forked from mirrors/linux
		
	 d2912cb15b
			
		
	
	
		d2912cb15b
		
	
	
	
	
		
			
			Based on 2 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license version 2 as published by the free software foundation this program is free software you can redistribute it and or modify it under the terms of the gnu general public license version 2 as published by the free software foundation # extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 4122 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Enrico Weigelt <info@metux.net> Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
		
			
				
	
	
		
			1937 lines
		
	
	
	
		
			55 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1937 lines
		
	
	
	
		
			55 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * EMIF driver
 | |
|  *
 | |
|  * Copyright (C) 2012 Texas Instruments, Inc.
 | |
|  *
 | |
|  * Aneesh V <aneesh@ti.com>
 | |
|  * Santosh Shilimkar <santosh.shilimkar@ti.com>
 | |
|  */
 | |
| #include <linux/err.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/platform_data/emif_plat.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/pm.h>
 | |
| #include <memory/jedec_ddr.h>
 | |
| #include "emif.h"
 | |
| #include "of_memory.h"
 | |
| 
 | |
| /**
 | |
|  * struct emif_data - Per device static data for driver's use
 | |
|  * @duplicate:			Whether the DDR devices attached to this EMIF
 | |
|  *				instance are exactly same as that on EMIF1. In
 | |
|  *				this case we can save some memory and processing
 | |
|  * @temperature_level:		Maximum temperature of LPDDR2 devices attached
 | |
|  *				to this EMIF - read from MR4 register. If there
 | |
|  *				are two devices attached to this EMIF, this
 | |
|  *				value is the maximum of the two temperature
 | |
|  *				levels.
 | |
|  * @node:			node in the device list
 | |
|  * @base:			base address of memory-mapped IO registers.
 | |
|  * @dev:			device pointer.
 | |
|  * @addressing			table with addressing information from the spec
 | |
|  * @regs_cache:			An array of 'struct emif_regs' that stores
 | |
|  *				calculated register values for different
 | |
|  *				frequencies, to avoid re-calculating them on
 | |
|  *				each DVFS transition.
 | |
|  * @curr_regs:			The set of register values used in the last
 | |
|  *				frequency change (i.e. corresponding to the
 | |
|  *				frequency in effect at the moment)
 | |
|  * @plat_data:			Pointer to saved platform data.
 | |
|  * @debugfs_root:		dentry to the root folder for EMIF in debugfs
 | |
|  * @np_ddr:			Pointer to ddr device tree node
 | |
|  */
 | |
| struct emif_data {
 | |
| 	u8				duplicate;
 | |
| 	u8				temperature_level;
 | |
| 	u8				lpmode;
 | |
| 	struct list_head		node;
 | |
| 	unsigned long			irq_state;
 | |
| 	void __iomem			*base;
 | |
| 	struct device			*dev;
 | |
| 	const struct lpddr2_addressing	*addressing;
 | |
| 	struct emif_regs		*regs_cache[EMIF_MAX_NUM_FREQUENCIES];
 | |
| 	struct emif_regs		*curr_regs;
 | |
| 	struct emif_platform_data	*plat_data;
 | |
| 	struct dentry			*debugfs_root;
 | |
| 	struct device_node		*np_ddr;
 | |
| };
 | |
| 
 | |
| static struct emif_data *emif1;
 | |
| static spinlock_t	emif_lock;
 | |
| static unsigned long	irq_state;
 | |
| static u32		t_ck; /* DDR clock period in ps */
 | |
| static LIST_HEAD(device_list);
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_FS
 | |
| static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
 | |
| 	struct emif_regs *regs)
 | |
| {
 | |
| 	u32 type = emif->plat_data->device_info->type;
 | |
| 	u32 ip_rev = emif->plat_data->ip_rev;
 | |
| 
 | |
| 	seq_printf(s, "EMIF register cache dump for %dMHz\n",
 | |
| 		regs->freq/1000000);
 | |
| 
 | |
| 	seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
 | |
| 	seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
 | |
| 	seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
 | |
| 	seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
 | |
| 
 | |
| 	if (ip_rev == EMIF_4D) {
 | |
| 		seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
 | |
| 			regs->read_idle_ctrl_shdw_normal);
 | |
| 		seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
 | |
| 			regs->read_idle_ctrl_shdw_volt_ramp);
 | |
| 	} else if (ip_rev == EMIF_4D5) {
 | |
| 		seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
 | |
| 			regs->dll_calib_ctrl_shdw_normal);
 | |
| 		seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
 | |
| 			regs->dll_calib_ctrl_shdw_volt_ramp);
 | |
| 	}
 | |
| 
 | |
| 	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
 | |
| 		seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
 | |
| 			regs->ref_ctrl_shdw_derated);
 | |
| 		seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
 | |
| 			regs->sdram_tim1_shdw_derated);
 | |
| 		seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
 | |
| 			regs->sdram_tim3_shdw_derated);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int emif_regdump_show(struct seq_file *s, void *unused)
 | |
| {
 | |
| 	struct emif_data	*emif	= s->private;
 | |
| 	struct emif_regs	**regs_cache;
 | |
| 	int			i;
 | |
| 
 | |
| 	if (emif->duplicate)
 | |
| 		regs_cache = emif1->regs_cache;
 | |
| 	else
 | |
| 		regs_cache = emif->regs_cache;
 | |
| 
 | |
| 	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
 | |
| 		do_emif_regdump_show(s, emif, regs_cache[i]);
 | |
| 		seq_putc(s, '\n');
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int emif_regdump_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return single_open(file, emif_regdump_show, inode->i_private);
 | |
| }
 | |
| 
 | |
| static const struct file_operations emif_regdump_fops = {
 | |
| 	.open			= emif_regdump_open,
 | |
| 	.read			= seq_read,
 | |
| 	.release		= single_release,
 | |
| };
 | |
| 
 | |
| static int emif_mr4_show(struct seq_file *s, void *unused)
 | |
| {
 | |
| 	struct emif_data *emif = s->private;
 | |
| 
 | |
| 	seq_printf(s, "MR4=%d\n", emif->temperature_level);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int emif_mr4_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return single_open(file, emif_mr4_show, inode->i_private);
 | |
| }
 | |
| 
 | |
| static const struct file_operations emif_mr4_fops = {
 | |
| 	.open			= emif_mr4_open,
 | |
| 	.read			= seq_read,
 | |
| 	.release		= single_release,
 | |
| };
 | |
| 
 | |
| static int __init_or_module emif_debugfs_init(struct emif_data *emif)
 | |
| {
 | |
| 	struct dentry	*dentry;
 | |
| 	int		ret;
 | |
| 
 | |
| 	dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
 | |
| 	if (!dentry) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err0;
 | |
| 	}
 | |
| 	emif->debugfs_root = dentry;
 | |
| 
 | |
| 	dentry = debugfs_create_file("regcache_dump", S_IRUGO,
 | |
| 			emif->debugfs_root, emif, &emif_regdump_fops);
 | |
| 	if (!dentry) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err1;
 | |
| 	}
 | |
| 
 | |
| 	dentry = debugfs_create_file("mr4", S_IRUGO,
 | |
| 			emif->debugfs_root, emif, &emif_mr4_fops);
 | |
| 	if (!dentry) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| err1:
 | |
| 	debugfs_remove_recursive(emif->debugfs_root);
 | |
| err0:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __exit emif_debugfs_exit(struct emif_data *emif)
 | |
| {
 | |
| 	debugfs_remove_recursive(emif->debugfs_root);
 | |
| 	emif->debugfs_root = NULL;
 | |
| }
 | |
| #else
 | |
| static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void __exit emif_debugfs_exit(struct emif_data *emif)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Calculate the period of DDR clock from frequency value
 | |
|  */
 | |
| static void set_ddr_clk_period(u32 freq)
 | |
| {
 | |
| 	/* Divide 10^12 by frequency to get period in ps */
 | |
| 	t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get bus width used by EMIF. Note that this may be different from the
 | |
|  * bus width of the DDR devices used. For instance two 16-bit DDR devices
 | |
|  * may be connected to a given CS of EMIF. In this case bus width as far
 | |
|  * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
 | |
|  */
 | |
| static u32 get_emif_bus_width(struct emif_data *emif)
 | |
| {
 | |
| 	u32		width;
 | |
| 	void __iomem	*base = emif->base;
 | |
| 
 | |
| 	width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
 | |
| 			>> NARROW_MODE_SHIFT;
 | |
| 	width = width == 0 ? 32 : 16;
 | |
| 
 | |
| 	return width;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the CL from SDRAM_CONFIG register
 | |
|  */
 | |
| static u32 get_cl(struct emif_data *emif)
 | |
| {
 | |
| 	u32		cl;
 | |
| 	void __iomem	*base = emif->base;
 | |
| 
 | |
| 	cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
 | |
| 
 | |
| 	return cl;
 | |
| }
 | |
| 
 | |
| static void set_lpmode(struct emif_data *emif, u8 lpmode)
 | |
| {
 | |
| 	u32 temp;
 | |
| 	void __iomem *base = emif->base;
 | |
| 
 | |
| 	/*
 | |
| 	 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
 | |
| 	 * Efficient
 | |
| 	 *
 | |
| 	 * i743 DESCRIPTION:
 | |
| 	 * The EMIF supports power-down state for low power. The EMIF
 | |
| 	 * automatically puts the SDRAM into power-down after the memory is
 | |
| 	 * not accessed for a defined number of cycles and the
 | |
| 	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
 | |
| 	 * As the EMIF supports automatic output impedance calibration, a ZQ
 | |
| 	 * calibration long command is issued every time it exits active
 | |
| 	 * power-down and precharge power-down modes. The EMIF waits and
 | |
| 	 * blocks any other command during this calibration.
 | |
| 	 * The EMIF does not allow selective disabling of ZQ calibration upon
 | |
| 	 * exit of power-down mode. Due to very short periods of power-down
 | |
| 	 * cycles, ZQ calibration overhead creates bandwidth issues and
 | |
| 	 * increases overall system power consumption. On the other hand,
 | |
| 	 * issuing ZQ calibration long commands when exiting self-refresh is
 | |
| 	 * still required.
 | |
| 	 *
 | |
| 	 * WORKAROUND
 | |
| 	 * Because there is no power consumption benefit of the power-down due
 | |
| 	 * to the calibration and there is a performance risk, the guideline
 | |
| 	 * is to not allow power-down state and, therefore, to not have set
 | |
| 	 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
 | |
| 	 */
 | |
| 	if ((emif->plat_data->ip_rev == EMIF_4D) &&
 | |
| 	    (EMIF_LP_MODE_PWR_DN == lpmode)) {
 | |
| 		WARN_ONCE(1,
 | |
| 			  "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by"
 | |
| 			  "erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
 | |
| 		/* rollback LP_MODE to Self-refresh mode */
 | |
| 		lpmode = EMIF_LP_MODE_SELF_REFRESH;
 | |
| 	}
 | |
| 
 | |
| 	temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
 | |
| 	temp &= ~LP_MODE_MASK;
 | |
| 	temp |= (lpmode << LP_MODE_SHIFT);
 | |
| 	writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
 | |
| }
 | |
| 
 | |
| static void do_freq_update(void)
 | |
| {
 | |
| 	struct emif_data *emif;
 | |
| 
 | |
| 	/*
 | |
| 	 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
 | |
| 	 *
 | |
| 	 * i728 DESCRIPTION:
 | |
| 	 * The EMIF automatically puts the SDRAM into self-refresh mode
 | |
| 	 * after the EMIF has not performed accesses during
 | |
| 	 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
 | |
| 	 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
 | |
| 	 * to 0x2. If during a small window the following three events
 | |
| 	 * occur:
 | |
| 	 * - The SR_TIMING counter expires
 | |
| 	 * - And frequency change is requested
 | |
| 	 * - And OCP access is requested
 | |
| 	 * Then it causes instable clock on the DDR interface.
 | |
| 	 *
 | |
| 	 * WORKAROUND
 | |
| 	 * To avoid the occurrence of the three events, the workaround
 | |
| 	 * is to disable the self-refresh when requesting a frequency
 | |
| 	 * change. Before requesting a frequency change the software must
 | |
| 	 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
 | |
| 	 * frequency change has been done, the software can reprogram
 | |
| 	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
 | |
| 	 */
 | |
| 	list_for_each_entry(emif, &device_list, node) {
 | |
| 		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 | |
| 			set_lpmode(emif, EMIF_LP_MODE_DISABLE);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * TODO: Do FREQ_UPDATE here when an API
 | |
| 	 * is available for this as part of the new
 | |
| 	 * clock framework
 | |
| 	 */
 | |
| 
 | |
| 	list_for_each_entry(emif, &device_list, node) {
 | |
| 		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 | |
| 			set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Find addressing table entry based on the device's type and density */
 | |
| static const struct lpddr2_addressing *get_addressing_table(
 | |
| 	const struct ddr_device_info *device_info)
 | |
| {
 | |
| 	u32		index, type, density;
 | |
| 
 | |
| 	type = device_info->type;
 | |
| 	density = device_info->density;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case DDR_TYPE_LPDDR2_S4:
 | |
| 		index = density - 1;
 | |
| 		break;
 | |
| 	case DDR_TYPE_LPDDR2_S2:
 | |
| 		switch (density) {
 | |
| 		case DDR_DENSITY_1Gb:
 | |
| 		case DDR_DENSITY_2Gb:
 | |
| 			index = density + 3;
 | |
| 			break;
 | |
| 		default:
 | |
| 			index = density - 1;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return &lpddr2_jedec_addressing_table[index];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the the right timing table from the array of timing
 | |
|  * tables of the device using DDR clock frequency
 | |
|  */
 | |
| static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
 | |
| 		u32 freq)
 | |
| {
 | |
| 	u32				i, min, max, freq_nearest;
 | |
| 	const struct lpddr2_timings	*timings = NULL;
 | |
| 	const struct lpddr2_timings	*timings_arr = emif->plat_data->timings;
 | |
| 	struct				device *dev = emif->dev;
 | |
| 
 | |
| 	/* Start with a very high frequency - 1GHz */
 | |
| 	freq_nearest = 1000000000;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the timings table such that:
 | |
| 	 *  1. the frequency range covers the required frequency(safe) AND
 | |
| 	 *  2. the max_freq is closest to the required frequency(optimal)
 | |
| 	 */
 | |
| 	for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
 | |
| 		max = timings_arr[i].max_freq;
 | |
| 		min = timings_arr[i].min_freq;
 | |
| 		if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
 | |
| 			freq_nearest = max;
 | |
| 			timings = &timings_arr[i];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!timings)
 | |
| 		dev_err(dev, "%s: couldn't find timings for - %dHz\n",
 | |
| 			__func__, freq);
 | |
| 
 | |
| 	dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
 | |
| 		__func__, freq, freq_nearest);
 | |
| 
 | |
| 	return timings;
 | |
| }
 | |
| 
 | |
| static u32 get_sdram_ref_ctrl_shdw(u32 freq,
 | |
| 		const struct lpddr2_addressing *addressing)
 | |
| {
 | |
| 	u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
 | |
| 
 | |
| 	/* Scale down frequency and t_refi to avoid overflow */
 | |
| 	freq_khz = freq / 1000;
 | |
| 	t_refi = addressing->tREFI_ns / 100;
 | |
| 
 | |
| 	/*
 | |
| 	 * refresh rate to be set is 'tREFI(in us) * freq in MHz
 | |
| 	 * division by 10000 to account for change in units
 | |
| 	 */
 | |
| 	val = t_refi * freq_khz / 10000;
 | |
| 	ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
 | |
| 
 | |
| 	return ref_ctrl_shdw;
 | |
| }
 | |
| 
 | |
| static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
 | |
| 		const struct lpddr2_min_tck *min_tck,
 | |
| 		const struct lpddr2_addressing *addressing)
 | |
| {
 | |
| 	u32 tim1 = 0, val = 0;
 | |
| 
 | |
| 	val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
 | |
| 	tim1 |= val << T_WTR_SHIFT;
 | |
| 
 | |
| 	if (addressing->num_banks == B8)
 | |
| 		val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
 | |
| 	else
 | |
| 		val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
 | |
| 	tim1 |= (val - 1) << T_RRD_SHIFT;
 | |
| 
 | |
| 	val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
 | |
| 	tim1 |= val << T_RC_SHIFT;
 | |
| 
 | |
| 	val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
 | |
| 	tim1 |= (val - 1) << T_RAS_SHIFT;
 | |
| 
 | |
| 	val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
 | |
| 	tim1 |= val << T_WR_SHIFT;
 | |
| 
 | |
| 	val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
 | |
| 	tim1 |= val << T_RCD_SHIFT;
 | |
| 
 | |
| 	val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
 | |
| 	tim1 |= val << T_RP_SHIFT;
 | |
| 
 | |
| 	return tim1;
 | |
| }
 | |
| 
 | |
| static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
 | |
| 		const struct lpddr2_min_tck *min_tck,
 | |
| 		const struct lpddr2_addressing *addressing)
 | |
| {
 | |
| 	u32 tim1 = 0, val = 0;
 | |
| 
 | |
| 	val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
 | |
| 	tim1 = val << T_WTR_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
 | |
| 	 * to tFAW for de-rating
 | |
| 	 */
 | |
| 	if (addressing->num_banks == B8) {
 | |
| 		val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
 | |
| 	} else {
 | |
| 		val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
 | |
| 		val = max(min_tck->tRRD, val) - 1;
 | |
| 	}
 | |
| 	tim1 |= val << T_RRD_SHIFT;
 | |
| 
 | |
| 	val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
 | |
| 	tim1 |= (val - 1) << T_RC_SHIFT;
 | |
| 
 | |
| 	val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
 | |
| 	val = max(min_tck->tRASmin, val) - 1;
 | |
| 	tim1 |= val << T_RAS_SHIFT;
 | |
| 
 | |
| 	val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
 | |
| 	tim1 |= val << T_WR_SHIFT;
 | |
| 
 | |
| 	val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
 | |
| 	tim1 |= (val - 1) << T_RCD_SHIFT;
 | |
| 
 | |
| 	val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
 | |
| 	tim1 |= (val - 1) << T_RP_SHIFT;
 | |
| 
 | |
| 	return tim1;
 | |
| }
 | |
| 
 | |
| static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
 | |
| 		const struct lpddr2_min_tck *min_tck,
 | |
| 		const struct lpddr2_addressing *addressing,
 | |
| 		u32 type)
 | |
| {
 | |
| 	u32 tim2 = 0, val = 0;
 | |
| 
 | |
| 	val = min_tck->tCKE - 1;
 | |
| 	tim2 |= val << T_CKE_SHIFT;
 | |
| 
 | |
| 	val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
 | |
| 	tim2 |= val << T_RTP_SHIFT;
 | |
| 
 | |
| 	/* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
 | |
| 	val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
 | |
| 	tim2 |= val << T_XSNR_SHIFT;
 | |
| 
 | |
| 	/* XSRD same as XSNR for LPDDR2 */
 | |
| 	tim2 |= val << T_XSRD_SHIFT;
 | |
| 
 | |
| 	val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
 | |
| 	tim2 |= val << T_XP_SHIFT;
 | |
| 
 | |
| 	return tim2;
 | |
| }
 | |
| 
 | |
| static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
 | |
| 		const struct lpddr2_min_tck *min_tck,
 | |
| 		const struct lpddr2_addressing *addressing,
 | |
| 		u32 type, u32 ip_rev, u32 derated)
 | |
| {
 | |
| 	u32 tim3 = 0, val = 0, t_dqsck;
 | |
| 
 | |
| 	val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
 | |
| 	val = val > 0xF ? 0xF : val;
 | |
| 	tim3 |= val << T_RAS_MAX_SHIFT;
 | |
| 
 | |
| 	val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
 | |
| 	tim3 |= val << T_RFC_SHIFT;
 | |
| 
 | |
| 	t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
 | |
| 		timings->tDQSCK_max_derated : timings->tDQSCK_max;
 | |
| 	if (ip_rev == EMIF_4D5)
 | |
| 		val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
 | |
| 	else
 | |
| 		val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
 | |
| 
 | |
| 	tim3 |= val << T_TDQSCKMAX_SHIFT;
 | |
| 
 | |
| 	val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
 | |
| 	tim3 |= val << ZQ_ZQCS_SHIFT;
 | |
| 
 | |
| 	val = DIV_ROUND_UP(timings->tCKESR, t_ck);
 | |
| 	val = max(min_tck->tCKESR, val) - 1;
 | |
| 	tim3 |= val << T_CKESR_SHIFT;
 | |
| 
 | |
| 	if (ip_rev == EMIF_4D5) {
 | |
| 		tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
 | |
| 
 | |
| 		val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
 | |
| 		tim3 |= val << T_PDLL_UL_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	return tim3;
 | |
| }
 | |
| 
 | |
| static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
 | |
| 		bool cs1_used, bool cal_resistors_per_cs)
 | |
| {
 | |
| 	u32 zq = 0, val = 0;
 | |
| 
 | |
| 	val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
 | |
| 	zq |= val << ZQ_REFINTERVAL_SHIFT;
 | |
| 
 | |
| 	val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
 | |
| 	zq |= val << ZQ_ZQCL_MULT_SHIFT;
 | |
| 
 | |
| 	val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
 | |
| 	zq |= val << ZQ_ZQINIT_MULT_SHIFT;
 | |
| 
 | |
| 	zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
 | |
| 
 | |
| 	if (cal_resistors_per_cs)
 | |
| 		zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
 | |
| 	else
 | |
| 		zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
 | |
| 
 | |
| 	zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
 | |
| 
 | |
| 	val = cs1_used ? 1 : 0;
 | |
| 	zq |= val << ZQ_CS1EN_SHIFT;
 | |
| 
 | |
| 	return zq;
 | |
| }
 | |
| 
 | |
| static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
 | |
| 		const struct emif_custom_configs *custom_configs, bool cs1_used,
 | |
| 		u32 sdram_io_width, u32 emif_bus_width)
 | |
| {
 | |
| 	u32 alert = 0, interval, devcnt;
 | |
| 
 | |
| 	if (custom_configs && (custom_configs->mask &
 | |
| 				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
 | |
| 		interval = custom_configs->temp_alert_poll_interval_ms;
 | |
| 	else
 | |
| 		interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
 | |
| 
 | |
| 	interval *= 1000000;			/* Convert to ns */
 | |
| 	interval /= addressing->tREFI_ns;	/* Convert to refresh cycles */
 | |
| 	alert |= (interval << TA_REFINTERVAL_SHIFT);
 | |
| 
 | |
| 	/*
 | |
| 	 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
 | |
| 	 * also to this form and subtract to get TA_DEVCNT, which is
 | |
| 	 * in log2(x) form.
 | |
| 	 */
 | |
| 	emif_bus_width = __fls(emif_bus_width) - 1;
 | |
| 	devcnt = emif_bus_width - sdram_io_width;
 | |
| 	alert |= devcnt << TA_DEVCNT_SHIFT;
 | |
| 
 | |
| 	/* DEVWDT is in 'log2(x) - 3' form */
 | |
| 	alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
 | |
| 
 | |
| 	alert |= 1 << TA_SFEXITEN_SHIFT;
 | |
| 	alert |= 1 << TA_CS0EN_SHIFT;
 | |
| 	alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
 | |
| 
 | |
| 	return alert;
 | |
| }
 | |
| 
 | |
| static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
 | |
| {
 | |
| 	u32 idle = 0, val = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Maximum value in normal conditions and increased frequency
 | |
| 	 * when voltage is ramping
 | |
| 	 */
 | |
| 	if (volt_ramp)
 | |
| 		val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
 | |
| 	else
 | |
| 		val = 0x1FF;
 | |
| 
 | |
| 	/*
 | |
| 	 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
 | |
| 	 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
 | |
| 	 */
 | |
| 	idle |= val << DLL_CALIB_INTERVAL_SHIFT;
 | |
| 	idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
 | |
| 
 | |
| 	return idle;
 | |
| }
 | |
| 
 | |
| static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
 | |
| {
 | |
| 	u32 calib = 0, val = 0;
 | |
| 
 | |
| 	if (volt_ramp == DDR_VOLTAGE_RAMPING)
 | |
| 		val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
 | |
| 	else
 | |
| 		val = 0; /* Disabled when voltage is stable */
 | |
| 
 | |
| 	calib |= val << DLL_CALIB_INTERVAL_SHIFT;
 | |
| 	calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
 | |
| 
 | |
| 	return calib;
 | |
| }
 | |
| 
 | |
| static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
 | |
| 	u32 freq, u8 RL)
 | |
| {
 | |
| 	u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
 | |
| 
 | |
| 	val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
 | |
| 	phy |= val << READ_LATENCY_SHIFT_4D;
 | |
| 
 | |
| 	if (freq <= 100000000)
 | |
| 		val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
 | |
| 	else if (freq <= 200000000)
 | |
| 		val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
 | |
| 	else
 | |
| 		val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
 | |
| 
 | |
| 	phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
 | |
| 
 | |
| 	return phy;
 | |
| }
 | |
| 
 | |
| static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
 | |
| {
 | |
| 	u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
 | |
| 
 | |
| 	/*
 | |
| 	 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
 | |
| 	 * half-delay is not needed else set half-delay
 | |
| 	 */
 | |
| 	if (freq >= 265000000 && freq < 267000000)
 | |
| 		half_delay = 0;
 | |
| 	else
 | |
| 		half_delay = 1;
 | |
| 
 | |
| 	phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
 | |
| 	phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
 | |
| 			t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
 | |
| 
 | |
| 	return phy;
 | |
| }
 | |
| 
 | |
| static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
 | |
| {
 | |
| 	u32 fifo_we_slave_ratio;
 | |
| 
 | |
| 	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 | |
| 		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
 | |
| 
 | |
| 	return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
 | |
| 		fifo_we_slave_ratio << 22;
 | |
| }
 | |
| 
 | |
| static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
 | |
| {
 | |
| 	u32 fifo_we_slave_ratio;
 | |
| 
 | |
| 	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 | |
| 		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
 | |
| 
 | |
| 	return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
 | |
| 		fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
 | |
| }
 | |
| 
 | |
| static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
 | |
| {
 | |
| 	u32 fifo_we_slave_ratio;
 | |
| 
 | |
| 	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 | |
| 		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
 | |
| 
 | |
| 	return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
 | |
| 		fifo_we_slave_ratio << 13;
 | |
| }
 | |
| 
 | |
| static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
 | |
| {
 | |
| 	u32 pwr_mgmt_ctrl	= 0, timeout;
 | |
| 	u32 lpmode		= EMIF_LP_MODE_SELF_REFRESH;
 | |
| 	u32 timeout_perf	= EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
 | |
| 	u32 timeout_pwr		= EMIF_LP_MODE_TIMEOUT_POWER;
 | |
| 	u32 freq_threshold	= EMIF_LP_MODE_FREQ_THRESHOLD;
 | |
| 	u32 mask;
 | |
| 	u8 shift;
 | |
| 
 | |
| 	struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
 | |
| 
 | |
| 	if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
 | |
| 		lpmode		= cust_cfgs->lpmode;
 | |
| 		timeout_perf	= cust_cfgs->lpmode_timeout_performance;
 | |
| 		timeout_pwr	= cust_cfgs->lpmode_timeout_power;
 | |
| 		freq_threshold  = cust_cfgs->lpmode_freq_threshold;
 | |
| 	}
 | |
| 
 | |
| 	/* Timeout based on DDR frequency */
 | |
| 	timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
 | |
| 
 | |
| 	/*
 | |
| 	 * The value to be set in register is "log2(timeout) - 3"
 | |
| 	 * if timeout < 16 load 0 in register
 | |
| 	 * if timeout is not a power of 2, round to next highest power of 2
 | |
| 	 */
 | |
| 	if (timeout < 16) {
 | |
| 		timeout = 0;
 | |
| 	} else {
 | |
| 		if (timeout & (timeout - 1))
 | |
| 			timeout <<= 1;
 | |
| 		timeout = __fls(timeout) - 3;
 | |
| 	}
 | |
| 
 | |
| 	switch (lpmode) {
 | |
| 	case EMIF_LP_MODE_CLOCK_STOP:
 | |
| 		shift = CS_TIM_SHIFT;
 | |
| 		mask = CS_TIM_MASK;
 | |
| 		break;
 | |
| 	case EMIF_LP_MODE_SELF_REFRESH:
 | |
| 		/* Workaround for errata i735 */
 | |
| 		if (timeout < 6)
 | |
| 			timeout = 6;
 | |
| 
 | |
| 		shift = SR_TIM_SHIFT;
 | |
| 		mask = SR_TIM_MASK;
 | |
| 		break;
 | |
| 	case EMIF_LP_MODE_PWR_DN:
 | |
| 		shift = PD_TIM_SHIFT;
 | |
| 		mask = PD_TIM_MASK;
 | |
| 		break;
 | |
| 	case EMIF_LP_MODE_DISABLE:
 | |
| 	default:
 | |
| 		mask = 0;
 | |
| 		shift = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	/* Round to maximum in case of overflow, BUT warn! */
 | |
| 	if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
 | |
| 		pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
 | |
| 		       lpmode,
 | |
| 		       timeout_perf,
 | |
| 		       timeout_pwr,
 | |
| 		       freq_threshold);
 | |
| 		WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
 | |
| 		     timeout, mask >> shift);
 | |
| 		timeout = mask >> shift;
 | |
| 	}
 | |
| 
 | |
| 	/* Setup required timing */
 | |
| 	pwr_mgmt_ctrl = (timeout << shift) & mask;
 | |
| 	/* setup a default mask for rest of the modes */
 | |
| 	pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
 | |
| 			  ~mask;
 | |
| 
 | |
| 	/* No CS_TIM in EMIF_4D5 */
 | |
| 	if (ip_rev == EMIF_4D5)
 | |
| 		pwr_mgmt_ctrl &= ~CS_TIM_MASK;
 | |
| 
 | |
| 	pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
 | |
| 
 | |
| 	return pwr_mgmt_ctrl;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the temperature level of the EMIF instance:
 | |
|  * Reads the MR4 register of attached SDRAM parts to find out the temperature
 | |
|  * level. If there are two parts attached(one on each CS), then the temperature
 | |
|  * level for the EMIF instance is the higher of the two temperatures.
 | |
|  */
 | |
| static void get_temperature_level(struct emif_data *emif)
 | |
| {
 | |
| 	u32		temp, temperature_level;
 | |
| 	void __iomem	*base;
 | |
| 
 | |
| 	base = emif->base;
 | |
| 
 | |
| 	/* Read mode register 4 */
 | |
| 	writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 | |
| 	temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 | |
| 	temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
 | |
| 				MR4_SDRAM_REF_RATE_SHIFT;
 | |
| 
 | |
| 	if (emif->plat_data->device_info->cs1_used) {
 | |
| 		writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 | |
| 		temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 | |
| 		temp = (temp & MR4_SDRAM_REF_RATE_MASK)
 | |
| 				>> MR4_SDRAM_REF_RATE_SHIFT;
 | |
| 		temperature_level = max(temp, temperature_level);
 | |
| 	}
 | |
| 
 | |
| 	/* treat everything less than nominal(3) in MR4 as nominal */
 | |
| 	if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
 | |
| 		temperature_level = SDRAM_TEMP_NOMINAL;
 | |
| 
 | |
| 	/* if we get reserved value in MR4 persist with the existing value */
 | |
| 	if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
 | |
| 		emif->temperature_level = temperature_level;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Program EMIF shadow registers that are not dependent on temperature
 | |
|  * or voltage
 | |
|  */
 | |
| static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
 | |
| {
 | |
| 	void __iomem	*base = emif->base;
 | |
| 
 | |
| 	writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
 | |
| 	writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
 | |
| 	writel(regs->pwr_mgmt_ctrl_shdw,
 | |
| 	       base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
 | |
| 
 | |
| 	/* Settings specific for EMIF4D5 */
 | |
| 	if (emif->plat_data->ip_rev != EMIF_4D5)
 | |
| 		return;
 | |
| 	writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
 | |
| 	writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
 | |
| 	writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When voltage ramps dll calibration and forced read idle should
 | |
|  * happen more often
 | |
|  */
 | |
| static void setup_volt_sensitive_regs(struct emif_data *emif,
 | |
| 		struct emif_regs *regs, u32 volt_state)
 | |
| {
 | |
| 	u32		calib_ctrl;
 | |
| 	void __iomem	*base = emif->base;
 | |
| 
 | |
| 	/*
 | |
| 	 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
 | |
| 	 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
 | |
| 	 * is an alias of the respective read_idle_ctrl_shdw_* (members of
 | |
| 	 * a union). So, the below code takes care of both cases
 | |
| 	 */
 | |
| 	if (volt_state == DDR_VOLTAGE_RAMPING)
 | |
| 		calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
 | |
| 	else
 | |
| 		calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
 | |
| 
 | |
| 	writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * setup_temperature_sensitive_regs() - set the timings for temperature
 | |
|  * sensitive registers. This happens once at initialisation time based
 | |
|  * on the temperature at boot time and subsequently based on the temperature
 | |
|  * alert interrupt. Temperature alert can happen when the temperature
 | |
|  * increases or drops. So this function can have the effect of either
 | |
|  * derating the timings or going back to nominal values.
 | |
|  */
 | |
| static void setup_temperature_sensitive_regs(struct emif_data *emif,
 | |
| 		struct emif_regs *regs)
 | |
| {
 | |
| 	u32		tim1, tim3, ref_ctrl, type;
 | |
| 	void __iomem	*base = emif->base;
 | |
| 	u32		temperature;
 | |
| 
 | |
| 	type = emif->plat_data->device_info->type;
 | |
| 
 | |
| 	tim1 = regs->sdram_tim1_shdw;
 | |
| 	tim3 = regs->sdram_tim3_shdw;
 | |
| 	ref_ctrl = regs->ref_ctrl_shdw;
 | |
| 
 | |
| 	/* No de-rating for non-lpddr2 devices */
 | |
| 	if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
 | |
| 		goto out;
 | |
| 
 | |
| 	temperature = emif->temperature_level;
 | |
| 	if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 | |
| 		ref_ctrl = regs->ref_ctrl_shdw_derated;
 | |
| 	} else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
 | |
| 		tim1 = regs->sdram_tim1_shdw_derated;
 | |
| 		tim3 = regs->sdram_tim3_shdw_derated;
 | |
| 		ref_ctrl = regs->ref_ctrl_shdw_derated;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
 | |
| 	writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
 | |
| 	writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
 | |
| }
 | |
| 
 | |
| static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
 | |
| {
 | |
| 	u32		old_temp_level;
 | |
| 	irqreturn_t	ret = IRQ_HANDLED;
 | |
| 	struct emif_custom_configs *custom_configs;
 | |
| 
 | |
| 	spin_lock_irqsave(&emif_lock, irq_state);
 | |
| 	old_temp_level = emif->temperature_level;
 | |
| 	get_temperature_level(emif);
 | |
| 
 | |
| 	if (unlikely(emif->temperature_level == old_temp_level)) {
 | |
| 		goto out;
 | |
| 	} else if (!emif->curr_regs) {
 | |
| 		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	custom_configs = emif->plat_data->custom_configs;
 | |
| 
 | |
| 	/*
 | |
| 	 * IF we detect higher than "nominal rating" from DDR sensor
 | |
| 	 * on an unsupported DDR part, shutdown system
 | |
| 	 */
 | |
| 	if (custom_configs && !(custom_configs->mask &
 | |
| 				EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
 | |
| 		if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 | |
| 			dev_err(emif->dev,
 | |
| 				"%s:NOT Extended temperature capable memory."
 | |
| 				"Converting MR4=0x%02x as shutdown event\n",
 | |
| 				__func__, emif->temperature_level);
 | |
| 			/*
 | |
| 			 * Temperature far too high - do kernel_power_off()
 | |
| 			 * from thread context
 | |
| 			 */
 | |
| 			emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
 | |
| 			ret = IRQ_WAKE_THREAD;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (emif->temperature_level < old_temp_level ||
 | |
| 		emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
 | |
| 		/*
 | |
| 		 * Temperature coming down - defer handling to thread OR
 | |
| 		 * Temperature far too high - do kernel_power_off() from
 | |
| 		 * thread context
 | |
| 		 */
 | |
| 		ret = IRQ_WAKE_THREAD;
 | |
| 	} else {
 | |
| 		/* Temperature is going up - handle immediately */
 | |
| 		setup_temperature_sensitive_regs(emif, emif->curr_regs);
 | |
| 		do_freq_update();
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&emif_lock, irq_state);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
 | |
| {
 | |
| 	u32			interrupts;
 | |
| 	struct emif_data	*emif = dev_id;
 | |
| 	void __iomem		*base = emif->base;
 | |
| 	struct device		*dev = emif->dev;
 | |
| 	irqreturn_t		ret = IRQ_HANDLED;
 | |
| 
 | |
| 	/* Save the status and clear it */
 | |
| 	interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 | |
| 	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle temperature alert
 | |
| 	 * Temperature alert should be same for all ports
 | |
| 	 * So, it's enough to process it only for one of the ports
 | |
| 	 */
 | |
| 	if (interrupts & TA_SYS_MASK)
 | |
| 		ret = handle_temp_alert(base, emif);
 | |
| 
 | |
| 	if (interrupts & ERR_SYS_MASK)
 | |
| 		dev_err(dev, "Access error from SYS port - %x\n", interrupts);
 | |
| 
 | |
| 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
 | |
| 		/* Save the status and clear it */
 | |
| 		interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
 | |
| 		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
 | |
| 
 | |
| 		if (interrupts & ERR_LL_MASK)
 | |
| 			dev_err(dev, "Access error from LL port - %x\n",
 | |
| 				interrupts);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
 | |
| {
 | |
| 	struct emif_data	*emif = dev_id;
 | |
| 
 | |
| 	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
 | |
| 		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
 | |
| 
 | |
| 		/* If we have Power OFF ability, use it, else try restarting */
 | |
| 		if (pm_power_off) {
 | |
| 			kernel_power_off();
 | |
| 		} else {
 | |
| 			WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
 | |
| 			kernel_restart("SDRAM Over-temp Emergency restart");
 | |
| 		}
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&emif_lock, irq_state);
 | |
| 
 | |
| 	if (emif->curr_regs) {
 | |
| 		setup_temperature_sensitive_regs(emif, emif->curr_regs);
 | |
| 		do_freq_update();
 | |
| 	} else {
 | |
| 		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&emif_lock, irq_state);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static void clear_all_interrupts(struct emif_data *emif)
 | |
| {
 | |
| 	void __iomem	*base = emif->base;
 | |
| 
 | |
| 	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
 | |
| 		base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 | |
| 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
 | |
| 		writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
 | |
| 			base + EMIF_LL_OCP_INTERRUPT_STATUS);
 | |
| }
 | |
| 
 | |
| static void disable_and_clear_all_interrupts(struct emif_data *emif)
 | |
| {
 | |
| 	void __iomem		*base = emif->base;
 | |
| 
 | |
| 	/* Disable all interrupts */
 | |
| 	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
 | |
| 		base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
 | |
| 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
 | |
| 		writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
 | |
| 			base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
 | |
| 
 | |
| 	/* Clear all interrupts */
 | |
| 	clear_all_interrupts(emif);
 | |
| }
 | |
| 
 | |
| static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
 | |
| {
 | |
| 	u32		interrupts, type;
 | |
| 	void __iomem	*base = emif->base;
 | |
| 
 | |
| 	type = emif->plat_data->device_info->type;
 | |
| 
 | |
| 	clear_all_interrupts(emif);
 | |
| 
 | |
| 	/* Enable interrupts for SYS interface */
 | |
| 	interrupts = EN_ERR_SYS_MASK;
 | |
| 	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
 | |
| 		interrupts |= EN_TA_SYS_MASK;
 | |
| 	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
 | |
| 
 | |
| 	/* Enable interrupts for LL interface */
 | |
| 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
 | |
| 		/* TA need not be enabled for LL */
 | |
| 		interrupts = EN_ERR_LL_MASK;
 | |
| 		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
 | |
| 	}
 | |
| 
 | |
| 	/* setup IRQ handlers */
 | |
| 	return devm_request_threaded_irq(emif->dev, irq,
 | |
| 				    emif_interrupt_handler,
 | |
| 				    emif_threaded_isr,
 | |
| 				    0, dev_name(emif->dev),
 | |
| 				    emif);
 | |
| 
 | |
| }
 | |
| 
 | |
| static void __init_or_module emif_onetime_settings(struct emif_data *emif)
 | |
| {
 | |
| 	u32				pwr_mgmt_ctrl, zq, temp_alert_cfg;
 | |
| 	void __iomem			*base = emif->base;
 | |
| 	const struct lpddr2_addressing	*addressing;
 | |
| 	const struct ddr_device_info	*device_info;
 | |
| 
 | |
| 	device_info = emif->plat_data->device_info;
 | |
| 	addressing = get_addressing_table(device_info);
 | |
| 
 | |
| 	/*
 | |
| 	 * Init power management settings
 | |
| 	 * We don't know the frequency yet. Use a high frequency
 | |
| 	 * value for a conservative timeout setting
 | |
| 	 */
 | |
| 	pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
 | |
| 			emif->plat_data->ip_rev);
 | |
| 	emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
 | |
| 	writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
 | |
| 
 | |
| 	/* Init ZQ calibration settings */
 | |
| 	zq = get_zq_config_reg(addressing, device_info->cs1_used,
 | |
| 		device_info->cal_resistors_per_cs);
 | |
| 	writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
 | |
| 
 | |
| 	/* Check temperature level temperature level*/
 | |
| 	get_temperature_level(emif);
 | |
| 	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
 | |
| 		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
 | |
| 
 | |
| 	/* Init temperature polling */
 | |
| 	temp_alert_cfg = get_temp_alert_config(addressing,
 | |
| 		emif->plat_data->custom_configs, device_info->cs1_used,
 | |
| 		device_info->io_width, get_emif_bus_width(emif));
 | |
| 	writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
 | |
| 
 | |
| 	/*
 | |
| 	 * Program external PHY control registers that are not frequency
 | |
| 	 * dependent
 | |
| 	 */
 | |
| 	if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
 | |
| 		return;
 | |
| 	writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
 | |
| 	writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
 | |
| }
 | |
| 
 | |
| static void get_default_timings(struct emif_data *emif)
 | |
| {
 | |
| 	struct emif_platform_data *pd = emif->plat_data;
 | |
| 
 | |
| 	pd->timings		= lpddr2_jedec_timings;
 | |
| 	pd->timings_arr_size	= ARRAY_SIZE(lpddr2_jedec_timings);
 | |
| 
 | |
| 	dev_warn(emif->dev, "%s: using default timings\n", __func__);
 | |
| }
 | |
| 
 | |
| static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
 | |
| 		u32 ip_rev, struct device *dev)
 | |
| {
 | |
| 	int valid;
 | |
| 
 | |
| 	valid = (type == DDR_TYPE_LPDDR2_S4 ||
 | |
| 			type == DDR_TYPE_LPDDR2_S2)
 | |
| 		&& (density >= DDR_DENSITY_64Mb
 | |
| 			&& density <= DDR_DENSITY_8Gb)
 | |
| 		&& (io_width >= DDR_IO_WIDTH_8
 | |
| 			&& io_width <= DDR_IO_WIDTH_32);
 | |
| 
 | |
| 	/* Combinations of EMIF and PHY revisions that we support today */
 | |
| 	switch (ip_rev) {
 | |
| 	case EMIF_4D:
 | |
| 		valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
 | |
| 		break;
 | |
| 	case EMIF_4D5:
 | |
| 		valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
 | |
| 		break;
 | |
| 	default:
 | |
| 		valid = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!valid)
 | |
| 		dev_err(dev, "%s: invalid DDR details\n", __func__);
 | |
| 	return valid;
 | |
| }
 | |
| 
 | |
| static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
 | |
| 		struct device *dev)
 | |
| {
 | |
| 	int valid = 1;
 | |
| 
 | |
| 	if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
 | |
| 		(cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
 | |
| 		valid = cust_cfgs->lpmode_freq_threshold &&
 | |
| 			cust_cfgs->lpmode_timeout_performance &&
 | |
| 			cust_cfgs->lpmode_timeout_power;
 | |
| 
 | |
| 	if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
 | |
| 		valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
 | |
| 
 | |
| 	if (!valid)
 | |
| 		dev_warn(dev, "%s: invalid custom configs\n", __func__);
 | |
| 
 | |
| 	return valid;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_OF)
 | |
| static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
 | |
| 		struct emif_data *emif)
 | |
| {
 | |
| 	struct emif_custom_configs	*cust_cfgs = NULL;
 | |
| 	int				len;
 | |
| 	const __be32			*lpmode, *poll_intvl;
 | |
| 
 | |
| 	lpmode = of_get_property(np_emif, "low-power-mode", &len);
 | |
| 	poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
 | |
| 
 | |
| 	if (lpmode || poll_intvl)
 | |
| 		cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
 | |
| 			GFP_KERNEL);
 | |
| 
 | |
| 	if (!cust_cfgs)
 | |
| 		return;
 | |
| 
 | |
| 	if (lpmode) {
 | |
| 		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
 | |
| 		cust_cfgs->lpmode = be32_to_cpup(lpmode);
 | |
| 		of_property_read_u32(np_emif,
 | |
| 				"low-power-mode-timeout-performance",
 | |
| 				&cust_cfgs->lpmode_timeout_performance);
 | |
| 		of_property_read_u32(np_emif,
 | |
| 				"low-power-mode-timeout-power",
 | |
| 				&cust_cfgs->lpmode_timeout_power);
 | |
| 		of_property_read_u32(np_emif,
 | |
| 				"low-power-mode-freq-threshold",
 | |
| 				&cust_cfgs->lpmode_freq_threshold);
 | |
| 	}
 | |
| 
 | |
| 	if (poll_intvl) {
 | |
| 		cust_cfgs->mask |=
 | |
| 				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
 | |
| 		cust_cfgs->temp_alert_poll_interval_ms =
 | |
| 						be32_to_cpup(poll_intvl);
 | |
| 	}
 | |
| 
 | |
| 	if (of_find_property(np_emif, "extended-temp-part", &len))
 | |
| 		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
 | |
| 
 | |
| 	if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
 | |
| 		devm_kfree(emif->dev, cust_cfgs);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	emif->plat_data->custom_configs = cust_cfgs;
 | |
| }
 | |
| 
 | |
| static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
 | |
| 		struct device_node *np_ddr,
 | |
| 		struct ddr_device_info *dev_info)
 | |
| {
 | |
| 	u32 density = 0, io_width = 0;
 | |
| 	int len;
 | |
| 
 | |
| 	if (of_find_property(np_emif, "cs1-used", &len))
 | |
| 		dev_info->cs1_used = true;
 | |
| 
 | |
| 	if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
 | |
| 		dev_info->cal_resistors_per_cs = true;
 | |
| 
 | |
| 	if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
 | |
| 		dev_info->type = DDR_TYPE_LPDDR2_S4;
 | |
| 	else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
 | |
| 		dev_info->type = DDR_TYPE_LPDDR2_S2;
 | |
| 
 | |
| 	of_property_read_u32(np_ddr, "density", &density);
 | |
| 	of_property_read_u32(np_ddr, "io-width", &io_width);
 | |
| 
 | |
| 	/* Convert from density in Mb to the density encoding in jedc_ddr.h */
 | |
| 	if (density & (density - 1))
 | |
| 		dev_info->density = 0;
 | |
| 	else
 | |
| 		dev_info->density = __fls(density) - 5;
 | |
| 
 | |
| 	/* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
 | |
| 	if (io_width & (io_width - 1))
 | |
| 		dev_info->io_width = 0;
 | |
| 	else
 | |
| 		dev_info->io_width = __fls(io_width) - 1;
 | |
| }
 | |
| 
 | |
| static struct emif_data * __init_or_module of_get_memory_device_details(
 | |
| 		struct device_node *np_emif, struct device *dev)
 | |
| {
 | |
| 	struct emif_data		*emif = NULL;
 | |
| 	struct ddr_device_info		*dev_info = NULL;
 | |
| 	struct emif_platform_data	*pd = NULL;
 | |
| 	struct device_node		*np_ddr;
 | |
| 	int				len;
 | |
| 
 | |
| 	np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
 | |
| 	if (!np_ddr)
 | |
| 		goto error;
 | |
| 	emif	= devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
 | |
| 	pd	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
 | |
| 	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
 | |
| 
 | |
| 	if (!emif || !pd || !dev_info) {
 | |
| 		dev_err(dev, "%s: Out of memory!!\n",
 | |
| 			__func__);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	emif->plat_data		= pd;
 | |
| 	pd->device_info		= dev_info;
 | |
| 	emif->dev		= dev;
 | |
| 	emif->np_ddr		= np_ddr;
 | |
| 	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
 | |
| 
 | |
| 	if (of_device_is_compatible(np_emif, "ti,emif-4d"))
 | |
| 		emif->plat_data->ip_rev = EMIF_4D;
 | |
| 	else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
 | |
| 		emif->plat_data->ip_rev = EMIF_4D5;
 | |
| 
 | |
| 	of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
 | |
| 
 | |
| 	if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
 | |
| 		pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
 | |
| 
 | |
| 	of_get_ddr_info(np_emif, np_ddr, dev_info);
 | |
| 	if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
 | |
| 			pd->device_info->io_width, pd->phy_type, pd->ip_rev,
 | |
| 			emif->dev)) {
 | |
| 		dev_err(dev, "%s: invalid device data!!\n", __func__);
 | |
| 		goto error;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * For EMIF instances other than EMIF1 see if the devices connected
 | |
| 	 * are exactly same as on EMIF1(which is typically the case). If so,
 | |
| 	 * mark it as a duplicate of EMIF1. This will save some memory and
 | |
| 	 * computation.
 | |
| 	 */
 | |
| 	if (emif1 && emif1->np_ddr == np_ddr) {
 | |
| 		emif->duplicate = true;
 | |
| 		goto out;
 | |
| 	} else if (emif1) {
 | |
| 		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
 | |
| 			__func__);
 | |
| 	}
 | |
| 
 | |
| 	of_get_custom_configs(np_emif, emif);
 | |
| 	emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
 | |
| 					emif->plat_data->device_info->type,
 | |
| 					&emif->plat_data->timings_arr_size);
 | |
| 
 | |
| 	emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
 | |
| 	goto out;
 | |
| 
 | |
| error:
 | |
| 	return NULL;
 | |
| out:
 | |
| 	return emif;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static struct emif_data * __init_or_module of_get_memory_device_details(
 | |
| 		struct device_node *np_emif, struct device *dev)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static struct emif_data *__init_or_module get_device_details(
 | |
| 		struct platform_device *pdev)
 | |
| {
 | |
| 	u32				size;
 | |
| 	struct emif_data		*emif = NULL;
 | |
| 	struct ddr_device_info		*dev_info;
 | |
| 	struct emif_custom_configs	*cust_cfgs;
 | |
| 	struct emif_platform_data	*pd;
 | |
| 	struct device			*dev;
 | |
| 	void				*temp;
 | |
| 
 | |
| 	pd = pdev->dev.platform_data;
 | |
| 	dev = &pdev->dev;
 | |
| 
 | |
| 	if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
 | |
| 			pd->device_info->density, pd->device_info->io_width,
 | |
| 			pd->phy_type, pd->ip_rev, dev))) {
 | |
| 		dev_err(dev, "%s: invalid device data\n", __func__);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	emif	= devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
 | |
| 	temp	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
 | |
| 	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
 | |
| 
 | |
| 	if (!emif || !pd || !dev_info) {
 | |
| 		dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(temp, pd, sizeof(*pd));
 | |
| 	pd = temp;
 | |
| 	memcpy(dev_info, pd->device_info, sizeof(*dev_info));
 | |
| 
 | |
| 	pd->device_info		= dev_info;
 | |
| 	emif->plat_data		= pd;
 | |
| 	emif->dev		= dev;
 | |
| 	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * For EMIF instances other than EMIF1 see if the devices connected
 | |
| 	 * are exactly same as on EMIF1(which is typically the case). If so,
 | |
| 	 * mark it as a duplicate of EMIF1 and skip copying timings data.
 | |
| 	 * This will save some memory and some computation later.
 | |
| 	 */
 | |
| 	emif->duplicate = emif1 && (memcmp(dev_info,
 | |
| 		emif1->plat_data->device_info,
 | |
| 		sizeof(struct ddr_device_info)) == 0);
 | |
| 
 | |
| 	if (emif->duplicate) {
 | |
| 		pd->timings = NULL;
 | |
| 		pd->min_tck = NULL;
 | |
| 		goto out;
 | |
| 	} else if (emif1) {
 | |
| 		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
 | |
| 			__func__);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy custom configs - ignore allocation error, if any, as
 | |
| 	 * custom_configs is not very critical
 | |
| 	 */
 | |
| 	cust_cfgs = pd->custom_configs;
 | |
| 	if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
 | |
| 		temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
 | |
| 		if (temp)
 | |
| 			memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
 | |
| 		else
 | |
| 			dev_warn(dev, "%s:%d: allocation error\n", __func__,
 | |
| 				__LINE__);
 | |
| 		pd->custom_configs = temp;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy timings and min-tck values from platform data. If it is not
 | |
| 	 * available or if memory allocation fails, use JEDEC defaults
 | |
| 	 */
 | |
| 	size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
 | |
| 	if (pd->timings) {
 | |
| 		temp = devm_kzalloc(dev, size, GFP_KERNEL);
 | |
| 		if (temp) {
 | |
| 			memcpy(temp, pd->timings, size);
 | |
| 			pd->timings = temp;
 | |
| 		} else {
 | |
| 			dev_warn(dev, "%s:%d: allocation error\n", __func__,
 | |
| 				__LINE__);
 | |
| 			get_default_timings(emif);
 | |
| 		}
 | |
| 	} else {
 | |
| 		get_default_timings(emif);
 | |
| 	}
 | |
| 
 | |
| 	if (pd->min_tck) {
 | |
| 		temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
 | |
| 		if (temp) {
 | |
| 			memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
 | |
| 			pd->min_tck = temp;
 | |
| 		} else {
 | |
| 			dev_warn(dev, "%s:%d: allocation error\n", __func__,
 | |
| 				__LINE__);
 | |
| 			pd->min_tck = &lpddr2_jedec_min_tck;
 | |
| 		}
 | |
| 	} else {
 | |
| 		pd->min_tck = &lpddr2_jedec_min_tck;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return emif;
 | |
| 
 | |
| error:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int __init_or_module emif_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct emif_data	*emif;
 | |
| 	struct resource		*res;
 | |
| 	int			irq;
 | |
| 
 | |
| 	if (pdev->dev.of_node)
 | |
| 		emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
 | |
| 	else
 | |
| 		emif = get_device_details(pdev);
 | |
| 
 | |
| 	if (!emif) {
 | |
| 		pr_err("%s: error getting device data\n", __func__);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	list_add(&emif->node, &device_list);
 | |
| 	emif->addressing = get_addressing_table(emif->plat_data->device_info);
 | |
| 
 | |
| 	/* Save pointers to each other in emif and device structures */
 | |
| 	emif->dev = &pdev->dev;
 | |
| 	platform_set_drvdata(pdev, emif);
 | |
| 
 | |
| 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 | |
| 	emif->base = devm_ioremap_resource(emif->dev, res);
 | |
| 	if (IS_ERR(emif->base))
 | |
| 		goto error;
 | |
| 
 | |
| 	irq = platform_get_irq(pdev, 0);
 | |
| 	if (irq < 0) {
 | |
| 		dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
 | |
| 			__func__, irq);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	emif_onetime_settings(emif);
 | |
| 	emif_debugfs_init(emif);
 | |
| 	disable_and_clear_all_interrupts(emif);
 | |
| 	setup_interrupts(emif, irq);
 | |
| 
 | |
| 	/* One-time actions taken on probing the first device */
 | |
| 	if (!emif1) {
 | |
| 		emif1 = emif;
 | |
| 		spin_lock_init(&emif_lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * TODO: register notifiers for frequency and voltage
 | |
| 		 * change here once the respective frameworks are
 | |
| 		 * available
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
 | |
| 		__func__, emif->base, irq);
 | |
| 
 | |
| 	return 0;
 | |
| error:
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static int __exit emif_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct emif_data *emif = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	emif_debugfs_exit(emif);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void emif_shutdown(struct platform_device *pdev)
 | |
| {
 | |
| 	struct emif_data	*emif = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	disable_and_clear_all_interrupts(emif);
 | |
| }
 | |
| 
 | |
| static int get_emif_reg_values(struct emif_data *emif, u32 freq,
 | |
| 		struct emif_regs *regs)
 | |
| {
 | |
| 	u32				cs1_used, ip_rev, phy_type;
 | |
| 	u32				cl, type;
 | |
| 	const struct lpddr2_timings	*timings;
 | |
| 	const struct lpddr2_min_tck	*min_tck;
 | |
| 	const struct ddr_device_info	*device_info;
 | |
| 	const struct lpddr2_addressing	*addressing;
 | |
| 	struct emif_data		*emif_for_calc;
 | |
| 	struct device			*dev;
 | |
| 	const struct emif_custom_configs *custom_configs;
 | |
| 
 | |
| 	dev = emif->dev;
 | |
| 	/*
 | |
| 	 * If the devices on this EMIF instance is duplicate of EMIF1,
 | |
| 	 * use EMIF1 details for the calculation
 | |
| 	 */
 | |
| 	emif_for_calc	= emif->duplicate ? emif1 : emif;
 | |
| 	timings		= get_timings_table(emif_for_calc, freq);
 | |
| 	addressing	= emif_for_calc->addressing;
 | |
| 	if (!timings || !addressing) {
 | |
| 		dev_err(dev, "%s: not enough data available for %dHz",
 | |
| 			__func__, freq);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	device_info	= emif_for_calc->plat_data->device_info;
 | |
| 	type		= device_info->type;
 | |
| 	cs1_used	= device_info->cs1_used;
 | |
| 	ip_rev		= emif_for_calc->plat_data->ip_rev;
 | |
| 	phy_type	= emif_for_calc->plat_data->phy_type;
 | |
| 
 | |
| 	min_tck		= emif_for_calc->plat_data->min_tck;
 | |
| 	custom_configs	= emif_for_calc->plat_data->custom_configs;
 | |
| 
 | |
| 	set_ddr_clk_period(freq);
 | |
| 
 | |
| 	regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
 | |
| 	regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
 | |
| 			addressing);
 | |
| 	regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
 | |
| 			addressing, type);
 | |
| 	regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
 | |
| 		addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
 | |
| 
 | |
| 	cl = get_cl(emif);
 | |
| 
 | |
| 	if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
 | |
| 		regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
 | |
| 			timings, freq, cl);
 | |
| 	} else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
 | |
| 		regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
 | |
| 		regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
 | |
| 		regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
 | |
| 		regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
 | |
| 	} else {
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* Only timeout values in pwr_mgmt_ctrl_shdw register */
 | |
| 	regs->pwr_mgmt_ctrl_shdw =
 | |
| 		get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
 | |
| 		(CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
 | |
| 
 | |
| 	if (ip_rev & EMIF_4D) {
 | |
| 		regs->read_idle_ctrl_shdw_normal =
 | |
| 			get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
 | |
| 
 | |
| 		regs->read_idle_ctrl_shdw_volt_ramp =
 | |
| 			get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
 | |
| 	} else if (ip_rev & EMIF_4D5) {
 | |
| 		regs->dll_calib_ctrl_shdw_normal =
 | |
| 			get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
 | |
| 
 | |
| 		regs->dll_calib_ctrl_shdw_volt_ramp =
 | |
| 			get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
 | |
| 	}
 | |
| 
 | |
| 	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
 | |
| 		regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
 | |
| 			addressing);
 | |
| 
 | |
| 		regs->sdram_tim1_shdw_derated =
 | |
| 			get_sdram_tim_1_shdw_derated(timings, min_tck,
 | |
| 				addressing);
 | |
| 
 | |
| 		regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
 | |
| 			min_tck, addressing, type, ip_rev,
 | |
| 			EMIF_DERATED_TIMINGS);
 | |
| 	}
 | |
| 
 | |
| 	regs->freq = freq;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * get_regs() - gets the cached emif_regs structure for a given EMIF instance
 | |
|  * given frequency(freq):
 | |
|  *
 | |
|  * As an optimisation, every EMIF instance other than EMIF1 shares the
 | |
|  * register cache with EMIF1 if the devices connected on this instance
 | |
|  * are same as that on EMIF1(indicated by the duplicate flag)
 | |
|  *
 | |
|  * If we do not have an entry corresponding to the frequency given, we
 | |
|  * allocate a new entry and calculate the values
 | |
|  *
 | |
|  * Upon finding the right reg dump, save it in curr_regs. It can be
 | |
|  * directly used for thermal de-rating and voltage ramping changes.
 | |
|  */
 | |
| static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
 | |
| {
 | |
| 	int			i;
 | |
| 	struct emif_regs	**regs_cache;
 | |
| 	struct emif_regs	*regs = NULL;
 | |
| 	struct device		*dev;
 | |
| 
 | |
| 	dev = emif->dev;
 | |
| 	if (emif->curr_regs && emif->curr_regs->freq == freq) {
 | |
| 		dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
 | |
| 		return emif->curr_regs;
 | |
| 	}
 | |
| 
 | |
| 	if (emif->duplicate)
 | |
| 		regs_cache = emif1->regs_cache;
 | |
| 	else
 | |
| 		regs_cache = emif->regs_cache;
 | |
| 
 | |
| 	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
 | |
| 		if (regs_cache[i]->freq == freq) {
 | |
| 			regs = regs_cache[i];
 | |
| 			dev_dbg(dev,
 | |
| 				"%s: reg dump found in reg cache for %u Hz\n",
 | |
| 				__func__, freq);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we don't have an entry for this frequency in the cache create one
 | |
| 	 * and calculate the values
 | |
| 	 */
 | |
| 	if (!regs) {
 | |
| 		regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
 | |
| 		if (!regs)
 | |
| 			return NULL;
 | |
| 
 | |
| 		if (get_emif_reg_values(emif, freq, regs)) {
 | |
| 			devm_kfree(emif->dev, regs);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Now look for an un-used entry in the cache and save the
 | |
| 		 * newly created struct. If there are no free entries
 | |
| 		 * over-write the last entry
 | |
| 		 */
 | |
| 		for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
 | |
| 			;
 | |
| 
 | |
| 		if (i >= EMIF_MAX_NUM_FREQUENCIES) {
 | |
| 			dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
 | |
| 				__func__);
 | |
| 			i = EMIF_MAX_NUM_FREQUENCIES - 1;
 | |
| 			devm_kfree(emif->dev, regs_cache[i]);
 | |
| 		}
 | |
| 		regs_cache[i] = regs;
 | |
| 	}
 | |
| 
 | |
| 	return regs;
 | |
| }
 | |
| 
 | |
| static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
 | |
| {
 | |
| 	dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
 | |
| 		volt_state);
 | |
| 
 | |
| 	if (!emif->curr_regs) {
 | |
| 		dev_err(emif->dev,
 | |
| 			"%s: volt-notify before registers are ready: %d\n",
 | |
| 			__func__, volt_state);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TODO: voltage notify handling should be hooked up to
 | |
|  * regulator framework as soon as the necessary support
 | |
|  * is available in mainline kernel. This function is un-used
 | |
|  * right now.
 | |
|  */
 | |
| static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
 | |
| {
 | |
| 	struct emif_data *emif;
 | |
| 
 | |
| 	spin_lock_irqsave(&emif_lock, irq_state);
 | |
| 
 | |
| 	list_for_each_entry(emif, &device_list, node)
 | |
| 		do_volt_notify_handling(emif, volt_state);
 | |
| 	do_freq_update();
 | |
| 
 | |
| 	spin_unlock_irqrestore(&emif_lock, irq_state);
 | |
| }
 | |
| 
 | |
| static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
 | |
| {
 | |
| 	struct emif_regs *regs;
 | |
| 
 | |
| 	regs = get_regs(emif, new_freq);
 | |
| 	if (!regs)
 | |
| 		return;
 | |
| 
 | |
| 	emif->curr_regs = regs;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the shadow registers:
 | |
| 	 * Temperature and voltage-ramp sensitive settings are also configured
 | |
| 	 * in terms of DDR cycles. So, we need to update them too when there
 | |
| 	 * is a freq change
 | |
| 	 */
 | |
| 	dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
 | |
| 		__func__, new_freq);
 | |
| 	setup_registers(emif, regs);
 | |
| 	setup_temperature_sensitive_regs(emif, regs);
 | |
| 	setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Part of workaround for errata i728. See do_freq_update()
 | |
| 	 * for more details
 | |
| 	 */
 | |
| 	if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 | |
| 		set_lpmode(emif, EMIF_LP_MODE_DISABLE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TODO: frequency notify handling should be hooked up to
 | |
|  * clock framework as soon as the necessary support is
 | |
|  * available in mainline kernel. This function is un-used
 | |
|  * right now.
 | |
|  */
 | |
| static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
 | |
| {
 | |
| 	struct emif_data *emif;
 | |
| 
 | |
| 	/*
 | |
| 	 * NOTE: we are taking the spin-lock here and releases it
 | |
| 	 * only in post-notifier. This doesn't look good and
 | |
| 	 * Sparse complains about it, but this seems to be
 | |
| 	 * un-avoidable. We need to lock a sequence of events
 | |
| 	 * that is split between EMIF and clock framework.
 | |
| 	 *
 | |
| 	 * 1. EMIF driver updates EMIF timings in shadow registers in the
 | |
| 	 *    frequency pre-notify callback from clock framework
 | |
| 	 * 2. clock framework sets up the registers for the new frequency
 | |
| 	 * 3. clock framework initiates a hw-sequence that updates
 | |
| 	 *    the frequency EMIF timings synchronously.
 | |
| 	 *
 | |
| 	 * All these 3 steps should be performed as an atomic operation
 | |
| 	 * vis-a-vis similar sequence in the EMIF interrupt handler
 | |
| 	 * for temperature events. Otherwise, there could be race
 | |
| 	 * conditions that could result in incorrect EMIF timings for
 | |
| 	 * a given frequency
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&emif_lock, irq_state);
 | |
| 
 | |
| 	list_for_each_entry(emif, &device_list, node)
 | |
| 		do_freq_pre_notify_handling(emif, new_freq);
 | |
| }
 | |
| 
 | |
| static void do_freq_post_notify_handling(struct emif_data *emif)
 | |
| {
 | |
| 	/*
 | |
| 	 * Part of workaround for errata i728. See do_freq_update()
 | |
| 	 * for more details
 | |
| 	 */
 | |
| 	if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 | |
| 		set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TODO: frequency notify handling should be hooked up to
 | |
|  * clock framework as soon as the necessary support is
 | |
|  * available in mainline kernel. This function is un-used
 | |
|  * right now.
 | |
|  */
 | |
| static void __attribute__((unused)) freq_post_notify_handling(void)
 | |
| {
 | |
| 	struct emif_data *emif;
 | |
| 
 | |
| 	list_for_each_entry(emif, &device_list, node)
 | |
| 		do_freq_post_notify_handling(emif);
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
 | |
| 	 * for more details
 | |
| 	 */
 | |
| 	spin_unlock_irqrestore(&emif_lock, irq_state);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_OF)
 | |
| static const struct of_device_id emif_of_match[] = {
 | |
| 		{ .compatible = "ti,emif-4d" },
 | |
| 		{ .compatible = "ti,emif-4d5" },
 | |
| 		{},
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, emif_of_match);
 | |
| #endif
 | |
| 
 | |
| static struct platform_driver emif_driver = {
 | |
| 	.remove		= __exit_p(emif_remove),
 | |
| 	.shutdown	= emif_shutdown,
 | |
| 	.driver = {
 | |
| 		.name = "emif",
 | |
| 		.of_match_table = of_match_ptr(emif_of_match),
 | |
| 	},
 | |
| };
 | |
| 
 | |
| module_platform_driver_probe(emif_driver, emif_probe);
 | |
| 
 | |
| MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_ALIAS("platform:emif");
 | |
| MODULE_AUTHOR("Texas Instruments Inc");
 |