forked from mirrors/linux
		
	 cf7acfab03
			
		
	
	
		cf7acfab03
		
	
	
	
	
		
			
			Use proc_create()/proc_create_data() to make sure that ->proc_fops and ->data be setup before gluing PDE to main tree. Add correct ->owner to proc_fops to fix reading/module unloading race. Signed-off-by: Denis V. Lunev <den@openvz.org> Cc: Len Brown <lenb@kernel.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1868 lines
		
	
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1868 lines
		
	
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * processor_idle - idle state submodule to the ACPI processor driver
 | |
|  *
 | |
|  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
 | |
|  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
 | |
|  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
 | |
|  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
 | |
|  *  			- Added processor hotplug support
 | |
|  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
 | |
|  *  			- Added support for C3 on SMP
 | |
|  *
 | |
|  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or modify
 | |
|  *  it under the terms of the GNU General Public License as published by
 | |
|  *  the Free Software Foundation; either version 2 of the License, or (at
 | |
|  *  your option) any later version.
 | |
|  *
 | |
|  *  This program is distributed in the hope that it will be useful, but
 | |
|  *  WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  *  General Public License for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License along
 | |
|  *  with this program; if not, write to the Free Software Foundation, Inc.,
 | |
|  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
 | |
|  *
 | |
|  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/acpi.h>
 | |
| #include <linux/dmi.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/sched.h>	/* need_resched() */
 | |
| #include <linux/pm_qos_params.h>
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/cpuidle.h>
 | |
| 
 | |
| /*
 | |
|  * Include the apic definitions for x86 to have the APIC timer related defines
 | |
|  * available also for UP (on SMP it gets magically included via linux/smp.h).
 | |
|  * asm/acpi.h is not an option, as it would require more include magic. Also
 | |
|  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
 | |
|  */
 | |
| #ifdef CONFIG_X86
 | |
| #include <asm/apic.h>
 | |
| #endif
 | |
| 
 | |
| #include <asm/io.h>
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| #include <acpi/acpi_bus.h>
 | |
| #include <acpi/processor.h>
 | |
| 
 | |
| #define ACPI_PROCESSOR_COMPONENT        0x01000000
 | |
| #define ACPI_PROCESSOR_CLASS            "processor"
 | |
| #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
 | |
| ACPI_MODULE_NAME("processor_idle");
 | |
| #define ACPI_PROCESSOR_FILE_POWER	"power"
 | |
| #define US_TO_PM_TIMER_TICKS(t)		((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
 | |
| #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
 | |
| #ifndef CONFIG_CPU_IDLE
 | |
| #define C2_OVERHEAD			4	/* 1us (3.579 ticks per us) */
 | |
| #define C3_OVERHEAD			4	/* 1us (3.579 ticks per us) */
 | |
| static void (*pm_idle_save) (void) __read_mostly;
 | |
| #else
 | |
| #define C2_OVERHEAD			1	/* 1us */
 | |
| #define C3_OVERHEAD			1	/* 1us */
 | |
| #endif
 | |
| #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
 | |
| 
 | |
| static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
 | |
| #ifdef CONFIG_CPU_IDLE
 | |
| module_param(max_cstate, uint, 0000);
 | |
| #else
 | |
| module_param(max_cstate, uint, 0644);
 | |
| #endif
 | |
| static unsigned int nocst __read_mostly;
 | |
| module_param(nocst, uint, 0000);
 | |
| 
 | |
| #ifndef CONFIG_CPU_IDLE
 | |
| /*
 | |
|  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
 | |
|  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
 | |
|  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
 | |
|  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
 | |
|  * reduce history for more aggressive entry into C3
 | |
|  */
 | |
| static unsigned int bm_history __read_mostly =
 | |
|     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
 | |
| module_param(bm_history, uint, 0644);
 | |
| 
 | |
| static int acpi_processor_set_power_policy(struct acpi_processor *pr);
 | |
| 
 | |
| #else	/* CONFIG_CPU_IDLE */
 | |
| static unsigned int latency_factor __read_mostly = 2;
 | |
| module_param(latency_factor, uint, 0644);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
 | |
|  * For now disable this. Probably a bug somewhere else.
 | |
|  *
 | |
|  * To skip this limit, boot/load with a large max_cstate limit.
 | |
|  */
 | |
| static int set_max_cstate(const struct dmi_system_id *id)
 | |
| {
 | |
| 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
 | |
| 		return 0;
 | |
| 
 | |
| 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
 | |
| 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
 | |
| 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
 | |
| 
 | |
| 	max_cstate = (long)id->driver_data;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Actually this shouldn't be __cpuinitdata, would be better to fix the
 | |
|    callers to only run once -AK */
 | |
| static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
 | |
| 	{ set_max_cstate, "IBM ThinkPad R40e", {
 | |
| 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
 | |
| 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
 | |
| 	{ set_max_cstate, "IBM ThinkPad R40e", {
 | |
| 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
 | |
| 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
 | |
| 	{ set_max_cstate, "IBM ThinkPad R40e", {
 | |
| 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
 | |
| 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
 | |
| 	{ set_max_cstate, "IBM ThinkPad R40e", {
 | |
| 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
 | |
| 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
 | |
| 	{ set_max_cstate, "IBM ThinkPad R40e", {
 | |
| 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
 | |
| 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
 | |
| 	{ set_max_cstate, "IBM ThinkPad R40e", {
 | |
| 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
 | |
| 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
 | |
| 	{ set_max_cstate, "IBM ThinkPad R40e", {
 | |
| 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
 | |
| 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
 | |
| 	{ set_max_cstate, "IBM ThinkPad R40e", {
 | |
| 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
 | |
| 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
 | |
| 	{ set_max_cstate, "IBM ThinkPad R40e", {
 | |
| 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
 | |
| 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
 | |
| 	{ set_max_cstate, "IBM ThinkPad R40e", {
 | |
| 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
 | |
| 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
 | |
| 	{ set_max_cstate, "IBM ThinkPad R40e", {
 | |
| 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
 | |
| 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
 | |
| 	{ set_max_cstate, "IBM ThinkPad R40e", {
 | |
| 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
 | |
| 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
 | |
| 	{ set_max_cstate, "IBM ThinkPad R40e", {
 | |
| 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
 | |
| 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
 | |
| 	{ set_max_cstate, "IBM ThinkPad R40e", {
 | |
| 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
 | |
| 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
 | |
| 	{ set_max_cstate, "IBM ThinkPad R40e", {
 | |
| 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
 | |
| 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
 | |
| 	{ set_max_cstate, "IBM ThinkPad R40e", {
 | |
| 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
 | |
| 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
 | |
| 	{ set_max_cstate, "Medion 41700", {
 | |
| 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
 | |
| 	  DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
 | |
| 	{ set_max_cstate, "Clevo 5600D", {
 | |
| 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
 | |
| 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
 | |
| 	 (void *)2},
 | |
| 	{},
 | |
| };
 | |
| 
 | |
| static inline u32 ticks_elapsed(u32 t1, u32 t2)
 | |
| {
 | |
| 	if (t2 >= t1)
 | |
| 		return (t2 - t1);
 | |
| 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
 | |
| 		return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
 | |
| 	else
 | |
| 		return ((0xFFFFFFFF - t1) + t2);
 | |
| }
 | |
| 
 | |
| static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
 | |
| {
 | |
| 	if (t2 >= t1)
 | |
| 		return PM_TIMER_TICKS_TO_US(t2 - t1);
 | |
| 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
 | |
| 		return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
 | |
| 	else
 | |
| 		return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Callers should disable interrupts before the call and enable
 | |
|  * interrupts after return.
 | |
|  */
 | |
| static void acpi_safe_halt(void)
 | |
| {
 | |
| 	current_thread_info()->status &= ~TS_POLLING;
 | |
| 	/*
 | |
| 	 * TS_POLLING-cleared state must be visible before we
 | |
| 	 * test NEED_RESCHED:
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	if (!need_resched()) {
 | |
| 		safe_halt();
 | |
| 		local_irq_disable();
 | |
| 	}
 | |
| 	current_thread_info()->status |= TS_POLLING;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_CPU_IDLE
 | |
| 
 | |
| static void
 | |
| acpi_processor_power_activate(struct acpi_processor *pr,
 | |
| 			      struct acpi_processor_cx *new)
 | |
| {
 | |
| 	struct acpi_processor_cx *old;
 | |
| 
 | |
| 	if (!pr || !new)
 | |
| 		return;
 | |
| 
 | |
| 	old = pr->power.state;
 | |
| 
 | |
| 	if (old)
 | |
| 		old->promotion.count = 0;
 | |
| 	new->demotion.count = 0;
 | |
| 
 | |
| 	/* Cleanup from old state. */
 | |
| 	if (old) {
 | |
| 		switch (old->type) {
 | |
| 		case ACPI_STATE_C3:
 | |
| 			/* Disable bus master reload */
 | |
| 			if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
 | |
| 				acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Prepare to use new state. */
 | |
| 	switch (new->type) {
 | |
| 	case ACPI_STATE_C3:
 | |
| 		/* Enable bus master reload */
 | |
| 		if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
 | |
| 			acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	pr->power.state = new;
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static atomic_t c3_cpu_count;
 | |
| 
 | |
| /* Common C-state entry for C2, C3, .. */
 | |
| static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
 | |
| {
 | |
| 	if (cstate->entry_method == ACPI_CSTATE_FFH) {
 | |
| 		/* Call into architectural FFH based C-state */
 | |
| 		acpi_processor_ffh_cstate_enter(cstate);
 | |
| 	} else {
 | |
| 		int unused;
 | |
| 		/* IO port based C-state */
 | |
| 		inb(cstate->address);
 | |
| 		/* Dummy wait op - must do something useless after P_LVL2 read
 | |
| 		   because chipsets cannot guarantee that STPCLK# signal
 | |
| 		   gets asserted in time to freeze execution properly. */
 | |
| 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
 | |
| 	}
 | |
| }
 | |
| #endif /* !CONFIG_CPU_IDLE */
 | |
| 
 | |
| #ifdef ARCH_APICTIMER_STOPS_ON_C3
 | |
| 
 | |
| /*
 | |
|  * Some BIOS implementations switch to C3 in the published C2 state.
 | |
|  * This seems to be a common problem on AMD boxen, but other vendors
 | |
|  * are affected too. We pick the most conservative approach: we assume
 | |
|  * that the local APIC stops in both C2 and C3.
 | |
|  */
 | |
| static void acpi_timer_check_state(int state, struct acpi_processor *pr,
 | |
| 				   struct acpi_processor_cx *cx)
 | |
| {
 | |
| 	struct acpi_processor_power *pwr = &pr->power;
 | |
| 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check, if one of the previous states already marked the lapic
 | |
| 	 * unstable
 | |
| 	 */
 | |
| 	if (pwr->timer_broadcast_on_state < state)
 | |
| 		return;
 | |
| 
 | |
| 	if (cx->type >= type)
 | |
| 		pr->power.timer_broadcast_on_state = state;
 | |
| }
 | |
| 
 | |
| static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
 | |
| {
 | |
| 	unsigned long reason;
 | |
| 
 | |
| 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
 | |
| 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
 | |
| 
 | |
| 	clockevents_notify(reason, &pr->id);
 | |
| }
 | |
| 
 | |
| /* Power(C) State timer broadcast control */
 | |
| static void acpi_state_timer_broadcast(struct acpi_processor *pr,
 | |
| 				       struct acpi_processor_cx *cx,
 | |
| 				       int broadcast)
 | |
| {
 | |
| 	int state = cx - pr->power.states;
 | |
| 
 | |
| 	if (state >= pr->power.timer_broadcast_on_state) {
 | |
| 		unsigned long reason;
 | |
| 
 | |
| 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
 | |
| 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
 | |
| 		clockevents_notify(reason, &pr->id);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static void acpi_timer_check_state(int state, struct acpi_processor *pr,
 | |
| 				   struct acpi_processor_cx *cstate) { }
 | |
| static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
 | |
| static void acpi_state_timer_broadcast(struct acpi_processor *pr,
 | |
| 				       struct acpi_processor_cx *cx,
 | |
| 				       int broadcast)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Suspend / resume control
 | |
|  */
 | |
| static int acpi_idle_suspend;
 | |
| 
 | |
| int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
 | |
| {
 | |
| 	acpi_idle_suspend = 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int acpi_processor_resume(struct acpi_device * device)
 | |
| {
 | |
| 	acpi_idle_suspend = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
 | |
| static int tsc_halts_in_c(int state)
 | |
| {
 | |
| 	switch (boot_cpu_data.x86_vendor) {
 | |
| 	case X86_VENDOR_AMD:
 | |
| 		/*
 | |
| 		 * AMD Fam10h TSC will tick in all
 | |
| 		 * C/P/S0/S1 states when this bit is set.
 | |
| 		 */
 | |
| 		if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 | |
| 			return 0;
 | |
| 		/*FALL THROUGH*/
 | |
| 	case X86_VENDOR_INTEL:
 | |
| 		/* Several cases known where TSC halts in C2 too */
 | |
| 	default:
 | |
| 		return state > ACPI_STATE_C1;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_CPU_IDLE
 | |
| static void acpi_processor_idle(void)
 | |
| {
 | |
| 	struct acpi_processor *pr = NULL;
 | |
| 	struct acpi_processor_cx *cx = NULL;
 | |
| 	struct acpi_processor_cx *next_state = NULL;
 | |
| 	int sleep_ticks = 0;
 | |
| 	u32 t1, t2 = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Interrupts must be disabled during bus mastering calculations and
 | |
| 	 * for C2/C3 transitions.
 | |
| 	 */
 | |
| 	local_irq_disable();
 | |
| 
 | |
| 	pr = processors[smp_processor_id()];
 | |
| 	if (!pr) {
 | |
| 		local_irq_enable();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether we truly need to go idle, or should
 | |
| 	 * reschedule:
 | |
| 	 */
 | |
| 	if (unlikely(need_resched())) {
 | |
| 		local_irq_enable();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	cx = pr->power.state;
 | |
| 	if (!cx || acpi_idle_suspend) {
 | |
| 		if (pm_idle_save) {
 | |
| 			pm_idle_save(); /* enables IRQs */
 | |
| 		} else {
 | |
| 			acpi_safe_halt();
 | |
| 			local_irq_enable();
 | |
| 		}
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check BM Activity
 | |
| 	 * -----------------
 | |
| 	 * Check for bus mastering activity (if required), record, and check
 | |
| 	 * for demotion.
 | |
| 	 */
 | |
| 	if (pr->flags.bm_check) {
 | |
| 		u32 bm_status = 0;
 | |
| 		unsigned long diff = jiffies - pr->power.bm_check_timestamp;
 | |
| 
 | |
| 		if (diff > 31)
 | |
| 			diff = 31;
 | |
| 
 | |
| 		pr->power.bm_activity <<= diff;
 | |
| 
 | |
| 		acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 | |
| 		if (bm_status) {
 | |
| 			pr->power.bm_activity |= 0x1;
 | |
| 			acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 | |
| 		 * the true state of bus mastering activity; forcing us to
 | |
| 		 * manually check the BMIDEA bit of each IDE channel.
 | |
| 		 */
 | |
| 		else if (errata.piix4.bmisx) {
 | |
| 			if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 | |
| 			    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 | |
| 				pr->power.bm_activity |= 0x1;
 | |
| 		}
 | |
| 
 | |
| 		pr->power.bm_check_timestamp = jiffies;
 | |
| 
 | |
| 		/*
 | |
| 		 * If bus mastering is or was active this jiffy, demote
 | |
| 		 * to avoid a faulty transition.  Note that the processor
 | |
| 		 * won't enter a low-power state during this call (to this
 | |
| 		 * function) but should upon the next.
 | |
| 		 *
 | |
| 		 * TBD: A better policy might be to fallback to the demotion
 | |
| 		 *      state (use it for this quantum only) istead of
 | |
| 		 *      demoting -- and rely on duration as our sole demotion
 | |
| 		 *      qualification.  This may, however, introduce DMA
 | |
| 		 *      issues (e.g. floppy DMA transfer overrun/underrun).
 | |
| 		 */
 | |
| 		if ((pr->power.bm_activity & 0x1) &&
 | |
| 		    cx->demotion.threshold.bm) {
 | |
| 			local_irq_enable();
 | |
| 			next_state = cx->demotion.state;
 | |
| 			goto end;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	/*
 | |
| 	 * Check for P_LVL2_UP flag before entering C2 and above on
 | |
| 	 * an SMP system. We do it here instead of doing it at _CST/P_LVL
 | |
| 	 * detection phase, to work cleanly with logical CPU hotplug.
 | |
| 	 */
 | |
| 	if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
 | |
| 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 | |
| 		cx = &pr->power.states[ACPI_STATE_C1];
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Sleep:
 | |
| 	 * ------
 | |
| 	 * Invoke the current Cx state to put the processor to sleep.
 | |
| 	 */
 | |
| 	if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
 | |
| 		current_thread_info()->status &= ~TS_POLLING;
 | |
| 		/*
 | |
| 		 * TS_POLLING-cleared state must be visible before we
 | |
| 		 * test NEED_RESCHED:
 | |
| 		 */
 | |
| 		smp_mb();
 | |
| 		if (need_resched()) {
 | |
| 			current_thread_info()->status |= TS_POLLING;
 | |
| 			local_irq_enable();
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	switch (cx->type) {
 | |
| 
 | |
| 	case ACPI_STATE_C1:
 | |
| 		/*
 | |
| 		 * Invoke C1.
 | |
| 		 * Use the appropriate idle routine, the one that would
 | |
| 		 * be used without acpi C-states.
 | |
| 		 */
 | |
| 		if (pm_idle_save) {
 | |
| 			pm_idle_save(); /* enables IRQs */
 | |
| 		} else {
 | |
| 			acpi_safe_halt();
 | |
| 			local_irq_enable();
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * TBD: Can't get time duration while in C1, as resumes
 | |
| 		 *      go to an ISR rather than here.  Need to instrument
 | |
| 		 *      base interrupt handler.
 | |
| 		 *
 | |
| 		 * Note: the TSC better not stop in C1, sched_clock() will
 | |
| 		 *       skew otherwise.
 | |
| 		 */
 | |
| 		sleep_ticks = 0xFFFFFFFF;
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case ACPI_STATE_C2:
 | |
| 		/* Get start time (ticks) */
 | |
| 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
 | |
| 		/* Tell the scheduler that we are going deep-idle: */
 | |
| 		sched_clock_idle_sleep_event();
 | |
| 		/* Invoke C2 */
 | |
| 		acpi_state_timer_broadcast(pr, cx, 1);
 | |
| 		acpi_cstate_enter(cx);
 | |
| 		/* Get end time (ticks) */
 | |
| 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
 | |
| 
 | |
| #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
 | |
| 		/* TSC halts in C2, so notify users */
 | |
| 		if (tsc_halts_in_c(ACPI_STATE_C2))
 | |
| 			mark_tsc_unstable("possible TSC halt in C2");
 | |
| #endif
 | |
| 		/* Compute time (ticks) that we were actually asleep */
 | |
| 		sleep_ticks = ticks_elapsed(t1, t2);
 | |
| 
 | |
| 		/* Tell the scheduler how much we idled: */
 | |
| 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
 | |
| 
 | |
| 		/* Re-enable interrupts */
 | |
| 		local_irq_enable();
 | |
| 		/* Do not account our idle-switching overhead: */
 | |
| 		sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
 | |
| 
 | |
| 		current_thread_info()->status |= TS_POLLING;
 | |
| 		acpi_state_timer_broadcast(pr, cx, 0);
 | |
| 		break;
 | |
| 
 | |
| 	case ACPI_STATE_C3:
 | |
| 		acpi_unlazy_tlb(smp_processor_id());
 | |
| 		/*
 | |
| 		 * Must be done before busmaster disable as we might
 | |
| 		 * need to access HPET !
 | |
| 		 */
 | |
| 		acpi_state_timer_broadcast(pr, cx, 1);
 | |
| 		/*
 | |
| 		 * disable bus master
 | |
| 		 * bm_check implies we need ARB_DIS
 | |
| 		 * !bm_check implies we need cache flush
 | |
| 		 * bm_control implies whether we can do ARB_DIS
 | |
| 		 *
 | |
| 		 * That leaves a case where bm_check is set and bm_control is
 | |
| 		 * not set. In that case we cannot do much, we enter C3
 | |
| 		 * without doing anything.
 | |
| 		 */
 | |
| 		if (pr->flags.bm_check && pr->flags.bm_control) {
 | |
| 			if (atomic_inc_return(&c3_cpu_count) ==
 | |
| 			    num_online_cpus()) {
 | |
| 				/*
 | |
| 				 * All CPUs are trying to go to C3
 | |
| 				 * Disable bus master arbitration
 | |
| 				 */
 | |
| 				acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
 | |
| 			}
 | |
| 		} else if (!pr->flags.bm_check) {
 | |
| 			/* SMP with no shared cache... Invalidate cache  */
 | |
| 			ACPI_FLUSH_CPU_CACHE();
 | |
| 		}
 | |
| 
 | |
| 		/* Get start time (ticks) */
 | |
| 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
 | |
| 		/* Invoke C3 */
 | |
| 		/* Tell the scheduler that we are going deep-idle: */
 | |
| 		sched_clock_idle_sleep_event();
 | |
| 		acpi_cstate_enter(cx);
 | |
| 		/* Get end time (ticks) */
 | |
| 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
 | |
| 		if (pr->flags.bm_check && pr->flags.bm_control) {
 | |
| 			/* Enable bus master arbitration */
 | |
| 			atomic_dec(&c3_cpu_count);
 | |
| 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
 | |
| 		}
 | |
| 
 | |
| #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
 | |
| 		/* TSC halts in C3, so notify users */
 | |
| 		if (tsc_halts_in_c(ACPI_STATE_C3))
 | |
| 			mark_tsc_unstable("TSC halts in C3");
 | |
| #endif
 | |
| 		/* Compute time (ticks) that we were actually asleep */
 | |
| 		sleep_ticks = ticks_elapsed(t1, t2);
 | |
| 		/* Tell the scheduler how much we idled: */
 | |
| 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
 | |
| 
 | |
| 		/* Re-enable interrupts */
 | |
| 		local_irq_enable();
 | |
| 		/* Do not account our idle-switching overhead: */
 | |
| 		sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
 | |
| 
 | |
| 		current_thread_info()->status |= TS_POLLING;
 | |
| 		acpi_state_timer_broadcast(pr, cx, 0);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		local_irq_enable();
 | |
| 		return;
 | |
| 	}
 | |
| 	cx->usage++;
 | |
| 	if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
 | |
| 		cx->time += sleep_ticks;
 | |
| 
 | |
| 	next_state = pr->power.state;
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	/* Don't do promotion/demotion */
 | |
| 	if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
 | |
| 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
 | |
| 		next_state = cx;
 | |
| 		goto end;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Promotion?
 | |
| 	 * ----------
 | |
| 	 * Track the number of longs (time asleep is greater than threshold)
 | |
| 	 * and promote when the count threshold is reached.  Note that bus
 | |
| 	 * mastering activity may prevent promotions.
 | |
| 	 * Do not promote above max_cstate.
 | |
| 	 */
 | |
| 	if (cx->promotion.state &&
 | |
| 	    ((cx->promotion.state - pr->power.states) <= max_cstate)) {
 | |
| 		if (sleep_ticks > cx->promotion.threshold.ticks &&
 | |
| 		  cx->promotion.state->latency <=
 | |
| 				pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
 | |
| 			cx->promotion.count++;
 | |
| 			cx->demotion.count = 0;
 | |
| 			if (cx->promotion.count >=
 | |
| 			    cx->promotion.threshold.count) {
 | |
| 				if (pr->flags.bm_check) {
 | |
| 					if (!
 | |
| 					    (pr->power.bm_activity & cx->
 | |
| 					     promotion.threshold.bm)) {
 | |
| 						next_state =
 | |
| 						    cx->promotion.state;
 | |
| 						goto end;
 | |
| 					}
 | |
| 				} else {
 | |
| 					next_state = cx->promotion.state;
 | |
| 					goto end;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Demotion?
 | |
| 	 * ---------
 | |
| 	 * Track the number of shorts (time asleep is less than time threshold)
 | |
| 	 * and demote when the usage threshold is reached.
 | |
| 	 */
 | |
| 	if (cx->demotion.state) {
 | |
| 		if (sleep_ticks < cx->demotion.threshold.ticks) {
 | |
| 			cx->demotion.count++;
 | |
| 			cx->promotion.count = 0;
 | |
| 			if (cx->demotion.count >= cx->demotion.threshold.count) {
 | |
| 				next_state = cx->demotion.state;
 | |
| 				goto end;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
|       end:
 | |
| 	/*
 | |
| 	 * Demote if current state exceeds max_cstate
 | |
| 	 * or if the latency of the current state is unacceptable
 | |
| 	 */
 | |
| 	if ((pr->power.state - pr->power.states) > max_cstate ||
 | |
| 		pr->power.state->latency >
 | |
| 				pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
 | |
| 		if (cx->demotion.state)
 | |
| 			next_state = cx->demotion.state;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * New Cx State?
 | |
| 	 * -------------
 | |
| 	 * If we're going to start using a new Cx state we must clean up
 | |
| 	 * from the previous and prepare to use the new.
 | |
| 	 */
 | |
| 	if (next_state != pr->power.state)
 | |
| 		acpi_processor_power_activate(pr, next_state);
 | |
| }
 | |
| 
 | |
| static int acpi_processor_set_power_policy(struct acpi_processor *pr)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	unsigned int state_is_set = 0;
 | |
| 	struct acpi_processor_cx *lower = NULL;
 | |
| 	struct acpi_processor_cx *higher = NULL;
 | |
| 	struct acpi_processor_cx *cx;
 | |
| 
 | |
| 
 | |
| 	if (!pr)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * This function sets the default Cx state policy (OS idle handler).
 | |
| 	 * Our scheme is to promote quickly to C2 but more conservatively
 | |
| 	 * to C3.  We're favoring C2  for its characteristics of low latency
 | |
| 	 * (quick response), good power savings, and ability to allow bus
 | |
| 	 * mastering activity.  Note that the Cx state policy is completely
 | |
| 	 * customizable and can be altered dynamically.
 | |
| 	 */
 | |
| 
 | |
| 	/* startup state */
 | |
| 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 | |
| 		cx = &pr->power.states[i];
 | |
| 		if (!cx->valid)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!state_is_set)
 | |
| 			pr->power.state = cx;
 | |
| 		state_is_set++;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (!state_is_set)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* demotion */
 | |
| 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 | |
| 		cx = &pr->power.states[i];
 | |
| 		if (!cx->valid)
 | |
| 			continue;
 | |
| 
 | |
| 		if (lower) {
 | |
| 			cx->demotion.state = lower;
 | |
| 			cx->demotion.threshold.ticks = cx->latency_ticks;
 | |
| 			cx->demotion.threshold.count = 1;
 | |
| 			if (cx->type == ACPI_STATE_C3)
 | |
| 				cx->demotion.threshold.bm = bm_history;
 | |
| 		}
 | |
| 
 | |
| 		lower = cx;
 | |
| 	}
 | |
| 
 | |
| 	/* promotion */
 | |
| 	for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
 | |
| 		cx = &pr->power.states[i];
 | |
| 		if (!cx->valid)
 | |
| 			continue;
 | |
| 
 | |
| 		if (higher) {
 | |
| 			cx->promotion.state = higher;
 | |
| 			cx->promotion.threshold.ticks = cx->latency_ticks;
 | |
| 			if (cx->type >= ACPI_STATE_C2)
 | |
| 				cx->promotion.threshold.count = 4;
 | |
| 			else
 | |
| 				cx->promotion.threshold.count = 10;
 | |
| 			if (higher->type == ACPI_STATE_C3)
 | |
| 				cx->promotion.threshold.bm = bm_history;
 | |
| 		}
 | |
| 
 | |
| 		higher = cx;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* !CONFIG_CPU_IDLE */
 | |
| 
 | |
| static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 | |
| {
 | |
| 
 | |
| 	if (!pr)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!pr->pblk)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* if info is obtained from pblk/fadt, type equals state */
 | |
| 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 | |
| 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 | |
| 
 | |
| #ifndef CONFIG_HOTPLUG_CPU
 | |
| 	/*
 | |
| 	 * Check for P_LVL2_UP flag before entering C2 and above on
 | |
| 	 * an SMP system.
 | |
| 	 */
 | |
| 	if ((num_online_cpus() > 1) &&
 | |
| 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 | |
| 		return -ENODEV;
 | |
| #endif
 | |
| 
 | |
| 	/* determine C2 and C3 address from pblk */
 | |
| 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 | |
| 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 | |
| 
 | |
| 	/* determine latencies from FADT */
 | |
| 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
 | |
| 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
 | |
| 
 | |
| 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 | |
| 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
 | |
| 			  pr->power.states[ACPI_STATE_C2].address,
 | |
| 			  pr->power.states[ACPI_STATE_C3].address));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 | |
| {
 | |
| 	if (!pr->power.states[ACPI_STATE_C1].valid) {
 | |
| 		/* set the first C-State to C1 */
 | |
| 		/* all processors need to support C1 */
 | |
| 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 | |
| 		pr->power.states[ACPI_STATE_C1].valid = 1;
 | |
| 	}
 | |
| 	/* the C0 state only exists as a filler in our array */
 | |
| 	pr->power.states[ACPI_STATE_C0].valid = 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 | |
| {
 | |
| 	acpi_status status = 0;
 | |
| 	acpi_integer count;
 | |
| 	int current_count;
 | |
| 	int i;
 | |
| 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 | |
| 	union acpi_object *cst;
 | |
| 
 | |
| 
 | |
| 	if (nocst)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	current_count = 0;
 | |
| 
 | |
| 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
 | |
| 	if (ACPI_FAILURE(status)) {
 | |
| 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	cst = buffer.pointer;
 | |
| 
 | |
| 	/* There must be at least 2 elements */
 | |
| 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
 | |
| 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
 | |
| 		status = -EFAULT;
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	count = cst->package.elements[0].integer.value;
 | |
| 
 | |
| 	/* Validate number of power states. */
 | |
| 	if (count < 1 || count != cst->package.count - 1) {
 | |
| 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
 | |
| 		status = -EFAULT;
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	/* Tell driver that at least _CST is supported. */
 | |
| 	pr->flags.has_cst = 1;
 | |
| 
 | |
| 	for (i = 1; i <= count; i++) {
 | |
| 		union acpi_object *element;
 | |
| 		union acpi_object *obj;
 | |
| 		struct acpi_power_register *reg;
 | |
| 		struct acpi_processor_cx cx;
 | |
| 
 | |
| 		memset(&cx, 0, sizeof(cx));
 | |
| 
 | |
| 		element = &(cst->package.elements[i]);
 | |
| 		if (element->type != ACPI_TYPE_PACKAGE)
 | |
| 			continue;
 | |
| 
 | |
| 		if (element->package.count != 4)
 | |
| 			continue;
 | |
| 
 | |
| 		obj = &(element->package.elements[0]);
 | |
| 
 | |
| 		if (obj->type != ACPI_TYPE_BUFFER)
 | |
| 			continue;
 | |
| 
 | |
| 		reg = (struct acpi_power_register *)obj->buffer.pointer;
 | |
| 
 | |
| 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 | |
| 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
 | |
| 			continue;
 | |
| 
 | |
| 		/* There should be an easy way to extract an integer... */
 | |
| 		obj = &(element->package.elements[1]);
 | |
| 		if (obj->type != ACPI_TYPE_INTEGER)
 | |
| 			continue;
 | |
| 
 | |
| 		cx.type = obj->integer.value;
 | |
| 		/*
 | |
| 		 * Some buggy BIOSes won't list C1 in _CST -
 | |
| 		 * Let acpi_processor_get_power_info_default() handle them later
 | |
| 		 */
 | |
| 		if (i == 1 && cx.type != ACPI_STATE_C1)
 | |
| 			current_count++;
 | |
| 
 | |
| 		cx.address = reg->address;
 | |
| 		cx.index = current_count + 1;
 | |
| 
 | |
| 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
 | |
| 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
 | |
| 			if (acpi_processor_ffh_cstate_probe
 | |
| 					(pr->id, &cx, reg) == 0) {
 | |
| 				cx.entry_method = ACPI_CSTATE_FFH;
 | |
| 			} else if (cx.type == ACPI_STATE_C1) {
 | |
| 				/*
 | |
| 				 * C1 is a special case where FIXED_HARDWARE
 | |
| 				 * can be handled in non-MWAIT way as well.
 | |
| 				 * In that case, save this _CST entry info.
 | |
| 				 * Otherwise, ignore this info and continue.
 | |
| 				 */
 | |
| 				cx.entry_method = ACPI_CSTATE_HALT;
 | |
| 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
 | |
| 			} else {
 | |
| 				continue;
 | |
| 			}
 | |
| 		} else {
 | |
| 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
 | |
| 				 cx.address);
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		obj = &(element->package.elements[2]);
 | |
| 		if (obj->type != ACPI_TYPE_INTEGER)
 | |
| 			continue;
 | |
| 
 | |
| 		cx.latency = obj->integer.value;
 | |
| 
 | |
| 		obj = &(element->package.elements[3]);
 | |
| 		if (obj->type != ACPI_TYPE_INTEGER)
 | |
| 			continue;
 | |
| 
 | |
| 		cx.power = obj->integer.value;
 | |
| 
 | |
| 		current_count++;
 | |
| 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
 | |
| 
 | |
| 		/*
 | |
| 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
 | |
| 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
 | |
| 		 */
 | |
| 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
 | |
| 			printk(KERN_WARNING
 | |
| 			       "Limiting number of power states to max (%d)\n",
 | |
| 			       ACPI_PROCESSOR_MAX_POWER);
 | |
| 			printk(KERN_WARNING
 | |
| 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
 | |
| 			  current_count));
 | |
| 
 | |
| 	/* Validate number of power states discovered */
 | |
| 	if (current_count < 2)
 | |
| 		status = -EFAULT;
 | |
| 
 | |
|       end:
 | |
| 	kfree(buffer.pointer);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
 | |
| {
 | |
| 
 | |
| 	if (!cx->address)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * C2 latency must be less than or equal to 100
 | |
| 	 * microseconds.
 | |
| 	 */
 | |
| 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 | |
| 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 | |
| 				  "latency too large [%d]\n", cx->latency));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Otherwise we've met all of our C2 requirements.
 | |
| 	 * Normalize the C2 latency to expidite policy
 | |
| 	 */
 | |
| 	cx->valid = 1;
 | |
| 
 | |
| #ifndef CONFIG_CPU_IDLE
 | |
| 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
 | |
| #else
 | |
| 	cx->latency_ticks = cx->latency;
 | |
| #endif
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 | |
| 					   struct acpi_processor_cx *cx)
 | |
| {
 | |
| 	static int bm_check_flag;
 | |
| 
 | |
| 
 | |
| 	if (!cx->address)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * C3 latency must be less than or equal to 1000
 | |
| 	 * microseconds.
 | |
| 	 */
 | |
| 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 | |
| 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 | |
| 				  "latency too large [%d]\n", cx->latency));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 | |
| 	 * DMA transfers are used by any ISA device to avoid livelock.
 | |
| 	 * Note that we could disable Type-F DMA (as recommended by
 | |
| 	 * the erratum), but this is known to disrupt certain ISA
 | |
| 	 * devices thus we take the conservative approach.
 | |
| 	 */
 | |
| 	else if (errata.piix4.fdma) {
 | |
| 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 | |
| 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* All the logic here assumes flags.bm_check is same across all CPUs */
 | |
| 	if (!bm_check_flag) {
 | |
| 		/* Determine whether bm_check is needed based on CPU  */
 | |
| 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 | |
| 		bm_check_flag = pr->flags.bm_check;
 | |
| 	} else {
 | |
| 		pr->flags.bm_check = bm_check_flag;
 | |
| 	}
 | |
| 
 | |
| 	if (pr->flags.bm_check) {
 | |
| 		if (!pr->flags.bm_control) {
 | |
| 			if (pr->flags.has_cst != 1) {
 | |
| 				/* bus mastering control is necessary */
 | |
| 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 | |
| 					"C3 support requires BM control\n"));
 | |
| 				return;
 | |
| 			} else {
 | |
| 				/* Here we enter C3 without bus mastering */
 | |
| 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 | |
| 					"C3 support without BM control\n"));
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * WBINVD should be set in fadt, for C3 state to be
 | |
| 		 * supported on when bm_check is not required.
 | |
| 		 */
 | |
| 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 | |
| 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 | |
| 					  "Cache invalidation should work properly"
 | |
| 					  " for C3 to be enabled on SMP systems\n"));
 | |
| 			return;
 | |
| 		}
 | |
| 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Otherwise we've met all of our C3 requirements.
 | |
| 	 * Normalize the C3 latency to expidite policy.  Enable
 | |
| 	 * checking of bus mastering status (bm_check) so we can
 | |
| 	 * use this in our C3 policy
 | |
| 	 */
 | |
| 	cx->valid = 1;
 | |
| 
 | |
| #ifndef CONFIG_CPU_IDLE
 | |
| 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
 | |
| #else
 | |
| 	cx->latency_ticks = cx->latency;
 | |
| #endif
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static int acpi_processor_power_verify(struct acpi_processor *pr)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	unsigned int working = 0;
 | |
| 
 | |
| 	pr->power.timer_broadcast_on_state = INT_MAX;
 | |
| 
 | |
| 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 | |
| 		struct acpi_processor_cx *cx = &pr->power.states[i];
 | |
| 
 | |
| 		switch (cx->type) {
 | |
| 		case ACPI_STATE_C1:
 | |
| 			cx->valid = 1;
 | |
| 			break;
 | |
| 
 | |
| 		case ACPI_STATE_C2:
 | |
| 			acpi_processor_power_verify_c2(cx);
 | |
| 			if (cx->valid)
 | |
| 				acpi_timer_check_state(i, pr, cx);
 | |
| 			break;
 | |
| 
 | |
| 		case ACPI_STATE_C3:
 | |
| 			acpi_processor_power_verify_c3(pr, cx);
 | |
| 			if (cx->valid)
 | |
| 				acpi_timer_check_state(i, pr, cx);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (cx->valid)
 | |
| 			working++;
 | |
| 	}
 | |
| 
 | |
| 	acpi_propagate_timer_broadcast(pr);
 | |
| 
 | |
| 	return (working);
 | |
| }
 | |
| 
 | |
| static int acpi_processor_get_power_info(struct acpi_processor *pr)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	int result;
 | |
| 
 | |
| 
 | |
| 	/* NOTE: the idle thread may not be running while calling
 | |
| 	 * this function */
 | |
| 
 | |
| 	/* Zero initialize all the C-states info. */
 | |
| 	memset(pr->power.states, 0, sizeof(pr->power.states));
 | |
| 
 | |
| 	result = acpi_processor_get_power_info_cst(pr);
 | |
| 	if (result == -ENODEV)
 | |
| 		result = acpi_processor_get_power_info_fadt(pr);
 | |
| 
 | |
| 	if (result)
 | |
| 		return result;
 | |
| 
 | |
| 	acpi_processor_get_power_info_default(pr);
 | |
| 
 | |
| 	pr->power.count = acpi_processor_power_verify(pr);
 | |
| 
 | |
| #ifndef CONFIG_CPU_IDLE
 | |
| 	/*
 | |
| 	 * Set Default Policy
 | |
| 	 * ------------------
 | |
| 	 * Now that we know which states are supported, set the default
 | |
| 	 * policy.  Note that this policy can be changed dynamically
 | |
| 	 * (e.g. encourage deeper sleeps to conserve battery life when
 | |
| 	 * not on AC).
 | |
| 	 */
 | |
| 	result = acpi_processor_set_power_policy(pr);
 | |
| 	if (result)
 | |
| 		return result;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * if one state of type C2 or C3 is available, mark this
 | |
| 	 * CPU as being "idle manageable"
 | |
| 	 */
 | |
| 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 | |
| 		if (pr->power.states[i].valid) {
 | |
| 			pr->power.count = i;
 | |
| 			if (pr->power.states[i].type >= ACPI_STATE_C2)
 | |
| 				pr->flags.power = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
 | |
| {
 | |
| 	struct acpi_processor *pr = seq->private;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 
 | |
| 	if (!pr)
 | |
| 		goto end;
 | |
| 
 | |
| 	seq_printf(seq, "active state:            C%zd\n"
 | |
| 		   "max_cstate:              C%d\n"
 | |
| 		   "bus master activity:     %08x\n"
 | |
| 		   "maximum allowed latency: %d usec\n",
 | |
| 		   pr->power.state ? pr->power.state - pr->power.states : 0,
 | |
| 		   max_cstate, (unsigned)pr->power.bm_activity,
 | |
| 		   pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
 | |
| 
 | |
| 	seq_puts(seq, "states:\n");
 | |
| 
 | |
| 	for (i = 1; i <= pr->power.count; i++) {
 | |
| 		seq_printf(seq, "   %cC%d:                  ",
 | |
| 			   (&pr->power.states[i] ==
 | |
| 			    pr->power.state ? '*' : ' '), i);
 | |
| 
 | |
| 		if (!pr->power.states[i].valid) {
 | |
| 			seq_puts(seq, "<not supported>\n");
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		switch (pr->power.states[i].type) {
 | |
| 		case ACPI_STATE_C1:
 | |
| 			seq_printf(seq, "type[C1] ");
 | |
| 			break;
 | |
| 		case ACPI_STATE_C2:
 | |
| 			seq_printf(seq, "type[C2] ");
 | |
| 			break;
 | |
| 		case ACPI_STATE_C3:
 | |
| 			seq_printf(seq, "type[C3] ");
 | |
| 			break;
 | |
| 		default:
 | |
| 			seq_printf(seq, "type[--] ");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (pr->power.states[i].promotion.state)
 | |
| 			seq_printf(seq, "promotion[C%zd] ",
 | |
| 				   (pr->power.states[i].promotion.state -
 | |
| 				    pr->power.states));
 | |
| 		else
 | |
| 			seq_puts(seq, "promotion[--] ");
 | |
| 
 | |
| 		if (pr->power.states[i].demotion.state)
 | |
| 			seq_printf(seq, "demotion[C%zd] ",
 | |
| 				   (pr->power.states[i].demotion.state -
 | |
| 				    pr->power.states));
 | |
| 		else
 | |
| 			seq_puts(seq, "demotion[--] ");
 | |
| 
 | |
| 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
 | |
| 			   pr->power.states[i].latency,
 | |
| 			   pr->power.states[i].usage,
 | |
| 			   (unsigned long long)pr->power.states[i].time);
 | |
| 	}
 | |
| 
 | |
|       end:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return single_open(file, acpi_processor_power_seq_show,
 | |
| 			   PDE(inode)->data);
 | |
| }
 | |
| 
 | |
| static const struct file_operations acpi_processor_power_fops = {
 | |
| 	.owner = THIS_MODULE,
 | |
| 	.open = acpi_processor_power_open_fs,
 | |
| 	.read = seq_read,
 | |
| 	.llseek = seq_lseek,
 | |
| 	.release = single_release,
 | |
| };
 | |
| 
 | |
| #ifndef CONFIG_CPU_IDLE
 | |
| 
 | |
| int acpi_processor_cst_has_changed(struct acpi_processor *pr)
 | |
| {
 | |
| 	int result = 0;
 | |
| 
 | |
| 
 | |
| 	if (!pr)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (nocst) {
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	if (!pr->flags.power_setup_done)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* Fall back to the default idle loop */
 | |
| 	pm_idle = pm_idle_save;
 | |
| 	synchronize_sched();	/* Relies on interrupts forcing exit from idle. */
 | |
| 
 | |
| 	pr->flags.power = 0;
 | |
| 	result = acpi_processor_get_power_info(pr);
 | |
| 	if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
 | |
| 		pm_idle = acpi_processor_idle;
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static void smp_callback(void *v)
 | |
| {
 | |
| 	/* we already woke the CPU up, nothing more to do */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function gets called when a part of the kernel has a new latency
 | |
|  * requirement.  This means we need to get all processors out of their C-state,
 | |
|  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
 | |
|  * wakes them all right up.
 | |
|  */
 | |
| static int acpi_processor_latency_notify(struct notifier_block *b,
 | |
| 		unsigned long l, void *v)
 | |
| {
 | |
| 	smp_call_function(smp_callback, NULL, 0, 1);
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static struct notifier_block acpi_processor_latency_notifier = {
 | |
| 	.notifier_call = acpi_processor_latency_notify,
 | |
| };
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #else /* CONFIG_CPU_IDLE */
 | |
| 
 | |
| /**
 | |
|  * acpi_idle_bm_check - checks if bus master activity was detected
 | |
|  */
 | |
| static int acpi_idle_bm_check(void)
 | |
| {
 | |
| 	u32 bm_status = 0;
 | |
| 
 | |
| 	acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 | |
| 	if (bm_status)
 | |
| 		acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 | |
| 	/*
 | |
| 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 | |
| 	 * the true state of bus mastering activity; forcing us to
 | |
| 	 * manually check the BMIDEA bit of each IDE channel.
 | |
| 	 */
 | |
| 	else if (errata.piix4.bmisx) {
 | |
| 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 | |
| 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 | |
| 			bm_status = 1;
 | |
| 	}
 | |
| 	return bm_status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
 | |
|  * @pr: the processor
 | |
|  * @target: the new target state
 | |
|  */
 | |
| static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
 | |
| 					   struct acpi_processor_cx *target)
 | |
| {
 | |
| 	if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
 | |
| 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
 | |
| 		pr->flags.bm_rld_set = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
 | |
| 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 | |
| 		pr->flags.bm_rld_set = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
 | |
|  * @cx: cstate data
 | |
|  *
 | |
|  * Caller disables interrupt before call and enables interrupt after return.
 | |
|  */
 | |
| static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
 | |
| {
 | |
| 	if (cx->entry_method == ACPI_CSTATE_FFH) {
 | |
| 		/* Call into architectural FFH based C-state */
 | |
| 		acpi_processor_ffh_cstate_enter(cx);
 | |
| 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 | |
| 		acpi_safe_halt();
 | |
| 	} else {
 | |
| 		int unused;
 | |
| 		/* IO port based C-state */
 | |
| 		inb(cx->address);
 | |
| 		/* Dummy wait op - must do something useless after P_LVL2 read
 | |
| 		   because chipsets cannot guarantee that STPCLK# signal
 | |
| 		   gets asserted in time to freeze execution properly. */
 | |
| 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
 | |
|  * @dev: the target CPU
 | |
|  * @state: the state data
 | |
|  *
 | |
|  * This is equivalent to the HALT instruction.
 | |
|  */
 | |
| static int acpi_idle_enter_c1(struct cpuidle_device *dev,
 | |
| 			      struct cpuidle_state *state)
 | |
| {
 | |
| 	u32 t1, t2;
 | |
| 	struct acpi_processor *pr;
 | |
| 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
 | |
| 
 | |
| 	pr = processors[smp_processor_id()];
 | |
| 
 | |
| 	if (unlikely(!pr))
 | |
| 		return 0;
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 
 | |
| 	/* Do not access any ACPI IO ports in suspend path */
 | |
| 	if (acpi_idle_suspend) {
 | |
| 		acpi_safe_halt();
 | |
| 		local_irq_enable();
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (pr->flags.bm_check)
 | |
| 		acpi_idle_update_bm_rld(pr, cx);
 | |
| 
 | |
| 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
 | |
| 	acpi_idle_do_entry(cx);
 | |
| 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
 | |
| 
 | |
| 	local_irq_enable();
 | |
| 	cx->usage++;
 | |
| 
 | |
| 	return ticks_elapsed_in_us(t1, t2);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * acpi_idle_enter_simple - enters an ACPI state without BM handling
 | |
|  * @dev: the target CPU
 | |
|  * @state: the state data
 | |
|  */
 | |
| static int acpi_idle_enter_simple(struct cpuidle_device *dev,
 | |
| 				  struct cpuidle_state *state)
 | |
| {
 | |
| 	struct acpi_processor *pr;
 | |
| 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
 | |
| 	u32 t1, t2;
 | |
| 	int sleep_ticks = 0;
 | |
| 
 | |
| 	pr = processors[smp_processor_id()];
 | |
| 
 | |
| 	if (unlikely(!pr))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (acpi_idle_suspend)
 | |
| 		return(acpi_idle_enter_c1(dev, state));
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 	current_thread_info()->status &= ~TS_POLLING;
 | |
| 	/*
 | |
| 	 * TS_POLLING-cleared state must be visible before we test
 | |
| 	 * NEED_RESCHED:
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	if (unlikely(need_resched())) {
 | |
| 		current_thread_info()->status |= TS_POLLING;
 | |
| 		local_irq_enable();
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Must be done before busmaster disable as we might need to
 | |
| 	 * access HPET !
 | |
| 	 */
 | |
| 	acpi_state_timer_broadcast(pr, cx, 1);
 | |
| 
 | |
| 	if (pr->flags.bm_check)
 | |
| 		acpi_idle_update_bm_rld(pr, cx);
 | |
| 
 | |
| 	if (cx->type == ACPI_STATE_C3)
 | |
| 		ACPI_FLUSH_CPU_CACHE();
 | |
| 
 | |
| 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
 | |
| 	/* Tell the scheduler that we are going deep-idle: */
 | |
| 	sched_clock_idle_sleep_event();
 | |
| 	acpi_idle_do_entry(cx);
 | |
| 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
 | |
| 
 | |
| #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
 | |
| 	/* TSC could halt in idle, so notify users */
 | |
| 	if (tsc_halts_in_c(cx->type))
 | |
| 		mark_tsc_unstable("TSC halts in idle");;
 | |
| #endif
 | |
| 	sleep_ticks = ticks_elapsed(t1, t2);
 | |
| 
 | |
| 	/* Tell the scheduler how much we idled: */
 | |
| 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
 | |
| 
 | |
| 	local_irq_enable();
 | |
| 	current_thread_info()->status |= TS_POLLING;
 | |
| 
 | |
| 	cx->usage++;
 | |
| 
 | |
| 	acpi_state_timer_broadcast(pr, cx, 0);
 | |
| 	cx->time += sleep_ticks;
 | |
| 	return ticks_elapsed_in_us(t1, t2);
 | |
| }
 | |
| 
 | |
| static int c3_cpu_count;
 | |
| static DEFINE_SPINLOCK(c3_lock);
 | |
| 
 | |
| /**
 | |
|  * acpi_idle_enter_bm - enters C3 with proper BM handling
 | |
|  * @dev: the target CPU
 | |
|  * @state: the state data
 | |
|  *
 | |
|  * If BM is detected, the deepest non-C3 idle state is entered instead.
 | |
|  */
 | |
| static int acpi_idle_enter_bm(struct cpuidle_device *dev,
 | |
| 			      struct cpuidle_state *state)
 | |
| {
 | |
| 	struct acpi_processor *pr;
 | |
| 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
 | |
| 	u32 t1, t2;
 | |
| 	int sleep_ticks = 0;
 | |
| 
 | |
| 	pr = processors[smp_processor_id()];
 | |
| 
 | |
| 	if (unlikely(!pr))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (acpi_idle_suspend)
 | |
| 		return(acpi_idle_enter_c1(dev, state));
 | |
| 
 | |
| 	if (acpi_idle_bm_check()) {
 | |
| 		if (dev->safe_state) {
 | |
| 			return dev->safe_state->enter(dev, dev->safe_state);
 | |
| 		} else {
 | |
| 			local_irq_disable();
 | |
| 			acpi_safe_halt();
 | |
| 			local_irq_enable();
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 	current_thread_info()->status &= ~TS_POLLING;
 | |
| 	/*
 | |
| 	 * TS_POLLING-cleared state must be visible before we test
 | |
| 	 * NEED_RESCHED:
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	if (unlikely(need_resched())) {
 | |
| 		current_thread_info()->status |= TS_POLLING;
 | |
| 		local_irq_enable();
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	acpi_unlazy_tlb(smp_processor_id());
 | |
| 
 | |
| 	/* Tell the scheduler that we are going deep-idle: */
 | |
| 	sched_clock_idle_sleep_event();
 | |
| 	/*
 | |
| 	 * Must be done before busmaster disable as we might need to
 | |
| 	 * access HPET !
 | |
| 	 */
 | |
| 	acpi_state_timer_broadcast(pr, cx, 1);
 | |
| 
 | |
| 	acpi_idle_update_bm_rld(pr, cx);
 | |
| 
 | |
| 	/*
 | |
| 	 * disable bus master
 | |
| 	 * bm_check implies we need ARB_DIS
 | |
| 	 * !bm_check implies we need cache flush
 | |
| 	 * bm_control implies whether we can do ARB_DIS
 | |
| 	 *
 | |
| 	 * That leaves a case where bm_check is set and bm_control is
 | |
| 	 * not set. In that case we cannot do much, we enter C3
 | |
| 	 * without doing anything.
 | |
| 	 */
 | |
| 	if (pr->flags.bm_check && pr->flags.bm_control) {
 | |
| 		spin_lock(&c3_lock);
 | |
| 		c3_cpu_count++;
 | |
| 		/* Disable bus master arbitration when all CPUs are in C3 */
 | |
| 		if (c3_cpu_count == num_online_cpus())
 | |
| 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
 | |
| 		spin_unlock(&c3_lock);
 | |
| 	} else if (!pr->flags.bm_check) {
 | |
| 		ACPI_FLUSH_CPU_CACHE();
 | |
| 	}
 | |
| 
 | |
| 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
 | |
| 	acpi_idle_do_entry(cx);
 | |
| 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
 | |
| 
 | |
| 	/* Re-enable bus master arbitration */
 | |
| 	if (pr->flags.bm_check && pr->flags.bm_control) {
 | |
| 		spin_lock(&c3_lock);
 | |
| 		acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
 | |
| 		c3_cpu_count--;
 | |
| 		spin_unlock(&c3_lock);
 | |
| 	}
 | |
| 
 | |
| #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
 | |
| 	/* TSC could halt in idle, so notify users */
 | |
| 	if (tsc_halts_in_c(ACPI_STATE_C3))
 | |
| 		mark_tsc_unstable("TSC halts in idle");
 | |
| #endif
 | |
| 	sleep_ticks = ticks_elapsed(t1, t2);
 | |
| 	/* Tell the scheduler how much we idled: */
 | |
| 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
 | |
| 
 | |
| 	local_irq_enable();
 | |
| 	current_thread_info()->status |= TS_POLLING;
 | |
| 
 | |
| 	cx->usage++;
 | |
| 
 | |
| 	acpi_state_timer_broadcast(pr, cx, 0);
 | |
| 	cx->time += sleep_ticks;
 | |
| 	return ticks_elapsed_in_us(t1, t2);
 | |
| }
 | |
| 
 | |
| struct cpuidle_driver acpi_idle_driver = {
 | |
| 	.name =		"acpi_idle",
 | |
| 	.owner =	THIS_MODULE,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
 | |
|  * @pr: the ACPI processor
 | |
|  */
 | |
| static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
 | |
| {
 | |
| 	int i, count = CPUIDLE_DRIVER_STATE_START;
 | |
| 	struct acpi_processor_cx *cx;
 | |
| 	struct cpuidle_state *state;
 | |
| 	struct cpuidle_device *dev = &pr->power.dev;
 | |
| 
 | |
| 	if (!pr->flags.power_setup_done)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (pr->flags.power == 0) {
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
 | |
| 		dev->states[i].name[0] = '\0';
 | |
| 		dev->states[i].desc[0] = '\0';
 | |
| 	}
 | |
| 
 | |
| 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 | |
| 		cx = &pr->power.states[i];
 | |
| 		state = &dev->states[count];
 | |
| 
 | |
| 		if (!cx->valid)
 | |
| 			continue;
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
 | |
| 		    !pr->flags.has_cst &&
 | |
| 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 | |
| 			continue;
 | |
| #endif
 | |
| 		cpuidle_set_statedata(state, cx);
 | |
| 
 | |
| 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 | |
| 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 | |
| 		state->exit_latency = cx->latency;
 | |
| 		state->target_residency = cx->latency * latency_factor;
 | |
| 		state->power_usage = cx->power;
 | |
| 
 | |
| 		state->flags = 0;
 | |
| 		switch (cx->type) {
 | |
| 			case ACPI_STATE_C1:
 | |
| 			state->flags |= CPUIDLE_FLAG_SHALLOW;
 | |
| 			if (cx->entry_method == ACPI_CSTATE_FFH)
 | |
| 				state->flags |= CPUIDLE_FLAG_TIME_VALID;
 | |
| 
 | |
| 			state->enter = acpi_idle_enter_c1;
 | |
| 			dev->safe_state = state;
 | |
| 			break;
 | |
| 
 | |
| 			case ACPI_STATE_C2:
 | |
| 			state->flags |= CPUIDLE_FLAG_BALANCED;
 | |
| 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
 | |
| 			state->enter = acpi_idle_enter_simple;
 | |
| 			dev->safe_state = state;
 | |
| 			break;
 | |
| 
 | |
| 			case ACPI_STATE_C3:
 | |
| 			state->flags |= CPUIDLE_FLAG_DEEP;
 | |
| 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
 | |
| 			state->flags |= CPUIDLE_FLAG_CHECK_BM;
 | |
| 			state->enter = pr->flags.bm_check ?
 | |
| 					acpi_idle_enter_bm :
 | |
| 					acpi_idle_enter_simple;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		count++;
 | |
| 		if (count == CPUIDLE_STATE_MAX)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	dev->state_count = count;
 | |
| 
 | |
| 	if (!count)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int acpi_processor_cst_has_changed(struct acpi_processor *pr)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!pr)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (nocst) {
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	if (!pr->flags.power_setup_done)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	cpuidle_pause_and_lock();
 | |
| 	cpuidle_disable_device(&pr->power.dev);
 | |
| 	acpi_processor_get_power_info(pr);
 | |
| 	acpi_processor_setup_cpuidle(pr);
 | |
| 	ret = cpuidle_enable_device(&pr->power.dev);
 | |
| 	cpuidle_resume_and_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_CPU_IDLE */
 | |
| 
 | |
| int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
 | |
| 			      struct acpi_device *device)
 | |
| {
 | |
| 	acpi_status status = 0;
 | |
| 	static int first_run;
 | |
| 	struct proc_dir_entry *entry = NULL;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 
 | |
| 	if (!first_run) {
 | |
| 		dmi_check_system(processor_power_dmi_table);
 | |
| 		max_cstate = acpi_processor_cstate_check(max_cstate);
 | |
| 		if (max_cstate < ACPI_C_STATES_MAX)
 | |
| 			printk(KERN_NOTICE
 | |
| 			       "ACPI: processor limited to max C-state %d\n",
 | |
| 			       max_cstate);
 | |
| 		first_run++;
 | |
| #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
 | |
| 		pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY,
 | |
| 				&acpi_processor_latency_notifier);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	if (!pr)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (acpi_gbl_FADT.cst_control && !nocst) {
 | |
| 		status =
 | |
| 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
 | |
| 		if (ACPI_FAILURE(status)) {
 | |
| 			ACPI_EXCEPTION((AE_INFO, status,
 | |
| 					"Notifying BIOS of _CST ability failed"));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	acpi_processor_get_power_info(pr);
 | |
| 	pr->flags.power_setup_done = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Install the idle handler if processor power management is supported.
 | |
| 	 * Note that we use previously set idle handler will be used on
 | |
| 	 * platforms that only support C1.
 | |
| 	 */
 | |
| 	if ((pr->flags.power) && (!boot_option_idle_override)) {
 | |
| #ifdef CONFIG_CPU_IDLE
 | |
| 		acpi_processor_setup_cpuidle(pr);
 | |
| 		pr->power.dev.cpu = pr->id;
 | |
| 		if (cpuidle_register_device(&pr->power.dev))
 | |
| 			return -EIO;
 | |
| #endif
 | |
| 
 | |
| 		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
 | |
| 		for (i = 1; i <= pr->power.count; i++)
 | |
| 			if (pr->power.states[i].valid)
 | |
| 				printk(" C%d[C%d]", i,
 | |
| 				       pr->power.states[i].type);
 | |
| 		printk(")\n");
 | |
| 
 | |
| #ifndef CONFIG_CPU_IDLE
 | |
| 		if (pr->id == 0) {
 | |
| 			pm_idle_save = pm_idle;
 | |
| 			pm_idle = acpi_processor_idle;
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* 'power' [R] */
 | |
| 	entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
 | |
| 				 S_IRUGO, acpi_device_dir(device),
 | |
| 				 &acpi_processor_power_fops,
 | |
| 				 acpi_driver_data(device));
 | |
| 	if (!entry)
 | |
| 		return -EIO;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int acpi_processor_power_exit(struct acpi_processor *pr,
 | |
| 			      struct acpi_device *device)
 | |
| {
 | |
| #ifdef CONFIG_CPU_IDLE
 | |
| 	if ((pr->flags.power) && (!boot_option_idle_override))
 | |
| 		cpuidle_unregister_device(&pr->power.dev);
 | |
| #endif
 | |
| 	pr->flags.power_setup_done = 0;
 | |
| 
 | |
| 	if (acpi_device_dir(device))
 | |
| 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
 | |
| 				  acpi_device_dir(device));
 | |
| 
 | |
| #ifndef CONFIG_CPU_IDLE
 | |
| 
 | |
| 	/* Unregister the idle handler when processor #0 is removed. */
 | |
| 	if (pr->id == 0) {
 | |
| 		pm_idle = pm_idle_save;
 | |
| 
 | |
| 		/*
 | |
| 		 * We are about to unload the current idle thread pm callback
 | |
| 		 * (pm_idle), Wait for all processors to update cached/local
 | |
| 		 * copies of pm_idle before proceeding.
 | |
| 		 */
 | |
| 		cpu_idle_wait();
 | |
| #ifdef CONFIG_SMP
 | |
| 		pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY,
 | |
| 				&acpi_processor_latency_notifier);
 | |
| #endif
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 |