forked from mirrors/linux
		
	 cdf7545aef
			
		
	
	
		cdf7545aef
		
	
	
	
	
		
			
			Use SPDX-License-Identifier instead of a verbose license text. Also fix the block comment alignment. Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
		
			
				
	
	
		
			1067 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1067 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * RTC subsystem, interface functions
 | |
|  *
 | |
|  * Copyright (C) 2005 Tower Technologies
 | |
|  * Author: Alessandro Zummo <a.zummo@towertech.it>
 | |
|  *
 | |
|  * based on arch/arm/common/rtctime.c
 | |
|  */
 | |
| 
 | |
| #include <linux/rtc.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/log2.h>
 | |
| #include <linux/workqueue.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/rtc.h>
 | |
| 
 | |
| static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
 | |
| static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
 | |
| 
 | |
| static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
 | |
| {
 | |
| 	time64_t secs;
 | |
| 
 | |
| 	if (!rtc->offset_secs)
 | |
| 		return;
 | |
| 
 | |
| 	secs = rtc_tm_to_time64(tm);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since the reading time values from RTC device are always in the RTC
 | |
| 	 * original valid range, but we need to skip the overlapped region
 | |
| 	 * between expanded range and original range, which is no need to add
 | |
| 	 * the offset.
 | |
| 	 */
 | |
| 	if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
 | |
| 	    (rtc->start_secs < rtc->range_min &&
 | |
| 	     secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
 | |
| 		return;
 | |
| 
 | |
| 	rtc_time64_to_tm(secs + rtc->offset_secs, tm);
 | |
| }
 | |
| 
 | |
| static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
 | |
| {
 | |
| 	time64_t secs;
 | |
| 
 | |
| 	if (!rtc->offset_secs)
 | |
| 		return;
 | |
| 
 | |
| 	secs = rtc_tm_to_time64(tm);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the setting time values are in the valid range of RTC hardware
 | |
| 	 * device, then no need to subtract the offset when setting time to RTC
 | |
| 	 * device. Otherwise we need to subtract the offset to make the time
 | |
| 	 * values are valid for RTC hardware device.
 | |
| 	 */
 | |
| 	if (secs >= rtc->range_min && secs <= rtc->range_max)
 | |
| 		return;
 | |
| 
 | |
| 	rtc_time64_to_tm(secs - rtc->offset_secs, tm);
 | |
| }
 | |
| 
 | |
| static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
 | |
| {
 | |
| 	if (rtc->range_min != rtc->range_max) {
 | |
| 		time64_t time = rtc_tm_to_time64(tm);
 | |
| 		time64_t range_min = rtc->set_start_time ? rtc->start_secs :
 | |
| 			rtc->range_min;
 | |
| 		time64_t range_max = rtc->set_start_time ?
 | |
| 			(rtc->start_secs + rtc->range_max - rtc->range_min) :
 | |
| 			rtc->range_max;
 | |
| 
 | |
| 		if (time < range_min || time > range_max)
 | |
| 			return -ERANGE;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 | |
| {
 | |
| 	int err;
 | |
| 	if (!rtc->ops)
 | |
| 		err = -ENODEV;
 | |
| 	else if (!rtc->ops->read_time)
 | |
| 		err = -EINVAL;
 | |
| 	else {
 | |
| 		memset(tm, 0, sizeof(struct rtc_time));
 | |
| 		err = rtc->ops->read_time(rtc->dev.parent, tm);
 | |
| 		if (err < 0) {
 | |
| 			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
 | |
| 				err);
 | |
| 			return err;
 | |
| 		}
 | |
| 
 | |
| 		rtc_add_offset(rtc, tm);
 | |
| 
 | |
| 		err = rtc_valid_tm(tm);
 | |
| 		if (err < 0)
 | |
| 			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = mutex_lock_interruptible(&rtc->ops_lock);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = __rtc_read_time(rtc, tm);
 | |
| 	mutex_unlock(&rtc->ops_lock);
 | |
| 
 | |
| 	trace_rtc_read_time(rtc_tm_to_time64(tm), err);
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rtc_read_time);
 | |
| 
 | |
| int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = rtc_valid_tm(tm);
 | |
| 	if (err != 0)
 | |
| 		return err;
 | |
| 
 | |
| 	err = rtc_valid_range(rtc, tm);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	rtc_subtract_offset(rtc, tm);
 | |
| 
 | |
| 	err = mutex_lock_interruptible(&rtc->ops_lock);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (!rtc->ops)
 | |
| 		err = -ENODEV;
 | |
| 	else if (rtc->ops->set_time)
 | |
| 		err = rtc->ops->set_time(rtc->dev.parent, tm);
 | |
| 	else if (rtc->ops->set_mmss64) {
 | |
| 		time64_t secs64 = rtc_tm_to_time64(tm);
 | |
| 
 | |
| 		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
 | |
| 	} else if (rtc->ops->set_mmss) {
 | |
| 		time64_t secs64 = rtc_tm_to_time64(tm);
 | |
| 		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
 | |
| 	} else
 | |
| 		err = -EINVAL;
 | |
| 
 | |
| 	pm_stay_awake(rtc->dev.parent);
 | |
| 	mutex_unlock(&rtc->ops_lock);
 | |
| 	/* A timer might have just expired */
 | |
| 	schedule_work(&rtc->irqwork);
 | |
| 
 | |
| 	trace_rtc_set_time(rtc_tm_to_time64(tm), err);
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rtc_set_time);
 | |
| 
 | |
| static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = mutex_lock_interruptible(&rtc->ops_lock);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (rtc->ops == NULL)
 | |
| 		err = -ENODEV;
 | |
| 	else if (!rtc->ops->read_alarm)
 | |
| 		err = -EINVAL;
 | |
| 	else {
 | |
| 		alarm->enabled = 0;
 | |
| 		alarm->pending = 0;
 | |
| 		alarm->time.tm_sec = -1;
 | |
| 		alarm->time.tm_min = -1;
 | |
| 		alarm->time.tm_hour = -1;
 | |
| 		alarm->time.tm_mday = -1;
 | |
| 		alarm->time.tm_mon = -1;
 | |
| 		alarm->time.tm_year = -1;
 | |
| 		alarm->time.tm_wday = -1;
 | |
| 		alarm->time.tm_yday = -1;
 | |
| 		alarm->time.tm_isdst = -1;
 | |
| 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&rtc->ops_lock);
 | |
| 
 | |
| 	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 | |
| {
 | |
| 	int err;
 | |
| 	struct rtc_time before, now;
 | |
| 	int first_time = 1;
 | |
| 	time64_t t_now, t_alm;
 | |
| 	enum { none, day, month, year } missing = none;
 | |
| 	unsigned days;
 | |
| 
 | |
| 	/* The lower level RTC driver may return -1 in some fields,
 | |
| 	 * creating invalid alarm->time values, for reasons like:
 | |
| 	 *
 | |
| 	 *   - The hardware may not be capable of filling them in;
 | |
| 	 *     many alarms match only on time-of-day fields, not
 | |
| 	 *     day/month/year calendar data.
 | |
| 	 *
 | |
| 	 *   - Some hardware uses illegal values as "wildcard" match
 | |
| 	 *     values, which non-Linux firmware (like a BIOS) may try
 | |
| 	 *     to set up as e.g. "alarm 15 minutes after each hour".
 | |
| 	 *     Linux uses only oneshot alarms.
 | |
| 	 *
 | |
| 	 * When we see that here, we deal with it by using values from
 | |
| 	 * a current RTC timestamp for any missing (-1) values.  The
 | |
| 	 * RTC driver prevents "periodic alarm" modes.
 | |
| 	 *
 | |
| 	 * But this can be racey, because some fields of the RTC timestamp
 | |
| 	 * may have wrapped in the interval since we read the RTC alarm,
 | |
| 	 * which would lead to us inserting inconsistent values in place
 | |
| 	 * of the -1 fields.
 | |
| 	 *
 | |
| 	 * Reading the alarm and timestamp in the reverse sequence
 | |
| 	 * would have the same race condition, and not solve the issue.
 | |
| 	 *
 | |
| 	 * So, we must first read the RTC timestamp,
 | |
| 	 * then read the RTC alarm value,
 | |
| 	 * and then read a second RTC timestamp.
 | |
| 	 *
 | |
| 	 * If any fields of the second timestamp have changed
 | |
| 	 * when compared with the first timestamp, then we know
 | |
| 	 * our timestamp may be inconsistent with that used by
 | |
| 	 * the low-level rtc_read_alarm_internal() function.
 | |
| 	 *
 | |
| 	 * So, when the two timestamps disagree, we just loop and do
 | |
| 	 * the process again to get a fully consistent set of values.
 | |
| 	 *
 | |
| 	 * This could all instead be done in the lower level driver,
 | |
| 	 * but since more than one lower level RTC implementation needs it,
 | |
| 	 * then it's probably best best to do it here instead of there..
 | |
| 	 */
 | |
| 
 | |
| 	/* Get the "before" timestamp */
 | |
| 	err = rtc_read_time(rtc, &before);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 	do {
 | |
| 		if (!first_time)
 | |
| 			memcpy(&before, &now, sizeof(struct rtc_time));
 | |
| 		first_time = 0;
 | |
| 
 | |
| 		/* get the RTC alarm values, which may be incomplete */
 | |
| 		err = rtc_read_alarm_internal(rtc, alarm);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		/* full-function RTCs won't have such missing fields */
 | |
| 		if (rtc_valid_tm(&alarm->time) == 0) {
 | |
| 			rtc_add_offset(rtc, &alarm->time);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		/* get the "after" timestamp, to detect wrapped fields */
 | |
| 		err = rtc_read_time(rtc, &now);
 | |
| 		if (err < 0)
 | |
| 			return err;
 | |
| 
 | |
| 		/* note that tm_sec is a "don't care" value here: */
 | |
| 	} while (   before.tm_min   != now.tm_min
 | |
| 		 || before.tm_hour  != now.tm_hour
 | |
| 		 || before.tm_mon   != now.tm_mon
 | |
| 		 || before.tm_year  != now.tm_year);
 | |
| 
 | |
| 	/* Fill in the missing alarm fields using the timestamp; we
 | |
| 	 * know there's at least one since alarm->time is invalid.
 | |
| 	 */
 | |
| 	if (alarm->time.tm_sec == -1)
 | |
| 		alarm->time.tm_sec = now.tm_sec;
 | |
| 	if (alarm->time.tm_min == -1)
 | |
| 		alarm->time.tm_min = now.tm_min;
 | |
| 	if (alarm->time.tm_hour == -1)
 | |
| 		alarm->time.tm_hour = now.tm_hour;
 | |
| 
 | |
| 	/* For simplicity, only support date rollover for now */
 | |
| 	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
 | |
| 		alarm->time.tm_mday = now.tm_mday;
 | |
| 		missing = day;
 | |
| 	}
 | |
| 	if ((unsigned)alarm->time.tm_mon >= 12) {
 | |
| 		alarm->time.tm_mon = now.tm_mon;
 | |
| 		if (missing == none)
 | |
| 			missing = month;
 | |
| 	}
 | |
| 	if (alarm->time.tm_year == -1) {
 | |
| 		alarm->time.tm_year = now.tm_year;
 | |
| 		if (missing == none)
 | |
| 			missing = year;
 | |
| 	}
 | |
| 
 | |
| 	/* Can't proceed if alarm is still invalid after replacing
 | |
| 	 * missing fields.
 | |
| 	 */
 | |
| 	err = rtc_valid_tm(&alarm->time);
 | |
| 	if (err)
 | |
| 		goto done;
 | |
| 
 | |
| 	/* with luck, no rollover is needed */
 | |
| 	t_now = rtc_tm_to_time64(&now);
 | |
| 	t_alm = rtc_tm_to_time64(&alarm->time);
 | |
| 	if (t_now < t_alm)
 | |
| 		goto done;
 | |
| 
 | |
| 	switch (missing) {
 | |
| 
 | |
| 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
 | |
| 	 * that will trigger at 5am will do so at 5am Tuesday, which
 | |
| 	 * could also be in the next month or year.  This is a common
 | |
| 	 * case, especially for PCs.
 | |
| 	 */
 | |
| 	case day:
 | |
| 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
 | |
| 		t_alm += 24 * 60 * 60;
 | |
| 		rtc_time64_to_tm(t_alm, &alarm->time);
 | |
| 		break;
 | |
| 
 | |
| 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
 | |
| 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
 | |
| 	 * may end up in the month after that!  Many newer PCs support
 | |
| 	 * this type of alarm.
 | |
| 	 */
 | |
| 	case month:
 | |
| 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
 | |
| 		do {
 | |
| 			if (alarm->time.tm_mon < 11)
 | |
| 				alarm->time.tm_mon++;
 | |
| 			else {
 | |
| 				alarm->time.tm_mon = 0;
 | |
| 				alarm->time.tm_year++;
 | |
| 			}
 | |
| 			days = rtc_month_days(alarm->time.tm_mon,
 | |
| 					alarm->time.tm_year);
 | |
| 		} while (days < alarm->time.tm_mday);
 | |
| 		break;
 | |
| 
 | |
| 	/* Year rollover ... easy except for leap years! */
 | |
| 	case year:
 | |
| 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
 | |
| 		do {
 | |
| 			alarm->time.tm_year++;
 | |
| 		} while (!is_leap_year(alarm->time.tm_year + 1900)
 | |
| 			&& rtc_valid_tm(&alarm->time) != 0);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
 | |
| 	}
 | |
| 
 | |
| 	err = rtc_valid_tm(&alarm->time);
 | |
| 
 | |
| done:
 | |
| 	if (err)
 | |
| 		dev_warn(&rtc->dev, "invalid alarm value: %ptR\n", &alarm->time);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = mutex_lock_interruptible(&rtc->ops_lock);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	if (rtc->ops == NULL)
 | |
| 		err = -ENODEV;
 | |
| 	else if (!rtc->ops->read_alarm)
 | |
| 		err = -EINVAL;
 | |
| 	else {
 | |
| 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 | |
| 		alarm->enabled = rtc->aie_timer.enabled;
 | |
| 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
 | |
| 	}
 | |
| 	mutex_unlock(&rtc->ops_lock);
 | |
| 
 | |
| 	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rtc_read_alarm);
 | |
| 
 | |
| static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 | |
| {
 | |
| 	struct rtc_time tm;
 | |
| 	time64_t now, scheduled;
 | |
| 	int err;
 | |
| 
 | |
| 	err = rtc_valid_tm(&alarm->time);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	scheduled = rtc_tm_to_time64(&alarm->time);
 | |
| 
 | |
| 	/* Make sure we're not setting alarms in the past */
 | |
| 	err = __rtc_read_time(rtc, &tm);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	now = rtc_tm_to_time64(&tm);
 | |
| 	if (scheduled <= now)
 | |
| 		return -ETIME;
 | |
| 	/*
 | |
| 	 * XXX - We just checked to make sure the alarm time is not
 | |
| 	 * in the past, but there is still a race window where if
 | |
| 	 * the is alarm set for the next second and the second ticks
 | |
| 	 * over right here, before we set the alarm.
 | |
| 	 */
 | |
| 
 | |
| 	rtc_subtract_offset(rtc, &alarm->time);
 | |
| 
 | |
| 	if (!rtc->ops)
 | |
| 		err = -ENODEV;
 | |
| 	else if (!rtc->ops->set_alarm)
 | |
| 		err = -EINVAL;
 | |
| 	else
 | |
| 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 | |
| 
 | |
| 	trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (!rtc->ops)
 | |
| 		return -ENODEV;
 | |
| 	else if (!rtc->ops->set_alarm)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = rtc_valid_tm(&alarm->time);
 | |
| 	if (err != 0)
 | |
| 		return err;
 | |
| 
 | |
| 	err = rtc_valid_range(rtc, &alarm->time);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = mutex_lock_interruptible(&rtc->ops_lock);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	if (rtc->aie_timer.enabled)
 | |
| 		rtc_timer_remove(rtc, &rtc->aie_timer);
 | |
| 
 | |
| 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 | |
| 	rtc->aie_timer.period = 0;
 | |
| 	if (alarm->enabled)
 | |
| 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 | |
| 
 | |
| 	mutex_unlock(&rtc->ops_lock);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rtc_set_alarm);
 | |
| 
 | |
| /* Called once per device from rtc_device_register */
 | |
| int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 | |
| {
 | |
| 	int err;
 | |
| 	struct rtc_time now;
 | |
| 
 | |
| 	err = rtc_valid_tm(&alarm->time);
 | |
| 	if (err != 0)
 | |
| 		return err;
 | |
| 
 | |
| 	err = rtc_read_time(rtc, &now);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = mutex_lock_interruptible(&rtc->ops_lock);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 | |
| 	rtc->aie_timer.period = 0;
 | |
| 
 | |
| 	/* Alarm has to be enabled & in the future for us to enqueue it */
 | |
| 	if (alarm->enabled && (rtc_tm_to_ktime(now) <
 | |
| 			 rtc->aie_timer.node.expires)) {
 | |
| 
 | |
| 		rtc->aie_timer.enabled = 1;
 | |
| 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 | |
| 		trace_rtc_timer_enqueue(&rtc->aie_timer);
 | |
| 	}
 | |
| 	mutex_unlock(&rtc->ops_lock);
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
 | |
| 
 | |
| int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 | |
| {
 | |
| 	int err = mutex_lock_interruptible(&rtc->ops_lock);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (rtc->aie_timer.enabled != enabled) {
 | |
| 		if (enabled)
 | |
| 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 | |
| 		else
 | |
| 			rtc_timer_remove(rtc, &rtc->aie_timer);
 | |
| 	}
 | |
| 
 | |
| 	if (err)
 | |
| 		/* nothing */;
 | |
| 	else if (!rtc->ops)
 | |
| 		err = -ENODEV;
 | |
| 	else if (!rtc->ops->alarm_irq_enable)
 | |
| 		err = -EINVAL;
 | |
| 	else
 | |
| 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
 | |
| 
 | |
| 	mutex_unlock(&rtc->ops_lock);
 | |
| 
 | |
| 	trace_rtc_alarm_irq_enable(enabled, err);
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
 | |
| 
 | |
| int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 | |
| {
 | |
| 	int err = mutex_lock_interruptible(&rtc->ops_lock);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 | |
| 	if (enabled == 0 && rtc->uie_irq_active) {
 | |
| 		mutex_unlock(&rtc->ops_lock);
 | |
| 		return rtc_dev_update_irq_enable_emul(rtc, 0);
 | |
| 	}
 | |
| #endif
 | |
| 	/* make sure we're changing state */
 | |
| 	if (rtc->uie_rtctimer.enabled == enabled)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (rtc->uie_unsupported) {
 | |
| 		err = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (enabled) {
 | |
| 		struct rtc_time tm;
 | |
| 		ktime_t now, onesec;
 | |
| 
 | |
| 		__rtc_read_time(rtc, &tm);
 | |
| 		onesec = ktime_set(1, 0);
 | |
| 		now = rtc_tm_to_ktime(tm);
 | |
| 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
 | |
| 		rtc->uie_rtctimer.period = ktime_set(1, 0);
 | |
| 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
 | |
| 	} else
 | |
| 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&rtc->ops_lock);
 | |
| #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 | |
| 	/*
 | |
| 	 * Enable emulation if the driver did not provide
 | |
| 	 * the update_irq_enable function pointer or if returned
 | |
| 	 * -EINVAL to signal that it has been configured without
 | |
| 	 * interrupts or that are not available at the moment.
 | |
| 	 */
 | |
| 	if (err == -EINVAL)
 | |
| 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
 | |
| #endif
 | |
| 	return err;
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 | |
|  * @rtc: pointer to the rtc device
 | |
|  *
 | |
|  * This function is called when an AIE, UIE or PIE mode interrupt
 | |
|  * has occurred (or been emulated).
 | |
|  *
 | |
|  */
 | |
| void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* mark one irq of the appropriate mode */
 | |
| 	spin_lock_irqsave(&rtc->irq_lock, flags);
 | |
| 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
 | |
| 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
 | |
| 
 | |
| 	wake_up_interruptible(&rtc->irq_queue);
 | |
| 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * rtc_aie_update_irq - AIE mode rtctimer hook
 | |
|  * @rtc: pointer to the rtc_device
 | |
|  *
 | |
|  * This functions is called when the aie_timer expires.
 | |
|  */
 | |
| void rtc_aie_update_irq(struct rtc_device *rtc)
 | |
| {
 | |
| 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * rtc_uie_update_irq - UIE mode rtctimer hook
 | |
|  * @rtc: pointer to the rtc_device
 | |
|  *
 | |
|  * This functions is called when the uie_timer expires.
 | |
|  */
 | |
| void rtc_uie_update_irq(struct rtc_device *rtc)
 | |
| {
 | |
| 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * rtc_pie_update_irq - PIE mode hrtimer hook
 | |
|  * @timer: pointer to the pie mode hrtimer
 | |
|  *
 | |
|  * This function is used to emulate PIE mode interrupts
 | |
|  * using an hrtimer. This function is called when the periodic
 | |
|  * hrtimer expires.
 | |
|  */
 | |
| enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
 | |
| {
 | |
| 	struct rtc_device *rtc;
 | |
| 	ktime_t period;
 | |
| 	int count;
 | |
| 	rtc = container_of(timer, struct rtc_device, pie_timer);
 | |
| 
 | |
| 	period = NSEC_PER_SEC / rtc->irq_freq;
 | |
| 	count = hrtimer_forward_now(timer, period);
 | |
| 
 | |
| 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
 | |
| 
 | |
| 	return HRTIMER_RESTART;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rtc_update_irq - Triggered when a RTC interrupt occurs.
 | |
|  * @rtc: the rtc device
 | |
|  * @num: how many irqs are being reported (usually one)
 | |
|  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 | |
|  * Context: any
 | |
|  */
 | |
| void rtc_update_irq(struct rtc_device *rtc,
 | |
| 		unsigned long num, unsigned long events)
 | |
| {
 | |
| 	if (IS_ERR_OR_NULL(rtc))
 | |
| 		return;
 | |
| 
 | |
| 	pm_stay_awake(rtc->dev.parent);
 | |
| 	schedule_work(&rtc->irqwork);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rtc_update_irq);
 | |
| 
 | |
| static int __rtc_match(struct device *dev, const void *data)
 | |
| {
 | |
| 	const char *name = data;
 | |
| 
 | |
| 	if (strcmp(dev_name(dev), name) == 0)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct rtc_device *rtc_class_open(const char *name)
 | |
| {
 | |
| 	struct device *dev;
 | |
| 	struct rtc_device *rtc = NULL;
 | |
| 
 | |
| 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
 | |
| 	if (dev)
 | |
| 		rtc = to_rtc_device(dev);
 | |
| 
 | |
| 	if (rtc) {
 | |
| 		if (!try_module_get(rtc->owner)) {
 | |
| 			put_device(dev);
 | |
| 			rtc = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return rtc;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rtc_class_open);
 | |
| 
 | |
| void rtc_class_close(struct rtc_device *rtc)
 | |
| {
 | |
| 	module_put(rtc->owner);
 | |
| 	put_device(&rtc->dev);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(rtc_class_close);
 | |
| 
 | |
| static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
 | |
| {
 | |
| 	/*
 | |
| 	 * We always cancel the timer here first, because otherwise
 | |
| 	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 | |
| 	 * when we manage to start the timer before the callback
 | |
| 	 * returns HRTIMER_RESTART.
 | |
| 	 *
 | |
| 	 * We cannot use hrtimer_cancel() here as a running callback
 | |
| 	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
 | |
| 	 * would spin forever.
 | |
| 	 */
 | |
| 	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (enabled) {
 | |
| 		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
 | |
| 
 | |
| 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 | |
|  * @rtc: the rtc device
 | |
|  * @enabled: true to enable periodic IRQs
 | |
|  * Context: any
 | |
|  *
 | |
|  * Note that rtc_irq_set_freq() should previously have been used to
 | |
|  * specify the desired frequency of periodic IRQ.
 | |
|  */
 | |
| int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	while (rtc_update_hrtimer(rtc, enabled) < 0)
 | |
| 		cpu_relax();
 | |
| 
 | |
| 	rtc->pie_enabled = enabled;
 | |
| 
 | |
| 	trace_rtc_irq_set_state(enabled, err);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 | |
|  * @rtc: the rtc device
 | |
|  * @freq: positive frequency
 | |
|  * Context: any
 | |
|  *
 | |
|  * Note that rtc_irq_set_state() is used to enable or disable the
 | |
|  * periodic IRQs.
 | |
|  */
 | |
| int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (freq <= 0 || freq > RTC_MAX_FREQ)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	rtc->irq_freq = freq;
 | |
| 	while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
 | |
| 		cpu_relax();
 | |
| 
 | |
| 	trace_rtc_irq_set_freq(freq, err);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 | |
|  * @rtc rtc device
 | |
|  * @timer timer being added.
 | |
|  *
 | |
|  * Enqueues a timer onto the rtc devices timerqueue and sets
 | |
|  * the next alarm event appropriately.
 | |
|  *
 | |
|  * Sets the enabled bit on the added timer.
 | |
|  *
 | |
|  * Must hold ops_lock for proper serialization of timerqueue
 | |
|  */
 | |
| static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
 | |
| {
 | |
| 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 | |
| 	struct rtc_time tm;
 | |
| 	ktime_t now;
 | |
| 
 | |
| 	timer->enabled = 1;
 | |
| 	__rtc_read_time(rtc, &tm);
 | |
| 	now = rtc_tm_to_ktime(tm);
 | |
| 
 | |
| 	/* Skip over expired timers */
 | |
| 	while (next) {
 | |
| 		if (next->expires >= now)
 | |
| 			break;
 | |
| 		next = timerqueue_iterate_next(next);
 | |
| 	}
 | |
| 
 | |
| 	timerqueue_add(&rtc->timerqueue, &timer->node);
 | |
| 	trace_rtc_timer_enqueue(timer);
 | |
| 	if (!next || ktime_before(timer->node.expires, next->expires)) {
 | |
| 		struct rtc_wkalrm alarm;
 | |
| 		int err;
 | |
| 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
 | |
| 		alarm.enabled = 1;
 | |
| 		err = __rtc_set_alarm(rtc, &alarm);
 | |
| 		if (err == -ETIME) {
 | |
| 			pm_stay_awake(rtc->dev.parent);
 | |
| 			schedule_work(&rtc->irqwork);
 | |
| 		} else if (err) {
 | |
| 			timerqueue_del(&rtc->timerqueue, &timer->node);
 | |
| 			trace_rtc_timer_dequeue(timer);
 | |
| 			timer->enabled = 0;
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void rtc_alarm_disable(struct rtc_device *rtc)
 | |
| {
 | |
| 	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
 | |
| 		return;
 | |
| 
 | |
| 	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 | |
| 	trace_rtc_alarm_irq_enable(0, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 | |
|  * @rtc rtc device
 | |
|  * @timer timer being removed.
 | |
|  *
 | |
|  * Removes a timer onto the rtc devices timerqueue and sets
 | |
|  * the next alarm event appropriately.
 | |
|  *
 | |
|  * Clears the enabled bit on the removed timer.
 | |
|  *
 | |
|  * Must hold ops_lock for proper serialization of timerqueue
 | |
|  */
 | |
| static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
 | |
| {
 | |
| 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 | |
| 	timerqueue_del(&rtc->timerqueue, &timer->node);
 | |
| 	trace_rtc_timer_dequeue(timer);
 | |
| 	timer->enabled = 0;
 | |
| 	if (next == &timer->node) {
 | |
| 		struct rtc_wkalrm alarm;
 | |
| 		int err;
 | |
| 		next = timerqueue_getnext(&rtc->timerqueue);
 | |
| 		if (!next) {
 | |
| 			rtc_alarm_disable(rtc);
 | |
| 			return;
 | |
| 		}
 | |
| 		alarm.time = rtc_ktime_to_tm(next->expires);
 | |
| 		alarm.enabled = 1;
 | |
| 		err = __rtc_set_alarm(rtc, &alarm);
 | |
| 		if (err == -ETIME) {
 | |
| 			pm_stay_awake(rtc->dev.parent);
 | |
| 			schedule_work(&rtc->irqwork);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rtc_timer_do_work - Expires rtc timers
 | |
|  * @rtc rtc device
 | |
|  * @timer timer being removed.
 | |
|  *
 | |
|  * Expires rtc timers. Reprograms next alarm event if needed.
 | |
|  * Called via worktask.
 | |
|  *
 | |
|  * Serializes access to timerqueue via ops_lock mutex
 | |
|  */
 | |
| void rtc_timer_do_work(struct work_struct *work)
 | |
| {
 | |
| 	struct rtc_timer *timer;
 | |
| 	struct timerqueue_node *next;
 | |
| 	ktime_t now;
 | |
| 	struct rtc_time tm;
 | |
| 
 | |
| 	struct rtc_device *rtc =
 | |
| 		container_of(work, struct rtc_device, irqwork);
 | |
| 
 | |
| 	mutex_lock(&rtc->ops_lock);
 | |
| again:
 | |
| 	__rtc_read_time(rtc, &tm);
 | |
| 	now = rtc_tm_to_ktime(tm);
 | |
| 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
 | |
| 		if (next->expires > now)
 | |
| 			break;
 | |
| 
 | |
| 		/* expire timer */
 | |
| 		timer = container_of(next, struct rtc_timer, node);
 | |
| 		timerqueue_del(&rtc->timerqueue, &timer->node);
 | |
| 		trace_rtc_timer_dequeue(timer);
 | |
| 		timer->enabled = 0;
 | |
| 		if (timer->func)
 | |
| 			timer->func(timer->rtc);
 | |
| 
 | |
| 		trace_rtc_timer_fired(timer);
 | |
| 		/* Re-add/fwd periodic timers */
 | |
| 		if (ktime_to_ns(timer->period)) {
 | |
| 			timer->node.expires = ktime_add(timer->node.expires,
 | |
| 							timer->period);
 | |
| 			timer->enabled = 1;
 | |
| 			timerqueue_add(&rtc->timerqueue, &timer->node);
 | |
| 			trace_rtc_timer_enqueue(timer);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Set next alarm */
 | |
| 	if (next) {
 | |
| 		struct rtc_wkalrm alarm;
 | |
| 		int err;
 | |
| 		int retry = 3;
 | |
| 
 | |
| 		alarm.time = rtc_ktime_to_tm(next->expires);
 | |
| 		alarm.enabled = 1;
 | |
| reprogram:
 | |
| 		err = __rtc_set_alarm(rtc, &alarm);
 | |
| 		if (err == -ETIME)
 | |
| 			goto again;
 | |
| 		else if (err) {
 | |
| 			if (retry-- > 0)
 | |
| 				goto reprogram;
 | |
| 
 | |
| 			timer = container_of(next, struct rtc_timer, node);
 | |
| 			timerqueue_del(&rtc->timerqueue, &timer->node);
 | |
| 			trace_rtc_timer_dequeue(timer);
 | |
| 			timer->enabled = 0;
 | |
| 			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
 | |
| 			goto again;
 | |
| 		}
 | |
| 	} else
 | |
| 		rtc_alarm_disable(rtc);
 | |
| 
 | |
| 	pm_relax(rtc->dev.parent);
 | |
| 	mutex_unlock(&rtc->ops_lock);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* rtc_timer_init - Initializes an rtc_timer
 | |
|  * @timer: timer to be intiialized
 | |
|  * @f: function pointer to be called when timer fires
 | |
|  * @rtc: pointer to the rtc_device
 | |
|  *
 | |
|  * Kernel interface to initializing an rtc_timer.
 | |
|  */
 | |
| void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
 | |
| 		    struct rtc_device *rtc)
 | |
| {
 | |
| 	timerqueue_init(&timer->node);
 | |
| 	timer->enabled = 0;
 | |
| 	timer->func = f;
 | |
| 	timer->rtc = rtc;
 | |
| }
 | |
| 
 | |
| /* rtc_timer_start - Sets an rtc_timer to fire in the future
 | |
|  * @ rtc: rtc device to be used
 | |
|  * @ timer: timer being set
 | |
|  * @ expires: time at which to expire the timer
 | |
|  * @ period: period that the timer will recur
 | |
|  *
 | |
|  * Kernel interface to set an rtc_timer
 | |
|  */
 | |
| int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
 | |
| 			ktime_t expires, ktime_t period)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	mutex_lock(&rtc->ops_lock);
 | |
| 	if (timer->enabled)
 | |
| 		rtc_timer_remove(rtc, timer);
 | |
| 
 | |
| 	timer->node.expires = expires;
 | |
| 	timer->period = period;
 | |
| 
 | |
| 	ret = rtc_timer_enqueue(rtc, timer);
 | |
| 
 | |
| 	mutex_unlock(&rtc->ops_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* rtc_timer_cancel - Stops an rtc_timer
 | |
|  * @ rtc: rtc device to be used
 | |
|  * @ timer: timer being set
 | |
|  *
 | |
|  * Kernel interface to cancel an rtc_timer
 | |
|  */
 | |
| void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
 | |
| {
 | |
| 	mutex_lock(&rtc->ops_lock);
 | |
| 	if (timer->enabled)
 | |
| 		rtc_timer_remove(rtc, timer);
 | |
| 	mutex_unlock(&rtc->ops_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rtc_read_offset - Read the amount of rtc offset in parts per billion
 | |
|  * @ rtc: rtc device to be used
 | |
|  * @ offset: the offset in parts per billion
 | |
|  *
 | |
|  * see below for details.
 | |
|  *
 | |
|  * Kernel interface to read rtc clock offset
 | |
|  * Returns 0 on success, or a negative number on error.
 | |
|  * If read_offset() is not implemented for the rtc, return -EINVAL
 | |
|  */
 | |
| int rtc_read_offset(struct rtc_device *rtc, long *offset)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!rtc->ops)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (!rtc->ops->read_offset)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&rtc->ops_lock);
 | |
| 	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
 | |
| 	mutex_unlock(&rtc->ops_lock);
 | |
| 
 | |
| 	trace_rtc_read_offset(*offset, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rtc_set_offset - Adjusts the duration of the average second
 | |
|  * @ rtc: rtc device to be used
 | |
|  * @ offset: the offset in parts per billion
 | |
|  *
 | |
|  * Some rtc's allow an adjustment to the average duration of a second
 | |
|  * to compensate for differences in the actual clock rate due to temperature,
 | |
|  * the crystal, capacitor, etc.
 | |
|  *
 | |
|  * The adjustment applied is as follows:
 | |
|  *   t = t0 * (1 + offset * 1e-9)
 | |
|  * where t0 is the measured length of 1 RTC second with offset = 0
 | |
|  *
 | |
|  * Kernel interface to adjust an rtc clock offset.
 | |
|  * Return 0 on success, or a negative number on error.
 | |
|  * If the rtc offset is not setable (or not implemented), return -EINVAL
 | |
|  */
 | |
| int rtc_set_offset(struct rtc_device *rtc, long offset)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!rtc->ops)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (!rtc->ops->set_offset)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&rtc->ops_lock);
 | |
| 	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
 | |
| 	mutex_unlock(&rtc->ops_lock);
 | |
| 
 | |
| 	trace_rtc_set_offset(offset, ret);
 | |
| 	return ret;
 | |
| }
 |