | |
|  *
 | |
|  * Any shadow entries of evicted pages, or swap entries from
 | |
|  * shmem/tmpfs, are included in the returned array.
 | |
|  *
 | |
|  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
 | |
|  * stops at that page: the caller is likely to have a better way to handle
 | |
|  * the compound page as a whole, and then skip its extent, than repeatedly
 | |
|  * calling find_get_entries() to return all its tails.
 | |
|  *
 | |
|  * Return: the number of pages and shadow entries which were found.
 | |
|  */
 | |
| unsigned find_get_entries(struct address_space *mapping,
 | |
| 			  pgoff_t start, unsigned int nr_entries,
 | |
| 			  struct page **entries, pgoff_t *indices)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, start);
 | |
| 	struct page *page;
 | |
| 	unsigned int ret = 0;
 | |
| 
 | |
| 	if (!nr_entries)
 | |
| 		return 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	xas_for_each(&xas, page, ULONG_MAX) {
 | |
| 		if (xas_retry(&xas, page))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * A shadow entry of a recently evicted page, a swap
 | |
| 		 * entry from shmem/tmpfs or a DAX entry.  Return it
 | |
| 		 * without attempting to raise page count.
 | |
| 		 */
 | |
| 		if (xa_is_value(page))
 | |
| 			goto export;
 | |
| 
 | |
| 		if (!page_cache_get_speculative(page))
 | |
| 			goto retry;
 | |
| 
 | |
| 		/* Has the page moved or been split? */
 | |
| 		if (unlikely(page != xas_reload(&xas)))
 | |
| 			goto put_page;
 | |
| 
 | |
| 		/*
 | |
| 		 * Terminate early on finding a THP, to allow the caller to
 | |
| 		 * handle it all at once; but continue if this is hugetlbfs.
 | |
| 		 */
 | |
| 		if (PageTransHuge(page) && !PageHuge(page)) {
 | |
| 			page = find_subpage(page, xas.xa_index);
 | |
| 			nr_entries = ret + 1;
 | |
| 		}
 | |
| export:
 | |
| 		indices[ret] = xas.xa_index;
 | |
| 		entries[ret] = page;
 | |
| 		if (++ret == nr_entries)
 | |
| 			break;
 | |
| 		continue;
 | |
| put_page:
 | |
| 		put_page(page);
 | |
| retry:
 | |
| 		xas_reset(&xas);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_get_pages_range - gang pagecache lookup
 | |
|  * @mapping:	The address_space to search
 | |
|  * @start:	The starting page index
 | |
|  * @end:	The final page index (inclusive)
 | |
|  * @nr_pages:	The maximum number of pages
 | |
|  * @pages:	Where the resulting pages are placed
 | |
|  *
 | |
|  * find_get_pages_range() will search for and return a group of up to @nr_pages
 | |
|  * pages in the mapping starting at index @start and up to index @end
 | |
|  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
 | |
|  * a reference against the returned pages.
 | |
|  *
 | |
|  * The search returns a group of mapping-contiguous pages with ascending
 | |
|  * indexes.  There may be holes in the indices due to not-present pages.
 | |
|  * We also update @start to index the next page for the traversal.
 | |
|  *
 | |
|  * Return: the number of pages which were found. If this number is
 | |
|  * smaller than @nr_pages, the end of specified range has been
 | |
|  * reached.
 | |
|  */
 | |
| unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
 | |
| 			      pgoff_t end, unsigned int nr_pages,
 | |
| 			      struct page **pages)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, *start);
 | |
| 	struct page *page;
 | |
| 	unsigned ret = 0;
 | |
| 
 | |
| 	if (unlikely(!nr_pages))
 | |
| 		return 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	xas_for_each(&xas, page, end) {
 | |
| 		if (xas_retry(&xas, page))
 | |
| 			continue;
 | |
| 		/* Skip over shadow, swap and DAX entries */
 | |
| 		if (xa_is_value(page))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!page_cache_get_speculative(page))
 | |
| 			goto retry;
 | |
| 
 | |
| 		/* Has the page moved or been split? */
 | |
| 		if (unlikely(page != xas_reload(&xas)))
 | |
| 			goto put_page;
 | |
| 
 | |
| 		pages[ret] = find_subpage(page, xas.xa_index);
 | |
| 		if (++ret == nr_pages) {
 | |
| 			*start = xas.xa_index + 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		continue;
 | |
| put_page:
 | |
| 		put_page(page);
 | |
| retry:
 | |
| 		xas_reset(&xas);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We come here when there is no page beyond @end. We take care to not
 | |
| 	 * overflow the index @start as it confuses some of the callers. This
 | |
| 	 * breaks the iteration when there is a page at index -1 but that is
 | |
| 	 * already broken anyway.
 | |
| 	 */
 | |
| 	if (end == (pgoff_t)-1)
 | |
| 		*start = (pgoff_t)-1;
 | |
| 	else
 | |
| 		*start = end + 1;
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_get_pages_contig - gang contiguous pagecache lookup
 | |
|  * @mapping:	The address_space to search
 | |
|  * @index:	The starting page index
 | |
|  * @nr_pages:	The maximum number of pages
 | |
|  * @pages:	Where the resulting pages are placed
 | |
|  *
 | |
|  * find_get_pages_contig() works exactly like find_get_pages(), except
 | |
|  * that the returned number of pages are guaranteed to be contiguous.
 | |
|  *
 | |
|  * Return: the number of pages which were found.
 | |
|  */
 | |
| unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
 | |
| 			       unsigned int nr_pages, struct page **pages)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, index);
 | |
| 	struct page *page;
 | |
| 	unsigned int ret = 0;
 | |
| 
 | |
| 	if (unlikely(!nr_pages))
 | |
| 		return 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
 | |
| 		if (xas_retry(&xas, page))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * If the entry has been swapped out, we can stop looking.
 | |
| 		 * No current caller is looking for DAX entries.
 | |
| 		 */
 | |
| 		if (xa_is_value(page))
 | |
| 			break;
 | |
| 
 | |
| 		if (!page_cache_get_speculative(page))
 | |
| 			goto retry;
 | |
| 
 | |
| 		/* Has the page moved or been split? */
 | |
| 		if (unlikely(page != xas_reload(&xas)))
 | |
| 			goto put_page;
 | |
| 
 | |
| 		pages[ret] = find_subpage(page, xas.xa_index);
 | |
| 		if (++ret == nr_pages)
 | |
| 			break;
 | |
| 		continue;
 | |
| put_page:
 | |
| 		put_page(page);
 | |
| retry:
 | |
| 		xas_reset(&xas);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(find_get_pages_contig);
 | |
| 
 | |
| /**
 | |
|  * find_get_pages_range_tag - find and return pages in given range matching @tag
 | |
|  * @mapping:	the address_space to search
 | |
|  * @index:	the starting page index
 | |
|  * @end:	The final page index (inclusive)
 | |
|  * @tag:	the tag index
 | |
|  * @nr_pages:	the maximum number of pages
 | |
|  * @pages:	where the resulting pages are placed
 | |
|  *
 | |
|  * Like find_get_pages, except we only return pages which are tagged with
 | |
|  * @tag.   We update @index to index the next page for the traversal.
 | |
|  *
 | |
|  * Return: the number of pages which were found.
 | |
|  */
 | |
| unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
 | |
| 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
 | |
| 			struct page **pages)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, *index);
 | |
| 	struct page *page;
 | |
| 	unsigned ret = 0;
 | |
| 
 | |
| 	if (unlikely(!nr_pages))
 | |
| 		return 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	xas_for_each_marked(&xas, page, end, tag) {
 | |
| 		if (xas_retry(&xas, page))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * Shadow entries should never be tagged, but this iteration
 | |
| 		 * is lockless so there is a window for page reclaim to evict
 | |
| 		 * a page we saw tagged.  Skip over it.
 | |
| 		 */
 | |
| 		if (xa_is_value(page))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!page_cache_get_speculative(page))
 | |
| 			goto retry;
 | |
| 
 | |
| 		/* Has the page moved or been split? */
 | |
| 		if (unlikely(page != xas_reload(&xas)))
 | |
| 			goto put_page;
 | |
| 
 | |
| 		pages[ret] = find_subpage(page, xas.xa_index);
 | |
| 		if (++ret == nr_pages) {
 | |
| 			*index = xas.xa_index + 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		continue;
 | |
| put_page:
 | |
| 		put_page(page);
 | |
| retry:
 | |
| 		xas_reset(&xas);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We come here when we got to @end. We take care to not overflow the
 | |
| 	 * index @index as it confuses some of the callers. This breaks the
 | |
| 	 * iteration when there is a page at index -1 but that is already
 | |
| 	 * broken anyway.
 | |
| 	 */
 | |
| 	if (end == (pgoff_t)-1)
 | |
| 		*index = (pgoff_t)-1;
 | |
| 	else
 | |
| 		*index = end + 1;
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(find_get_pages_range_tag);
 | |
| 
 | |
| /*
 | |
|  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 | |
|  * a _large_ part of the i/o request. Imagine the worst scenario:
 | |
|  *
 | |
|  *      ---R__________________________________________B__________
 | |
|  *         ^ reading here                             ^ bad block(assume 4k)
 | |
|  *
 | |
|  * read(R) => miss => readahead(R...B) => media error => frustrating retries
 | |
|  * => failing the whole request => read(R) => read(R+1) =>
 | |
|  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 | |
|  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 | |
|  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 | |
|  *
 | |
|  * It is going insane. Fix it by quickly scaling down the readahead size.
 | |
|  */
 | |
| static void shrink_readahead_size_eio(struct file_ra_state *ra)
 | |
| {
 | |
| 	ra->ra_pages /= 4;
 | |
| }
 | |
| 
 | |
| static int lock_page_for_iocb(struct kiocb *iocb, struct page *page)
 | |
| {
 | |
| 	if (iocb->ki_flags & IOCB_WAITQ)
 | |
| 		return lock_page_async(page, iocb->ki_waitq);
 | |
| 	else if (iocb->ki_flags & IOCB_NOWAIT)
 | |
| 		return trylock_page(page) ? 0 : -EAGAIN;
 | |
| 	else
 | |
| 		return lock_page_killable(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * filemap_get_read_batch - Get a batch of pages for read
 | |
|  *
 | |
|  * Get a batch of pages which represent a contiguous range of bytes
 | |
|  * in the file.  No tail pages will be returned.  If @index is in the
 | |
|  * middle of a THP, the entire THP will be returned.  The last page in
 | |
|  * the batch may have Readahead set or be not Uptodate so that the
 | |
|  * caller can take the appropriate action.
 | |
|  */
 | |
| static void filemap_get_read_batch(struct address_space *mapping,
 | |
| 		pgoff_t index, pgoff_t max, struct pagevec *pvec)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, index);
 | |
| 	struct page *head;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (head = xas_load(&xas); head; head = xas_next(&xas)) {
 | |
| 		if (xas_retry(&xas, head))
 | |
| 			continue;
 | |
| 		if (xas.xa_index > max || xa_is_value(head))
 | |
| 			break;
 | |
| 		if (!page_cache_get_speculative(head))
 | |
| 			goto retry;
 | |
| 
 | |
| 		/* Has the page moved or been split? */
 | |
| 		if (unlikely(head != xas_reload(&xas)))
 | |
| 			goto put_page;
 | |
| 
 | |
| 		if (!pagevec_add(pvec, head))
 | |
| 			break;
 | |
| 		if (!PageUptodate(head))
 | |
| 			break;
 | |
| 		if (PageReadahead(head))
 | |
| 			break;
 | |
| 		xas.xa_index = head->index + thp_nr_pages(head) - 1;
 | |
| 		xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
 | |
| 		continue;
 | |
| put_page:
 | |
| 		put_page(head);
 | |
| retry:
 | |
| 		xas_reset(&xas);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static struct page *filemap_read_page(struct kiocb *iocb, struct file *filp,
 | |
| 		struct address_space *mapping, struct page *page)
 | |
| {
 | |
| 	struct file_ra_state *ra = &filp->f_ra;
 | |
| 	int error;
 | |
| 
 | |
| 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 		return ERR_PTR(-EAGAIN);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * A previous I/O error may have been due to temporary
 | |
| 	 * failures, eg. multipath errors.
 | |
| 	 * PG_error will be set again if readpage fails.
 | |
| 	 */
 | |
| 	ClearPageError(page);
 | |
| 	/* Start the actual read. The read will unlock the page. */
 | |
| 	error = mapping->a_ops->readpage(filp, page);
 | |
| 
 | |
| 	if (unlikely(error)) {
 | |
| 		put_page(page);
 | |
| 		return error != AOP_TRUNCATED_PAGE ? ERR_PTR(error) : NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (!PageUptodate(page)) {
 | |
| 		error = lock_page_for_iocb(iocb, page);
 | |
| 		if (unlikely(error)) {
 | |
| 			put_page(page);
 | |
| 			return ERR_PTR(error);
 | |
| 		}
 | |
| 		if (!PageUptodate(page)) {
 | |
| 			if (page->mapping == NULL) {
 | |
| 				/*
 | |
| 				 * invalidate_mapping_pages got it
 | |
| 				 */
 | |
| 				unlock_page(page);
 | |
| 				put_page(page);
 | |
| 				return NULL;
 | |
| 			}
 | |
| 			unlock_page(page);
 | |
| 			shrink_readahead_size_eio(ra);
 | |
| 			put_page(page);
 | |
| 			return ERR_PTR(-EIO);
 | |
| 		}
 | |
| 		unlock_page(page);
 | |
| 	}
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static struct page *filemap_update_page(struct kiocb *iocb, struct file *filp,
 | |
| 		struct iov_iter *iter, struct page *page, loff_t pos,
 | |
| 		loff_t count)
 | |
| {
 | |
| 	struct address_space *mapping = filp->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	int error;
 | |
| 
 | |
| 	/*
 | |
| 	 * See comment in do_read_cache_page on why
 | |
| 	 * wait_on_page_locked is used to avoid unnecessarily
 | |
| 	 * serialisations and why it's safe.
 | |
| 	 */
 | |
| 	if (iocb->ki_flags & IOCB_WAITQ) {
 | |
| 		error = wait_on_page_locked_async(page,
 | |
| 						iocb->ki_waitq);
 | |
| 	} else {
 | |
| 		error = wait_on_page_locked_killable(page);
 | |
| 	}
 | |
| 	if (unlikely(error)) {
 | |
| 		put_page(page);
 | |
| 		return ERR_PTR(error);
 | |
| 	}
 | |
| 	if (PageUptodate(page))
 | |
| 		return page;
 | |
| 
 | |
| 	if (inode->i_blkbits == PAGE_SHIFT ||
 | |
| 			!mapping->a_ops->is_partially_uptodate)
 | |
| 		goto page_not_up_to_date;
 | |
| 	/* pipes can't handle partially uptodate pages */
 | |
| 	if (unlikely(iov_iter_is_pipe(iter)))
 | |
| 		goto page_not_up_to_date;
 | |
| 	if (!trylock_page(page))
 | |
| 		goto page_not_up_to_date;
 | |
| 	/* Did it get truncated before we got the lock? */
 | |
| 	if (!page->mapping)
 | |
| 		goto page_not_up_to_date_locked;
 | |
| 	if (!mapping->a_ops->is_partially_uptodate(page,
 | |
| 				pos & ~PAGE_MASK, count))
 | |
| 		goto page_not_up_to_date_locked;
 | |
| 	unlock_page(page);
 | |
| 	return page;
 | |
| 
 | |
| page_not_up_to_date:
 | |
| 	/* Get exclusive access to the page ... */
 | |
| 	error = lock_page_for_iocb(iocb, page);
 | |
| 	if (unlikely(error)) {
 | |
| 		put_page(page);
 | |
| 		return ERR_PTR(error);
 | |
| 	}
 | |
| 
 | |
| page_not_up_to_date_locked:
 | |
| 	/* Did it get truncated before we got the lock? */
 | |
| 	if (!page->mapping) {
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Did somebody else fill it already? */
 | |
| 	if (PageUptodate(page)) {
 | |
| 		unlock_page(page);
 | |
| 		return page;
 | |
| 	}
 | |
| 
 | |
| 	return filemap_read_page(iocb, filp, mapping, page);
 | |
| }
 | |
| 
 | |
| static struct page *filemap_create_page(struct kiocb *iocb,
 | |
| 		struct iov_iter *iter)
 | |
| {
 | |
| 	struct file *filp = iocb->ki_filp;
 | |
| 	struct address_space *mapping = filp->f_mapping;
 | |
| 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
 | |
| 	struct page *page;
 | |
| 	int error;
 | |
| 
 | |
| 	if (iocb->ki_flags & IOCB_NOIO)
 | |
| 		return ERR_PTR(-EAGAIN);
 | |
| 
 | |
| 	page = page_cache_alloc(mapping);
 | |
| 	if (!page)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	error = add_to_page_cache_lru(page, mapping, index,
 | |
| 				      mapping_gfp_constraint(mapping, GFP_KERNEL));
 | |
| 	if (error) {
 | |
| 		put_page(page);
 | |
| 		return error != -EEXIST ? ERR_PTR(error) : NULL;
 | |
| 	}
 | |
| 
 | |
| 	return filemap_read_page(iocb, filp, mapping, page);
 | |
| }
 | |
| 
 | |
| static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
 | |
| 		struct pagevec *pvec)
 | |
| {
 | |
| 	struct file *filp = iocb->ki_filp;
 | |
| 	struct address_space *mapping = filp->f_mapping;
 | |
| 	struct file_ra_state *ra = &filp->f_ra;
 | |
| 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
 | |
| 	pgoff_t last_index;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
 | |
| find_page:
 | |
| 	if (fatal_signal_pending(current))
 | |
| 		return -EINTR;
 | |
| 
 | |
| 	filemap_get_read_batch(mapping, index, last_index, pvec);
 | |
| 	if (pvec->nr)
 | |
| 		goto got_pages;
 | |
| 
 | |
| 	if (iocb->ki_flags & IOCB_NOIO)
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	page_cache_sync_readahead(mapping, ra, filp, index, last_index - index);
 | |
| 
 | |
| 	filemap_get_read_batch(mapping, index, last_index, pvec);
 | |
| 	if (pvec->nr)
 | |
| 		goto got_pages;
 | |
| 
 | |
| 	pvec->pages[0] = filemap_create_page(iocb, iter);
 | |
| 	err = PTR_ERR_OR_ZERO(pvec->pages[0]);
 | |
| 	if (IS_ERR_OR_NULL(pvec->pages[0]))
 | |
| 		goto err;
 | |
| 	pvec->nr = 1;
 | |
| 	return 0;
 | |
| got_pages:
 | |
| 	{
 | |
| 		struct page *page = pvec->pages[pvec->nr - 1];
 | |
| 		pgoff_t pg_index = page->index;
 | |
| 		loff_t pg_pos = max(iocb->ki_pos,
 | |
| 				    (loff_t) pg_index << PAGE_SHIFT);
 | |
| 		loff_t pg_count = iocb->ki_pos + iter->count - pg_pos;
 | |
| 
 | |
| 		if (PageReadahead(page)) {
 | |
| 			if (iocb->ki_flags & IOCB_NOIO) {
 | |
| 				put_page(page);
 | |
| 				pvec->nr--;
 | |
| 				err = -EAGAIN;
 | |
| 				goto err;
 | |
| 			}
 | |
| 			page_cache_async_readahead(mapping, ra, filp, page,
 | |
| 					pg_index, last_index - pg_index);
 | |
| 		}
 | |
| 
 | |
| 		if (!PageUptodate(page)) {
 | |
| 			if ((iocb->ki_flags & IOCB_NOWAIT) ||
 | |
| 			    ((iocb->ki_flags & IOCB_WAITQ) && pvec->nr > 1)) {
 | |
| 				put_page(page);
 | |
| 				pvec->nr--;
 | |
| 				err = -EAGAIN;
 | |
| 				goto err;
 | |
| 			}
 | |
| 
 | |
| 			page = filemap_update_page(iocb, filp, iter, page,
 | |
| 					pg_pos, pg_count);
 | |
| 			if (IS_ERR_OR_NULL(page)) {
 | |
| 				pvec->nr--;
 | |
| 				err = PTR_ERR_OR_ZERO(page);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| err:
 | |
| 	if (likely(pvec->nr))
 | |
| 		return 0;
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	/*
 | |
| 	 * No pages and no error means we raced and should retry:
 | |
| 	 */
 | |
| 	goto find_page;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * generic_file_buffered_read - generic file read routine
 | |
|  * @iocb:	the iocb to read
 | |
|  * @iter:	data destination
 | |
|  * @written:	already copied
 | |
|  *
 | |
|  * This is a generic file read routine, and uses the
 | |
|  * mapping->a_ops->readpage() function for the actual low-level stuff.
 | |
|  *
 | |
|  * This is really ugly. But the goto's actually try to clarify some
 | |
|  * of the logic when it comes to error handling etc.
 | |
|  *
 | |
|  * Return:
 | |
|  * * total number of bytes copied, including those the were already @written
 | |
|  * * negative error code if nothing was copied
 | |
|  */
 | |
| ssize_t generic_file_buffered_read(struct kiocb *iocb,
 | |
| 		struct iov_iter *iter, ssize_t written)
 | |
| {
 | |
| 	struct file *filp = iocb->ki_filp;
 | |
| 	struct file_ra_state *ra = &filp->f_ra;
 | |
| 	struct address_space *mapping = filp->f_mapping;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	struct pagevec pvec;
 | |
| 	int i, error = 0;
 | |
| 	bool writably_mapped;
 | |
| 	loff_t isize, end_offset;
 | |
| 
 | |
| 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
 | |
| 		return 0;
 | |
| 	if (unlikely(!iov_iter_count(iter)))
 | |
| 		return 0;
 | |
| 
 | |
| 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
 | |
| 	pagevec_init(&pvec);
 | |
| 
 | |
| 	do {
 | |
| 		cond_resched();
 | |
| 
 | |
| 		/*
 | |
| 		 * If we've already successfully copied some data, then we
 | |
| 		 * can no longer safely return -EIOCBQUEUED. Hence mark
 | |
| 		 * an async read NOWAIT at that point.
 | |
| 		 */
 | |
| 		if ((iocb->ki_flags & IOCB_WAITQ) && written)
 | |
| 			iocb->ki_flags |= IOCB_NOWAIT;
 | |
| 
 | |
| 		error = filemap_get_pages(iocb, iter, &pvec);
 | |
| 		if (error < 0)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * i_size must be checked after we know the pages are Uptodate.
 | |
| 		 *
 | |
| 		 * Checking i_size after the check allows us to calculate
 | |
| 		 * the correct value for "nr", which means the zero-filled
 | |
| 		 * part of the page is not copied back to userspace (unless
 | |
| 		 * another truncate extends the file - this is desired though).
 | |
| 		 */
 | |
| 		isize = i_size_read(inode);
 | |
| 		if (unlikely(iocb->ki_pos >= isize))
 | |
| 			goto put_pages;
 | |
| 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
 | |
| 
 | |
| 		/*
 | |
| 		 * Once we start copying data, we don't want to be touching any
 | |
| 		 * cachelines that might be contended:
 | |
| 		 */
 | |
| 		writably_mapped = mapping_writably_mapped(mapping);
 | |
| 
 | |
| 		/*
 | |
| 		 * When a sequential read accesses a page several times, only
 | |
| 		 * mark it as accessed the first time.
 | |
| 		 */
 | |
| 		if (iocb->ki_pos >> PAGE_SHIFT !=
 | |
| 		    ra->prev_pos >> PAGE_SHIFT)
 | |
| 			mark_page_accessed(pvec.pages[0]);
 | |
| 
 | |
| 		for (i = 0; i < pagevec_count(&pvec); i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 			size_t page_size = thp_size(page);
 | |
| 			size_t offset = iocb->ki_pos & (page_size - 1);
 | |
| 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
 | |
| 					     page_size - offset);
 | |
| 			size_t copied;
 | |
| 
 | |
| 			if (end_offset < page_offset(page))
 | |
| 				break;
 | |
| 			if (i > 0)
 | |
| 				mark_page_accessed(page);
 | |
| 			/*
 | |
| 			 * If users can be writing to this page using arbitrary
 | |
| 			 * virtual addresses, take care about potential aliasing
 | |
| 			 * before reading the page on the kernel side.
 | |
| 			 */
 | |
| 			if (writably_mapped) {
 | |
| 				int j;
 | |
| 
 | |
| 				for (j = 0; j < thp_nr_pages(page); j++)
 | |
| 					flush_dcache_page(page + j);
 | |
| 			}
 | |
| 
 | |
| 			copied = copy_page_to_iter(page, offset, bytes, iter);
 | |
| 
 | |
| 			written += copied;
 | |
| 			iocb->ki_pos += copied;
 | |
| 			ra->prev_pos = iocb->ki_pos;
 | |
| 
 | |
| 			if (copied < bytes) {
 | |
| 				error = -EFAULT;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| put_pages:
 | |
| 		for (i = 0; i < pagevec_count(&pvec); i++)
 | |
| 			put_page(pvec.pages[i]);
 | |
| 		pagevec_reinit(&pvec);
 | |
| 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
 | |
| 
 | |
| 	file_accessed(filp);
 | |
| 
 | |
| 	return written ? written : error;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(generic_file_buffered_read);
 | |
| 
 | |
| /**
 | |
|  * generic_file_read_iter - generic filesystem read routine
 | |
|  * @iocb:	kernel I/O control block
 | |
|  * @iter:	destination for the data read
 | |
|  *
 | |
|  * This is the "read_iter()" routine for all filesystems
 | |
|  * that can use the page cache directly.
 | |
|  *
 | |
|  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
 | |
|  * be returned when no data can be read without waiting for I/O requests
 | |
|  * to complete; it doesn't prevent readahead.
 | |
|  *
 | |
|  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
 | |
|  * requests shall be made for the read or for readahead.  When no data
 | |
|  * can be read, -EAGAIN shall be returned.  When readahead would be
 | |
|  * triggered, a partial, possibly empty read shall be returned.
 | |
|  *
 | |
|  * Return:
 | |
|  * * number of bytes copied, even for partial reads
 | |
|  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
 | |
|  */
 | |
| ssize_t
 | |
| generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
 | |
| {
 | |
| 	size_t count = iov_iter_count(iter);
 | |
| 	ssize_t retval = 0;
 | |
| 
 | |
| 	if (!count)
 | |
| 		goto out; /* skip atime */
 | |
| 
 | |
| 	if (iocb->ki_flags & IOCB_DIRECT) {
 | |
| 		struct file *file = iocb->ki_filp;
 | |
| 		struct address_space *mapping = file->f_mapping;
 | |
| 		struct inode *inode = mapping->host;
 | |
| 		loff_t size;
 | |
| 
 | |
| 		size = i_size_read(inode);
 | |
| 		if (iocb->ki_flags & IOCB_NOWAIT) {
 | |
| 			if (filemap_range_has_page(mapping, iocb->ki_pos,
 | |
| 						   iocb->ki_pos + count - 1))
 | |
| 				return -EAGAIN;
 | |
| 		} else {
 | |
| 			retval = filemap_write_and_wait_range(mapping,
 | |
| 						iocb->ki_pos,
 | |
| 					        iocb->ki_pos + count - 1);
 | |
| 			if (retval < 0)
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		file_accessed(file);
 | |
| 
 | |
| 		retval = mapping->a_ops->direct_IO(iocb, iter);
 | |
| 		if (retval >= 0) {
 | |
| 			iocb->ki_pos += retval;
 | |
| 			count -= retval;
 | |
| 		}
 | |
| 		if (retval != -EIOCBQUEUED)
 | |
| 			iov_iter_revert(iter, count - iov_iter_count(iter));
 | |
| 
 | |
| 		/*
 | |
| 		 * Btrfs can have a short DIO read if we encounter
 | |
| 		 * compressed extents, so if there was an error, or if
 | |
| 		 * we've already read everything we wanted to, or if
 | |
| 		 * there was a short read because we hit EOF, go ahead
 | |
| 		 * and return.  Otherwise fallthrough to buffered io for
 | |
| 		 * the rest of the read.  Buffered reads will not work for
 | |
| 		 * DAX files, so don't bother trying.
 | |
| 		 */
 | |
| 		if (retval < 0 || !count || iocb->ki_pos >= size ||
 | |
| 		    IS_DAX(inode))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	retval = generic_file_buffered_read(iocb, iter, retval);
 | |
| out:
 | |
| 	return retval;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_file_read_iter);
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| #define MMAP_LOTSAMISS  (100)
 | |
| /*
 | |
|  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
 | |
|  * @vmf - the vm_fault for this fault.
 | |
|  * @page - the page to lock.
 | |
|  * @fpin - the pointer to the file we may pin (or is already pinned).
 | |
|  *
 | |
|  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
 | |
|  * It differs in that it actually returns the page locked if it returns 1 and 0
 | |
|  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
 | |
|  * will point to the pinned file and needs to be fput()'ed at a later point.
 | |
|  */
 | |
| static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
 | |
| 				     struct file **fpin)
 | |
| {
 | |
| 	if (trylock_page(page))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
 | |
| 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
 | |
| 	 * is supposed to work. We have way too many special cases..
 | |
| 	 */
 | |
| 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
 | |
| 		return 0;
 | |
| 
 | |
| 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
 | |
| 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
 | |
| 		if (__lock_page_killable(page)) {
 | |
| 			/*
 | |
| 			 * We didn't have the right flags to drop the mmap_lock,
 | |
| 			 * but all fault_handlers only check for fatal signals
 | |
| 			 * if we return VM_FAULT_RETRY, so we need to drop the
 | |
| 			 * mmap_lock here and return 0 if we don't have a fpin.
 | |
| 			 */
 | |
| 			if (*fpin == NULL)
 | |
| 				mmap_read_unlock(vmf->vma->vm_mm);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	} else
 | |
| 		__lock_page(page);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Synchronous readahead happens when we don't even find a page in the page
 | |
|  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
 | |
|  * to drop the mmap sem we return the file that was pinned in order for us to do
 | |
|  * that.  If we didn't pin a file then we return NULL.  The file that is
 | |
|  * returned needs to be fput()'ed when we're done with it.
 | |
|  */
 | |
| static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
 | |
| {
 | |
| 	struct file *file = vmf->vma->vm_file;
 | |
| 	struct file_ra_state *ra = &file->f_ra;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	DEFINE_READAHEAD(ractl, file, mapping, vmf->pgoff);
 | |
| 	struct file *fpin = NULL;
 | |
| 	unsigned int mmap_miss;
 | |
| 
 | |
| 	/* If we don't want any read-ahead, don't bother */
 | |
| 	if (vmf->vma->vm_flags & VM_RAND_READ)
 | |
| 		return fpin;
 | |
| 	if (!ra->ra_pages)
 | |
| 		return fpin;
 | |
| 
 | |
| 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
 | |
| 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
 | |
| 		page_cache_sync_ra(&ractl, ra, ra->ra_pages);
 | |
| 		return fpin;
 | |
| 	}
 | |
| 
 | |
| 	/* Avoid banging the cache line if not needed */
 | |
| 	mmap_miss = READ_ONCE(ra->mmap_miss);
 | |
| 	if (mmap_miss < MMAP_LOTSAMISS * 10)
 | |
| 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do we miss much more than hit in this file? If so,
 | |
| 	 * stop bothering with read-ahead. It will only hurt.
 | |
| 	 */
 | |
| 	if (mmap_miss > MMAP_LOTSAMISS)
 | |
| 		return fpin;
 | |
| 
 | |
| 	/*
 | |
| 	 * mmap read-around
 | |
| 	 */
 | |
| 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
 | |
| 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
 | |
| 	ra->size = ra->ra_pages;
 | |
| 	ra->async_size = ra->ra_pages / 4;
 | |
| 	ractl._index = ra->start;
 | |
| 	do_page_cache_ra(&ractl, ra->size, ra->async_size);
 | |
| 	return fpin;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Asynchronous readahead happens when we find the page and PG_readahead,
 | |
|  * so we want to possibly extend the readahead further.  We return the file that
 | |
|  * was pinned if we have to drop the mmap_lock in order to do IO.
 | |
|  */
 | |
| static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
 | |
| 					    struct page *page)
 | |
| {
 | |
| 	struct file *file = vmf->vma->vm_file;
 | |
| 	struct file_ra_state *ra = &file->f_ra;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct file *fpin = NULL;
 | |
| 	unsigned int mmap_miss;
 | |
| 	pgoff_t offset = vmf->pgoff;
 | |
| 
 | |
| 	/* If we don't want any read-ahead, don't bother */
 | |
| 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
 | |
| 		return fpin;
 | |
| 	mmap_miss = READ_ONCE(ra->mmap_miss);
 | |
| 	if (mmap_miss)
 | |
| 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
 | |
| 	if (PageReadahead(page)) {
 | |
| 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
 | |
| 		page_cache_async_readahead(mapping, ra, file,
 | |
| 					   page, offset, ra->ra_pages);
 | |
| 	}
 | |
| 	return fpin;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * filemap_fault - read in file data for page fault handling
 | |
|  * @vmf:	struct vm_fault containing details of the fault
 | |
|  *
 | |
|  * filemap_fault() is invoked via the vma operations vector for a
 | |
|  * mapped memory region to read in file data during a page fault.
 | |
|  *
 | |
|  * The goto's are kind of ugly, but this streamlines the normal case of having
 | |
|  * it in the page cache, and handles the special cases reasonably without
 | |
|  * having a lot of duplicated code.
 | |
|  *
 | |
|  * vma->vm_mm->mmap_lock must be held on entry.
 | |
|  *
 | |
|  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
 | |
|  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
 | |
|  *
 | |
|  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
 | |
|  * has not been released.
 | |
|  *
 | |
|  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
 | |
|  *
 | |
|  * Return: bitwise-OR of %VM_FAULT_ codes.
 | |
|  */
 | |
| vm_fault_t filemap_fault(struct vm_fault *vmf)
 | |
| {
 | |
| 	int error;
 | |
| 	struct file *file = vmf->vma->vm_file;
 | |
| 	struct file *fpin = NULL;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct file_ra_state *ra = &file->f_ra;
 | |
| 	struct inode *inode = mapping->host;
 | |
| 	pgoff_t offset = vmf->pgoff;
 | |
| 	pgoff_t max_off;
 | |
| 	struct page *page;
 | |
| 	vm_fault_t ret = 0;
 | |
| 
 | |
| 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 | |
| 	if (unlikely(offset >= max_off))
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do we have something in the page cache already?
 | |
| 	 */
 | |
| 	page = find_get_page(mapping, offset);
 | |
| 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
 | |
| 		/*
 | |
| 		 * We found the page, so try async readahead before
 | |
| 		 * waiting for the lock.
 | |
| 		 */
 | |
| 		fpin = do_async_mmap_readahead(vmf, page);
 | |
| 	} else if (!page) {
 | |
| 		/* No page in the page cache at all */
 | |
| 		count_vm_event(PGMAJFAULT);
 | |
| 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
 | |
| 		ret = VM_FAULT_MAJOR;
 | |
| 		fpin = do_sync_mmap_readahead(vmf);
 | |
| retry_find:
 | |
| 		page = pagecache_get_page(mapping, offset,
 | |
| 					  FGP_CREAT|FGP_FOR_MMAP,
 | |
| 					  vmf->gfp_mask);
 | |
| 		if (!page) {
 | |
| 			if (fpin)
 | |
| 				goto out_retry;
 | |
| 			return VM_FAULT_OOM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
 | |
| 		goto out_retry;
 | |
| 
 | |
| 	/* Did it get truncated? */
 | |
| 	if (unlikely(compound_head(page)->mapping != mapping)) {
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 		goto retry_find;
 | |
| 	}
 | |
| 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
 | |
| 
 | |
| 	/*
 | |
| 	 * We have a locked page in the page cache, now we need to check
 | |
| 	 * that it's up-to-date. If not, it is going to be due to an error.
 | |
| 	 */
 | |
| 	if (unlikely(!PageUptodate(page)))
 | |
| 		goto page_not_uptodate;
 | |
| 
 | |
| 	/*
 | |
| 	 * We've made it this far and we had to drop our mmap_lock, now is the
 | |
| 	 * time to return to the upper layer and have it re-find the vma and
 | |
| 	 * redo the fault.
 | |
| 	 */
 | |
| 	if (fpin) {
 | |
| 		unlock_page(page);
 | |
| 		goto out_retry;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Found the page and have a reference on it.
 | |
| 	 * We must recheck i_size under page lock.
 | |
| 	 */
 | |
| 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 | |
| 	if (unlikely(offset >= max_off)) {
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 	}
 | |
| 
 | |
| 	vmf->page = page;
 | |
| 	return ret | VM_FAULT_LOCKED;
 | |
| 
 | |
| page_not_uptodate:
 | |
| 	/*
 | |
| 	 * Umm, take care of errors if the page isn't up-to-date.
 | |
| 	 * Try to re-read it _once_. We do this synchronously,
 | |
| 	 * because there really aren't any performance issues here
 | |
| 	 * and we need to check for errors.
 | |
| 	 */
 | |
| 	ClearPageError(page);
 | |
| 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
 | |
| 	error = mapping->a_ops->readpage(file, page);
 | |
| 	if (!error) {
 | |
| 		wait_on_page_locked(page);
 | |
| 		if (!PageUptodate(page))
 | |
| 			error = -EIO;
 | |
| 	}
 | |
| 	if (fpin)
 | |
| 		goto out_retry;
 | |
| 	put_page(page);
 | |
| 
 | |
| 	if (!error || error == AOP_TRUNCATED_PAGE)
 | |
| 		goto retry_find;
 | |
| 
 | |
| 	shrink_readahead_size_eio(ra);
 | |
| 	return VM_FAULT_SIGBUS;
 | |
| 
 | |
| out_retry:
 | |
| 	/*
 | |
| 	 * We dropped the mmap_lock, we need to return to the fault handler to
 | |
| 	 * re-find the vma and come back and find our hopefully still populated
 | |
| 	 * page.
 | |
| 	 */
 | |
| 	if (page)
 | |
| 		put_page(page);
 | |
| 	if (fpin)
 | |
| 		fput(fpin);
 | |
| 	return ret | VM_FAULT_RETRY;
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_fault);
 | |
| 
 | |
| static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
 | |
| {
 | |
| 	struct mm_struct *mm = vmf->vma->vm_mm;
 | |
| 
 | |
| 	/* Huge page is mapped? No need to proceed. */
 | |
| 	if (pmd_trans_huge(*vmf->pmd)) {
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
 | |
| 	    vm_fault_t ret = do_set_pmd(vmf, page);
 | |
| 	    if (!ret) {
 | |
| 		    /* The page is mapped successfully, reference consumed. */
 | |
| 		    unlock_page(page);
 | |
| 		    return true;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	if (pmd_none(*vmf->pmd)) {
 | |
| 		vmf->ptl = pmd_lock(mm, vmf->pmd);
 | |
| 		if (likely(pmd_none(*vmf->pmd))) {
 | |
| 			mm_inc_nr_ptes(mm);
 | |
| 			pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
 | |
| 			vmf->prealloc_pte = NULL;
 | |
| 		}
 | |
| 		spin_unlock(vmf->ptl);
 | |
| 	}
 | |
| 
 | |
| 	/* See comment in handle_pte_fault() */
 | |
| 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static struct page *next_uptodate_page(struct page *page,
 | |
| 				       struct address_space *mapping,
 | |
| 				       struct xa_state *xas, pgoff_t end_pgoff)
 | |
| {
 | |
| 	unsigned long max_idx;
 | |
| 
 | |
| 	do {
 | |
| 		if (!page)
 | |
| 			return NULL;
 | |
| 		if (xas_retry(xas, page))
 | |
| 			continue;
 | |
| 		if (xa_is_value(page))
 | |
| 			continue;
 | |
| 		if (PageLocked(page))
 | |
| 			continue;
 | |
| 		if (!page_cache_get_speculative(page))
 | |
| 			continue;
 | |
| 		/* Has the page moved or been split? */
 | |
| 		if (unlikely(page != xas_reload(xas)))
 | |
| 			goto skip;
 | |
| 		if (!PageUptodate(page) || PageReadahead(page))
 | |
| 			goto skip;
 | |
| 		if (PageHWPoison(page))
 | |
| 			goto skip;
 | |
| 		if (!trylock_page(page))
 | |
| 			goto skip;
 | |
| 		if (page->mapping != mapping)
 | |
| 			goto unlock;
 | |
| 		if (!PageUptodate(page))
 | |
| 			goto unlock;
 | |
| 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
 | |
| 		if (xas->xa_index >= max_idx)
 | |
| 			goto unlock;
 | |
| 		return page;
 | |
| unlock:
 | |
| 		unlock_page(page);
 | |
| skip:
 | |
| 		put_page(page);
 | |
| 	} while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline struct page *first_map_page(struct address_space *mapping,
 | |
| 					  struct xa_state *xas,
 | |
| 					  pgoff_t end_pgoff)
 | |
| {
 | |
| 	return next_uptodate_page(xas_find(xas, end_pgoff),
 | |
| 				  mapping, xas, end_pgoff);
 | |
| }
 | |
| 
 | |
| static inline struct page *next_map_page(struct address_space *mapping,
 | |
| 					 struct xa_state *xas,
 | |
| 					 pgoff_t end_pgoff)
 | |
| {
 | |
| 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
 | |
| 				  mapping, xas, end_pgoff);
 | |
| }
 | |
| 
 | |
| vm_fault_t filemap_map_pages(struct vm_fault *vmf,
 | |
| 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
 | |
| {
 | |
| 	struct vm_area_struct *vma = vmf->vma;
 | |
| 	struct file *file = vma->vm_file;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	pgoff_t last_pgoff = start_pgoff;
 | |
| 	unsigned long addr;
 | |
| 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
 | |
| 	struct page *head, *page;
 | |
| 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
 | |
| 	vm_fault_t ret = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	head = first_map_page(mapping, &xas, end_pgoff);
 | |
| 	if (!head)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (filemap_map_pmd(vmf, head)) {
 | |
| 		ret = VM_FAULT_NOPAGE;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 | |
| 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
 | |
| 	do {
 | |
| 		page = find_subpage(head, xas.xa_index);
 | |
| 		if (PageHWPoison(page))
 | |
| 			goto unlock;
 | |
| 
 | |
| 		if (mmap_miss > 0)
 | |
| 			mmap_miss--;
 | |
| 
 | |
| 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
 | |
| 		vmf->pte += xas.xa_index - last_pgoff;
 | |
| 		last_pgoff = xas.xa_index;
 | |
| 
 | |
| 		if (!pte_none(*vmf->pte))
 | |
| 			goto unlock;
 | |
| 
 | |
| 		/* We're about to handle the fault */
 | |
| 		if (vmf->address == addr)
 | |
| 			ret = VM_FAULT_NOPAGE;
 | |
| 
 | |
| 		do_set_pte(vmf, page, addr);
 | |
| 		/* no need to invalidate: a not-present page won't be cached */
 | |
| 		update_mmu_cache(vma, addr, vmf->pte);
 | |
| 		unlock_page(head);
 | |
| 		continue;
 | |
| unlock:
 | |
| 		unlock_page(head);
 | |
| 		put_page(head);
 | |
| 	} while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
 | |
| 	pte_unmap_unlock(vmf->pte, vmf->ptl);
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(filemap_map_pages);
 | |
| 
 | |
| vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
 | |
| {
 | |
| 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
 | |
| 	struct page *page = vmf->page;
 | |
| 	vm_fault_t ret = VM_FAULT_LOCKED;
 | |
| 
 | |
| 	sb_start_pagefault(mapping->host->i_sb);
 | |
| 	file_update_time(vmf->vma->vm_file);
 | |
| 	lock_page(page);
 | |
| 	if (page->mapping != mapping) {
 | |
| 		unlock_page(page);
 | |
| 		ret = VM_FAULT_NOPAGE;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * We mark the page dirty already here so that when freeze is in
 | |
| 	 * progress, we are guaranteed that writeback during freezing will
 | |
| 	 * see the dirty page and writeprotect it again.
 | |
| 	 */
 | |
| 	set_page_dirty(page);
 | |
| 	wait_for_stable_page(page);
 | |
| out:
 | |
| 	sb_end_pagefault(mapping->host->i_sb);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| const struct vm_operations_struct generic_file_vm_ops = {
 | |
| 	.fault		= filemap_fault,
 | |
| 	.map_pages	= filemap_map_pages,
 | |
| 	.page_mkwrite	= filemap_page_mkwrite,
 | |
| };
 | |
| 
 | |
| /* This is used for a general mmap of a disk file */
 | |
| 
 | |
| int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
 | |
| {
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 
 | |
| 	if (!mapping->a_ops->readpage)
 | |
| 		return -ENOEXEC;
 | |
| 	file_accessed(file);
 | |
| 	vma->vm_ops = &generic_file_vm_ops;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is for filesystems which do not implement ->writepage.
 | |
|  */
 | |
| int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
 | |
| {
 | |
| 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
 | |
| 		return -EINVAL;
 | |
| 	return generic_file_mmap(file, vma);
 | |
| }
 | |
| #else
 | |
| vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
 | |
| {
 | |
| 	return VM_FAULT_SIGBUS;
 | |
| }
 | |
| int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| EXPORT_SYMBOL(filemap_page_mkwrite);
 | |
| EXPORT_SYMBOL(generic_file_mmap);
 | |
| EXPORT_SYMBOL(generic_file_readonly_mmap);
 | |
| 
 | |
| static struct page *wait_on_page_read(struct page *page)
 | |
| {
 | |
| 	if (!IS_ERR(page)) {
 | |
| 		wait_on_page_locked(page);
 | |
| 		if (!PageUptodate(page)) {
 | |
| 			put_page(page);
 | |
| 			page = ERR_PTR(-EIO);
 | |
| 		}
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static struct page *do_read_cache_page(struct address_space *mapping,
 | |
| 				pgoff_t index,
 | |
| 				int (*filler)(void *, struct page *),
 | |
| 				void *data,
 | |
| 				gfp_t gfp)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int err;
 | |
| repeat:
 | |
| 	page = find_get_page(mapping, index);
 | |
| 	if (!page) {
 | |
| 		page = __page_cache_alloc(gfp);
 | |
| 		if (!page)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 		err = add_to_page_cache_lru(page, mapping, index, gfp);
 | |
| 		if (unlikely(err)) {
 | |
| 			put_page(page);
 | |
| 			if (err == -EEXIST)
 | |
| 				goto repeat;
 | |
| 			/* Presumably ENOMEM for xarray node */
 | |
| 			return ERR_PTR(err);
 | |
| 		}
 | |
| 
 | |
| filler:
 | |
| 		if (filler)
 | |
| 			err = filler(data, page);
 | |
| 		else
 | |
| 			err = mapping->a_ops->readpage(data, page);
 | |
| 
 | |
| 		if (err < 0) {
 | |
| 			put_page(page);
 | |
| 			return ERR_PTR(err);
 | |
| 		}
 | |
| 
 | |
| 		page = wait_on_page_read(page);
 | |
| 		if (IS_ERR(page))
 | |
| 			return page;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (PageUptodate(page))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Page is not up to date and may be locked due to one of the following
 | |
| 	 * case a: Page is being filled and the page lock is held
 | |
| 	 * case b: Read/write error clearing the page uptodate status
 | |
| 	 * case c: Truncation in progress (page locked)
 | |
| 	 * case d: Reclaim in progress
 | |
| 	 *
 | |
| 	 * Case a, the page will be up to date when the page is unlocked.
 | |
| 	 *    There is no need to serialise on the page lock here as the page
 | |
| 	 *    is pinned so the lock gives no additional protection. Even if the
 | |
| 	 *    page is truncated, the data is still valid if PageUptodate as
 | |
| 	 *    it's a race vs truncate race.
 | |
| 	 * Case b, the page will not be up to date
 | |
| 	 * Case c, the page may be truncated but in itself, the data may still
 | |
| 	 *    be valid after IO completes as it's a read vs truncate race. The
 | |
| 	 *    operation must restart if the page is not uptodate on unlock but
 | |
| 	 *    otherwise serialising on page lock to stabilise the mapping gives
 | |
| 	 *    no additional guarantees to the caller as the page lock is
 | |
| 	 *    released before return.
 | |
| 	 * Case d, similar to truncation. If reclaim holds the page lock, it
 | |
| 	 *    will be a race with remove_mapping that determines if the mapping
 | |
| 	 *    is valid on unlock but otherwise the data is valid and there is
 | |
| 	 *    no need to serialise with page lock.
 | |
| 	 *
 | |
| 	 * As the page lock gives no additional guarantee, we optimistically
 | |
| 	 * wait on the page to be unlocked and check if it's up to date and
 | |
| 	 * use the page if it is. Otherwise, the page lock is required to
 | |
| 	 * distinguish between the different cases. The motivation is that we
 | |
| 	 * avoid spurious serialisations and wakeups when multiple processes
 | |
| 	 * wait on the same page for IO to complete.
 | |
| 	 */
 | |
| 	wait_on_page_locked(page);
 | |
| 	if (PageUptodate(page))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Distinguish between all the cases under the safety of the lock */
 | |
| 	lock_page(page);
 | |
| 
 | |
| 	/* Case c or d, restart the operation */
 | |
| 	if (!page->mapping) {
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 
 | |
| 	/* Someone else locked and filled the page in a very small window */
 | |
| 	if (PageUptodate(page)) {
 | |
| 		unlock_page(page);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * A previous I/O error may have been due to temporary
 | |
| 	 * failures.
 | |
| 	 * Clear page error before actual read, PG_error will be
 | |
| 	 * set again if read page fails.
 | |
| 	 */
 | |
| 	ClearPageError(page);
 | |
| 	goto filler;
 | |
| 
 | |
| out:
 | |
| 	mark_page_accessed(page);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * read_cache_page - read into page cache, fill it if needed
 | |
|  * @mapping:	the page's address_space
 | |
|  * @index:	the page index
 | |
|  * @filler:	function to perform the read
 | |
|  * @data:	first arg to filler(data, page) function, often left as NULL
 | |
|  *
 | |
|  * Read into the page cache. If a page already exists, and PageUptodate() is
 | |
|  * not set, try to fill the page and wait for it to become unlocked.
 | |
|  *
 | |
|  * If the page does not get brought uptodate, return -EIO.
 | |
|  *
 | |
|  * Return: up to date page on success, ERR_PTR() on failure.
 | |
|  */
 | |
| struct page *read_cache_page(struct address_space *mapping,
 | |
| 				pgoff_t index,
 | |
| 				int (*filler)(void *, struct page *),
 | |
| 				void *data)
 | |
| {
 | |
| 	return do_read_cache_page(mapping, index, filler, data,
 | |
| 			mapping_gfp_mask(mapping));
 | |
| }
 | |
| EXPORT_SYMBOL(read_cache_page);
 | |
| 
 | |
| /**
 | |
|  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
 | |
|  * @mapping:	the page's address_space
 | |
|  * @index:	the page index
 | |
|  * @gfp:	the page allocator flags to use if allocating
 | |
|  *
 | |
|  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
 | |
|  * any new page allocations done using the specified allocation flags.
 | |
|  *
 | |
|  * If the page does not get brought uptodate, return -EIO.
 | |
|  *
 | |
|  * Return: up to date page on success, ERR_PTR() on failure.
 | |
|  */
 | |
| struct page *read_cache_page_gfp(struct address_space *mapping,
 | |
| 				pgoff_t index,
 | |
| 				gfp_t gfp)
 | |
| {
 | |
| 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
 | |
| }
 | |
| EXPORT_SYMBOL(read_cache_page_gfp);
 | |
| 
 | |
| int pagecache_write_begin(struct file *file, struct address_space *mapping,
 | |
| 				loff_t pos, unsigned len, unsigned flags,
 | |
| 				struct page **pagep, void **fsdata)
 | |
| {
 | |
| 	const struct address_space_operations *aops = mapping->a_ops;
 | |
| 
 | |
| 	return aops->write_begin(file, mapping, pos, len, flags,
 | |
| 							pagep, fsdata);
 | |
| }
 | |
| EXPORT_SYMBOL(pagecache_write_begin);
 | |
| 
 | |
| int pagecache_write_end(struct file *file, struct address_space *mapping,
 | |
| 				loff_t pos, unsigned len, unsigned copied,
 | |
| 				struct page *page, void *fsdata)
 | |
| {
 | |
| 	const struct address_space_operations *aops = mapping->a_ops;
 | |
| 
 | |
| 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
 | |
| }
 | |
| EXPORT_SYMBOL(pagecache_write_end);
 | |
| 
 | |
| /*
 | |
|  * Warn about a page cache invalidation failure during a direct I/O write.
 | |
|  */
 | |
| void dio_warn_stale_pagecache(struct file *filp)
 | |
| {
 | |
| 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
 | |
| 	char pathname[128];
 | |
| 	char *path;
 | |
| 
 | |
| 	errseq_set(&filp->f_mapping->wb_err, -EIO);
 | |
| 	if (__ratelimit(&_rs)) {
 | |
| 		path = file_path(filp, pathname, sizeof(pathname));
 | |
| 		if (IS_ERR(path))
 | |
| 			path = "(unknown)";
 | |
| 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
 | |
| 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
 | |
| 			current->comm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| ssize_t
 | |
| generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
 | |
| {
 | |
| 	struct file	*file = iocb->ki_filp;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	struct inode	*inode = mapping->host;
 | |
| 	loff_t		pos = iocb->ki_pos;
 | |
| 	ssize_t		written;
 | |
| 	size_t		write_len;
 | |
| 	pgoff_t		end;
 | |
| 
 | |
| 	write_len = iov_iter_count(from);
 | |
| 	end = (pos + write_len - 1) >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (iocb->ki_flags & IOCB_NOWAIT) {
 | |
| 		/* If there are pages to writeback, return */
 | |
| 		if (filemap_range_has_page(file->f_mapping, pos,
 | |
| 					   pos + write_len - 1))
 | |
| 			return -EAGAIN;
 | |
| 	} else {
 | |
| 		written = filemap_write_and_wait_range(mapping, pos,
 | |
| 							pos + write_len - 1);
 | |
| 		if (written)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * After a write we want buffered reads to be sure to go to disk to get
 | |
| 	 * the new data.  We invalidate clean cached page from the region we're
 | |
| 	 * about to write.  We do this *before* the write so that we can return
 | |
| 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
 | |
| 	 */
 | |
| 	written = invalidate_inode_pages2_range(mapping,
 | |
| 					pos >> PAGE_SHIFT, end);
 | |
| 	/*
 | |
| 	 * If a page can not be invalidated, return 0 to fall back
 | |
| 	 * to buffered write.
 | |
| 	 */
 | |
| 	if (written) {
 | |
| 		if (written == -EBUSY)
 | |
| 			return 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	written = mapping->a_ops->direct_IO(iocb, from);
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally, try again to invalidate clean pages which might have been
 | |
| 	 * cached by non-direct readahead, or faulted in by get_user_pages()
 | |
| 	 * if the source of the write was an mmap'ed region of the file
 | |
| 	 * we're writing.  Either one is a pretty crazy thing to do,
 | |
| 	 * so we don't support it 100%.  If this invalidation
 | |
| 	 * fails, tough, the write still worked...
 | |
| 	 *
 | |
| 	 * Most of the time we do not need this since dio_complete() will do
 | |
| 	 * the invalidation for us. However there are some file systems that
 | |
| 	 * do not end up with dio_complete() being called, so let's not break
 | |
| 	 * them by removing it completely.
 | |
| 	 *
 | |
| 	 * Noticeable example is a blkdev_direct_IO().
 | |
| 	 *
 | |
| 	 * Skip invalidation for async writes or if mapping has no pages.
 | |
| 	 */
 | |
| 	if (written > 0 && mapping->nrpages &&
 | |
| 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
 | |
| 		dio_warn_stale_pagecache(file);
 | |
| 
 | |
| 	if (written > 0) {
 | |
| 		pos += written;
 | |
| 		write_len -= written;
 | |
| 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
 | |
| 			i_size_write(inode, pos);
 | |
| 			mark_inode_dirty(inode);
 | |
| 		}
 | |
| 		iocb->ki_pos = pos;
 | |
| 	}
 | |
| 	if (written != -EIOCBQUEUED)
 | |
| 		iov_iter_revert(from, write_len - iov_iter_count(from));
 | |
| out:
 | |
| 	return written;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_file_direct_write);
 | |
| 
 | |
| /*
 | |
|  * Find or create a page at the given pagecache position. Return the locked
 | |
|  * page. This function is specifically for buffered writes.
 | |
|  */
 | |
| struct page *grab_cache_page_write_begin(struct address_space *mapping,
 | |
| 					pgoff_t index, unsigned flags)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
 | |
| 
 | |
| 	if (flags & AOP_FLAG_NOFS)
 | |
| 		fgp_flags |= FGP_NOFS;
 | |
| 
 | |
| 	page = pagecache_get_page(mapping, index, fgp_flags,
 | |
| 			mapping_gfp_mask(mapping));
 | |
| 	if (page)
 | |
| 		wait_for_stable_page(page);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL(grab_cache_page_write_begin);
 | |
| 
 | |
| ssize_t generic_perform_write(struct file *file,
 | |
| 				struct iov_iter *i, loff_t pos)
 | |
| {
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 	const struct address_space_operations *a_ops = mapping->a_ops;
 | |
| 	long status = 0;
 | |
| 	ssize_t written = 0;
 | |
| 	unsigned int flags = 0;
 | |
| 
 | |
| 	do {
 | |
| 		struct page *page;
 | |
| 		unsigned long offset;	/* Offset into pagecache page */
 | |
| 		unsigned long bytes;	/* Bytes to write to page */
 | |
| 		size_t copied;		/* Bytes copied from user */
 | |
| 		void *fsdata;
 | |
| 
 | |
| 		offset = (pos & (PAGE_SIZE - 1));
 | |
| 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
 | |
| 						iov_iter_count(i));
 | |
| 
 | |
| again:
 | |
| 		/*
 | |
| 		 * Bring in the user page that we will copy from _first_.
 | |
| 		 * Otherwise there's a nasty deadlock on copying from the
 | |
| 		 * same page as we're writing to, without it being marked
 | |
| 		 * up-to-date.
 | |
| 		 *
 | |
| 		 * Not only is this an optimisation, but it is also required
 | |
| 		 * to check that the address is actually valid, when atomic
 | |
| 		 * usercopies are used, below.
 | |
| 		 */
 | |
| 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
 | |
| 			status = -EFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (fatal_signal_pending(current)) {
 | |
| 			status = -EINTR;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
 | |
| 						&page, &fsdata);
 | |
| 		if (unlikely(status < 0))
 | |
| 			break;
 | |
| 
 | |
| 		if (mapping_writably_mapped(mapping))
 | |
| 			flush_dcache_page(page);
 | |
| 
 | |
| 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
 | |
| 		flush_dcache_page(page);
 | |
| 
 | |
| 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
 | |
| 						page, fsdata);
 | |
| 		if (unlikely(status < 0))
 | |
| 			break;
 | |
| 		copied = status;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		iov_iter_advance(i, copied);
 | |
| 		if (unlikely(copied == 0)) {
 | |
| 			/*
 | |
| 			 * If we were unable to copy any data at all, we must
 | |
| 			 * fall back to a single segment length write.
 | |
| 			 *
 | |
| 			 * If we didn't fallback here, we could livelock
 | |
| 			 * because not all segments in the iov can be copied at
 | |
| 			 * once without a pagefault.
 | |
| 			 */
 | |
| 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
 | |
| 						iov_iter_single_seg_count(i));
 | |
| 			goto again;
 | |
| 		}
 | |
| 		pos += copied;
 | |
| 		written += copied;
 | |
| 
 | |
| 		balance_dirty_pages_ratelimited(mapping);
 | |
| 	} while (iov_iter_count(i));
 | |
| 
 | |
| 	return written ? written : status;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_perform_write);
 | |
| 
 | |
| /**
 | |
|  * __generic_file_write_iter - write data to a file
 | |
|  * @iocb:	IO state structure (file, offset, etc.)
 | |
|  * @from:	iov_iter with data to write
 | |
|  *
 | |
|  * This function does all the work needed for actually writing data to a
 | |
|  * file. It does all basic checks, removes SUID from the file, updates
 | |
|  * modification times and calls proper subroutines depending on whether we
 | |
|  * do direct IO or a standard buffered write.
 | |
|  *
 | |
|  * It expects i_mutex to be grabbed unless we work on a block device or similar
 | |
|  * object which does not need locking at all.
 | |
|  *
 | |
|  * This function does *not* take care of syncing data in case of O_SYNC write.
 | |
|  * A caller has to handle it. This is mainly due to the fact that we want to
 | |
|  * avoid syncing under i_mutex.
 | |
|  *
 | |
|  * Return:
 | |
|  * * number of bytes written, even for truncated writes
 | |
|  * * negative error code if no data has been written at all
 | |
|  */
 | |
| ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct address_space * mapping = file->f_mapping;
 | |
| 	struct inode 	*inode = mapping->host;
 | |
| 	ssize_t		written = 0;
 | |
| 	ssize_t		err;
 | |
| 	ssize_t		status;
 | |
| 
 | |
| 	/* We can write back this queue in page reclaim */
 | |
| 	current->backing_dev_info = inode_to_bdi(inode);
 | |
| 	err = file_remove_privs(file);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = file_update_time(file);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (iocb->ki_flags & IOCB_DIRECT) {
 | |
| 		loff_t pos, endbyte;
 | |
| 
 | |
| 		written = generic_file_direct_write(iocb, from);
 | |
| 		/*
 | |
| 		 * If the write stopped short of completing, fall back to
 | |
| 		 * buffered writes.  Some filesystems do this for writes to
 | |
| 		 * holes, for example.  For DAX files, a buffered write will
 | |
| 		 * not succeed (even if it did, DAX does not handle dirty
 | |
| 		 * page-cache pages correctly).
 | |
| 		 */
 | |
| 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
 | |
| 			goto out;
 | |
| 
 | |
| 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
 | |
| 		/*
 | |
| 		 * If generic_perform_write() returned a synchronous error
 | |
| 		 * then we want to return the number of bytes which were
 | |
| 		 * direct-written, or the error code if that was zero.  Note
 | |
| 		 * that this differs from normal direct-io semantics, which
 | |
| 		 * will return -EFOO even if some bytes were written.
 | |
| 		 */
 | |
| 		if (unlikely(status < 0)) {
 | |
| 			err = status;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * We need to ensure that the page cache pages are written to
 | |
| 		 * disk and invalidated to preserve the expected O_DIRECT
 | |
| 		 * semantics.
 | |
| 		 */
 | |
| 		endbyte = pos + status - 1;
 | |
| 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
 | |
| 		if (err == 0) {
 | |
| 			iocb->ki_pos = endbyte + 1;
 | |
| 			written += status;
 | |
| 			invalidate_mapping_pages(mapping,
 | |
| 						 pos >> PAGE_SHIFT,
 | |
| 						 endbyte >> PAGE_SHIFT);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * We don't know how much we wrote, so just return
 | |
| 			 * the number of bytes which were direct-written
 | |
| 			 */
 | |
| 		}
 | |
| 	} else {
 | |
| 		written = generic_perform_write(file, from, iocb->ki_pos);
 | |
| 		if (likely(written > 0))
 | |
| 			iocb->ki_pos += written;
 | |
| 	}
 | |
| out:
 | |
| 	current->backing_dev_info = NULL;
 | |
| 	return written ? written : err;
 | |
| }
 | |
| EXPORT_SYMBOL(__generic_file_write_iter);
 | |
| 
 | |
| /**
 | |
|  * generic_file_write_iter - write data to a file
 | |
|  * @iocb:	IO state structure
 | |
|  * @from:	iov_iter with data to write
 | |
|  *
 | |
|  * This is a wrapper around __generic_file_write_iter() to be used by most
 | |
|  * filesystems. It takes care of syncing the file in case of O_SYNC file
 | |
|  * and acquires i_mutex as needed.
 | |
|  * Return:
 | |
|  * * negative error code if no data has been written at all of
 | |
|  *   vfs_fsync_range() failed for a synchronous write
 | |
|  * * number of bytes written, even for truncated writes
 | |
|  */
 | |
| ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 | |
| {
 | |
| 	struct file *file = iocb->ki_filp;
 | |
| 	struct inode *inode = file->f_mapping->host;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	inode_lock(inode);
 | |
| 	ret = generic_write_checks(iocb, from);
 | |
| 	if (ret > 0)
 | |
| 		ret = __generic_file_write_iter(iocb, from);
 | |
| 	inode_unlock(inode);
 | |
| 
 | |
| 	if (ret > 0)
 | |
| 		ret = generic_write_sync(iocb, ret);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(generic_file_write_iter);
 | |
| 
 | |
| /**
 | |
|  * try_to_release_page() - release old fs-specific metadata on a page
 | |
|  *
 | |
|  * @page: the page which the kernel is trying to free
 | |
|  * @gfp_mask: memory allocation flags (and I/O mode)
 | |
|  *
 | |
|  * The address_space is to try to release any data against the page
 | |
|  * (presumably at page->private).
 | |
|  *
 | |
|  * This may also be called if PG_fscache is set on a page, indicating that the
 | |
|  * page is known to the local caching routines.
 | |
|  *
 | |
|  * The @gfp_mask argument specifies whether I/O may be performed to release
 | |
|  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
 | |
|  *
 | |
|  * Return: %1 if the release was successful, otherwise return zero.
 | |
|  */
 | |
| int try_to_release_page(struct page *page, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct address_space * const mapping = page->mapping;
 | |
| 
 | |
| 	BUG_ON(!PageLocked(page));
 | |
| 	if (PageWriteback(page))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (mapping && mapping->a_ops->releasepage)
 | |
| 		return mapping->a_ops->releasepage(page, gfp_mask);
 | |
| 	return try_to_free_buffers(page);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(try_to_release_page);
 |