forked from mirrors/linux
		
	 2f4873f9b5
			
		
	
	
		2f4873f9b5
		
	
	
	
	
		
			
			Make bio_iov_bvec_set() accept a pointer to const iov_iter, which means that we can drop the undesirable casting to struct iov_iter pointer in blk_rq_map_user_bvec(). Signed-off-by: John Garry <john.g.garry@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Link: https://lore.kernel.org/r/20241202115727.2320401-1-john.g.garry@oracle.com Signed-off-by: Jens Axboe <axboe@kernel.dk>
		
			
				
	
	
		
			702 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			702 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| /*
 | |
|  * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
 | |
|  */
 | |
| #ifndef __LINUX_BIO_H
 | |
| #define __LINUX_BIO_H
 | |
| 
 | |
| #include <linux/mempool.h>
 | |
| /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
 | |
| #include <linux/blk_types.h>
 | |
| #include <linux/uio.h>
 | |
| 
 | |
| #define BIO_MAX_VECS		256U
 | |
| 
 | |
| struct queue_limits;
 | |
| 
 | |
| static inline unsigned int bio_max_segs(unsigned int nr_segs)
 | |
| {
 | |
| 	return min(nr_segs, BIO_MAX_VECS);
 | |
| }
 | |
| 
 | |
| #define bio_prio(bio)			(bio)->bi_ioprio
 | |
| #define bio_set_prio(bio, prio)		((bio)->bi_ioprio = prio)
 | |
| 
 | |
| #define bio_iter_iovec(bio, iter)				\
 | |
| 	bvec_iter_bvec((bio)->bi_io_vec, (iter))
 | |
| 
 | |
| #define bio_iter_page(bio, iter)				\
 | |
| 	bvec_iter_page((bio)->bi_io_vec, (iter))
 | |
| #define bio_iter_len(bio, iter)					\
 | |
| 	bvec_iter_len((bio)->bi_io_vec, (iter))
 | |
| #define bio_iter_offset(bio, iter)				\
 | |
| 	bvec_iter_offset((bio)->bi_io_vec, (iter))
 | |
| 
 | |
| #define bio_page(bio)		bio_iter_page((bio), (bio)->bi_iter)
 | |
| #define bio_offset(bio)		bio_iter_offset((bio), (bio)->bi_iter)
 | |
| #define bio_iovec(bio)		bio_iter_iovec((bio), (bio)->bi_iter)
 | |
| 
 | |
| #define bvec_iter_sectors(iter)	((iter).bi_size >> 9)
 | |
| #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
 | |
| 
 | |
| #define bio_sectors(bio)	bvec_iter_sectors((bio)->bi_iter)
 | |
| #define bio_end_sector(bio)	bvec_iter_end_sector((bio)->bi_iter)
 | |
| 
 | |
| /*
 | |
|  * Return the data direction, READ or WRITE.
 | |
|  */
 | |
| #define bio_data_dir(bio) \
 | |
| 	(op_is_write(bio_op(bio)) ? WRITE : READ)
 | |
| 
 | |
| /*
 | |
|  * Check whether this bio carries any data or not. A NULL bio is allowed.
 | |
|  */
 | |
| static inline bool bio_has_data(struct bio *bio)
 | |
| {
 | |
| 	if (bio &&
 | |
| 	    bio->bi_iter.bi_size &&
 | |
| 	    bio_op(bio) != REQ_OP_DISCARD &&
 | |
| 	    bio_op(bio) != REQ_OP_SECURE_ERASE &&
 | |
| 	    bio_op(bio) != REQ_OP_WRITE_ZEROES)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool bio_no_advance_iter(const struct bio *bio)
 | |
| {
 | |
| 	return bio_op(bio) == REQ_OP_DISCARD ||
 | |
| 	       bio_op(bio) == REQ_OP_SECURE_ERASE ||
 | |
| 	       bio_op(bio) == REQ_OP_WRITE_ZEROES;
 | |
| }
 | |
| 
 | |
| static inline void *bio_data(struct bio *bio)
 | |
| {
 | |
| 	if (bio_has_data(bio))
 | |
| 		return page_address(bio_page(bio)) + bio_offset(bio);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static inline bool bio_next_segment(const struct bio *bio,
 | |
| 				    struct bvec_iter_all *iter)
 | |
| {
 | |
| 	if (iter->idx >= bio->bi_vcnt)
 | |
| 		return false;
 | |
| 
 | |
| 	bvec_advance(&bio->bi_io_vec[iter->idx], iter);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * drivers should _never_ use the all version - the bio may have been split
 | |
|  * before it got to the driver and the driver won't own all of it
 | |
|  */
 | |
| #define bio_for_each_segment_all(bvl, bio, iter) \
 | |
| 	for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
 | |
| 
 | |
| static inline void bio_advance_iter(const struct bio *bio,
 | |
| 				    struct bvec_iter *iter, unsigned int bytes)
 | |
| {
 | |
| 	iter->bi_sector += bytes >> 9;
 | |
| 
 | |
| 	if (bio_no_advance_iter(bio))
 | |
| 		iter->bi_size -= bytes;
 | |
| 	else
 | |
| 		bvec_iter_advance(bio->bi_io_vec, iter, bytes);
 | |
| 		/* TODO: It is reasonable to complete bio with error here. */
 | |
| }
 | |
| 
 | |
| /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
 | |
| static inline void bio_advance_iter_single(const struct bio *bio,
 | |
| 					   struct bvec_iter *iter,
 | |
| 					   unsigned int bytes)
 | |
| {
 | |
| 	iter->bi_sector += bytes >> 9;
 | |
| 
 | |
| 	if (bio_no_advance_iter(bio))
 | |
| 		iter->bi_size -= bytes;
 | |
| 	else
 | |
| 		bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
 | |
| }
 | |
| 
 | |
| void __bio_advance(struct bio *, unsigned bytes);
 | |
| 
 | |
| /**
 | |
|  * bio_advance - increment/complete a bio by some number of bytes
 | |
|  * @bio:	bio to advance
 | |
|  * @nbytes:	number of bytes to complete
 | |
|  *
 | |
|  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 | |
|  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 | |
|  * be updated on the last bvec as well.
 | |
|  *
 | |
|  * @bio will then represent the remaining, uncompleted portion of the io.
 | |
|  */
 | |
| static inline void bio_advance(struct bio *bio, unsigned int nbytes)
 | |
| {
 | |
| 	if (nbytes == bio->bi_iter.bi_size) {
 | |
| 		bio->bi_iter.bi_size = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 	__bio_advance(bio, nbytes);
 | |
| }
 | |
| 
 | |
| #define __bio_for_each_segment(bvl, bio, iter, start)			\
 | |
| 	for (iter = (start);						\
 | |
| 	     (iter).bi_size &&						\
 | |
| 		((bvl = bio_iter_iovec((bio), (iter))), 1);		\
 | |
| 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
 | |
| 
 | |
| #define bio_for_each_segment(bvl, bio, iter)				\
 | |
| 	__bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
 | |
| 
 | |
| #define __bio_for_each_bvec(bvl, bio, iter, start)		\
 | |
| 	for (iter = (start);						\
 | |
| 	     (iter).bi_size &&						\
 | |
| 		((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
 | |
| 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
 | |
| 
 | |
| /* iterate over multi-page bvec */
 | |
| #define bio_for_each_bvec(bvl, bio, iter)			\
 | |
| 	__bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
 | |
| 
 | |
| /*
 | |
|  * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
 | |
|  * same reasons as bio_for_each_segment_all().
 | |
|  */
 | |
| #define bio_for_each_bvec_all(bvl, bio, i)		\
 | |
| 	for (i = 0, bvl = bio_first_bvec_all(bio);	\
 | |
| 	     i < (bio)->bi_vcnt; i++, bvl++)
 | |
| 
 | |
| #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
 | |
| 
 | |
| static inline unsigned bio_segments(struct bio *bio)
 | |
| {
 | |
| 	unsigned segs = 0;
 | |
| 	struct bio_vec bv;
 | |
| 	struct bvec_iter iter;
 | |
| 
 | |
| 	/*
 | |
| 	 * We special case discard/write same/write zeroes, because they
 | |
| 	 * interpret bi_size differently:
 | |
| 	 */
 | |
| 
 | |
| 	switch (bio_op(bio)) {
 | |
| 	case REQ_OP_DISCARD:
 | |
| 	case REQ_OP_SECURE_ERASE:
 | |
| 	case REQ_OP_WRITE_ZEROES:
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	bio_for_each_segment(bv, bio, iter)
 | |
| 		segs++;
 | |
| 
 | |
| 	return segs;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * get a reference to a bio, so it won't disappear. the intended use is
 | |
|  * something like:
 | |
|  *
 | |
|  * bio_get(bio);
 | |
|  * submit_bio(rw, bio);
 | |
|  * if (bio->bi_flags ...)
 | |
|  *	do_something
 | |
|  * bio_put(bio);
 | |
|  *
 | |
|  * without the bio_get(), it could potentially complete I/O before submit_bio
 | |
|  * returns. and then bio would be freed memory when if (bio->bi_flags ...)
 | |
|  * runs
 | |
|  */
 | |
| static inline void bio_get(struct bio *bio)
 | |
| {
 | |
| 	bio->bi_flags |= (1 << BIO_REFFED);
 | |
| 	smp_mb__before_atomic();
 | |
| 	atomic_inc(&bio->__bi_cnt);
 | |
| }
 | |
| 
 | |
| static inline void bio_cnt_set(struct bio *bio, unsigned int count)
 | |
| {
 | |
| 	if (count != 1) {
 | |
| 		bio->bi_flags |= (1 << BIO_REFFED);
 | |
| 		smp_mb();
 | |
| 	}
 | |
| 	atomic_set(&bio->__bi_cnt, count);
 | |
| }
 | |
| 
 | |
| static inline bool bio_flagged(struct bio *bio, unsigned int bit)
 | |
| {
 | |
| 	return bio->bi_flags & (1U << bit);
 | |
| }
 | |
| 
 | |
| static inline void bio_set_flag(struct bio *bio, unsigned int bit)
 | |
| {
 | |
| 	bio->bi_flags |= (1U << bit);
 | |
| }
 | |
| 
 | |
| static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
 | |
| {
 | |
| 	bio->bi_flags &= ~(1U << bit);
 | |
| }
 | |
| 
 | |
| static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
 | |
| {
 | |
| 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
 | |
| 	return bio->bi_io_vec;
 | |
| }
 | |
| 
 | |
| static inline struct page *bio_first_page_all(struct bio *bio)
 | |
| {
 | |
| 	return bio_first_bvec_all(bio)->bv_page;
 | |
| }
 | |
| 
 | |
| static inline struct folio *bio_first_folio_all(struct bio *bio)
 | |
| {
 | |
| 	return page_folio(bio_first_page_all(bio));
 | |
| }
 | |
| 
 | |
| static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
 | |
| {
 | |
| 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
 | |
| 	return &bio->bi_io_vec[bio->bi_vcnt - 1];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * struct folio_iter - State for iterating all folios in a bio.
 | |
|  * @folio: The current folio we're iterating.  NULL after the last folio.
 | |
|  * @offset: The byte offset within the current folio.
 | |
|  * @length: The number of bytes in this iteration (will not cross folio
 | |
|  *	boundary).
 | |
|  */
 | |
| struct folio_iter {
 | |
| 	struct folio *folio;
 | |
| 	size_t offset;
 | |
| 	size_t length;
 | |
| 	/* private: for use by the iterator */
 | |
| 	struct folio *_next;
 | |
| 	size_t _seg_count;
 | |
| 	int _i;
 | |
| };
 | |
| 
 | |
| static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
 | |
| 				   int i)
 | |
| {
 | |
| 	struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
 | |
| 
 | |
| 	if (unlikely(i >= bio->bi_vcnt)) {
 | |
| 		fi->folio = NULL;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	fi->folio = page_folio(bvec->bv_page);
 | |
| 	fi->offset = bvec->bv_offset +
 | |
| 			PAGE_SIZE * (bvec->bv_page - &fi->folio->page);
 | |
| 	fi->_seg_count = bvec->bv_len;
 | |
| 	fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
 | |
| 	fi->_next = folio_next(fi->folio);
 | |
| 	fi->_i = i;
 | |
| }
 | |
| 
 | |
| static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
 | |
| {
 | |
| 	fi->_seg_count -= fi->length;
 | |
| 	if (fi->_seg_count) {
 | |
| 		fi->folio = fi->_next;
 | |
| 		fi->offset = 0;
 | |
| 		fi->length = min(folio_size(fi->folio), fi->_seg_count);
 | |
| 		fi->_next = folio_next(fi->folio);
 | |
| 	} else {
 | |
| 		bio_first_folio(fi, bio, fi->_i + 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bio_for_each_folio_all - Iterate over each folio in a bio.
 | |
|  * @fi: struct folio_iter which is updated for each folio.
 | |
|  * @bio: struct bio to iterate over.
 | |
|  */
 | |
| #define bio_for_each_folio_all(fi, bio)				\
 | |
| 	for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
 | |
| 
 | |
| void bio_trim(struct bio *bio, sector_t offset, sector_t size);
 | |
| extern struct bio *bio_split(struct bio *bio, int sectors,
 | |
| 			     gfp_t gfp, struct bio_set *bs);
 | |
| int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
 | |
| 		unsigned *segs, unsigned max_bytes);
 | |
| 
 | |
| /**
 | |
|  * bio_next_split - get next @sectors from a bio, splitting if necessary
 | |
|  * @bio:	bio to split
 | |
|  * @sectors:	number of sectors to split from the front of @bio
 | |
|  * @gfp:	gfp mask
 | |
|  * @bs:		bio set to allocate from
 | |
|  *
 | |
|  * Return: a bio representing the next @sectors of @bio - if the bio is smaller
 | |
|  * than @sectors, returns the original bio unchanged.
 | |
|  */
 | |
| static inline struct bio *bio_next_split(struct bio *bio, int sectors,
 | |
| 					 gfp_t gfp, struct bio_set *bs)
 | |
| {
 | |
| 	if (sectors >= bio_sectors(bio))
 | |
| 		return bio;
 | |
| 
 | |
| 	return bio_split(bio, sectors, gfp, bs);
 | |
| }
 | |
| 
 | |
| enum {
 | |
| 	BIOSET_NEED_BVECS = BIT(0),
 | |
| 	BIOSET_NEED_RESCUER = BIT(1),
 | |
| 	BIOSET_PERCPU_CACHE = BIT(2),
 | |
| };
 | |
| extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
 | |
| extern void bioset_exit(struct bio_set *);
 | |
| extern int biovec_init_pool(mempool_t *pool, int pool_entries);
 | |
| 
 | |
| struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
 | |
| 			     blk_opf_t opf, gfp_t gfp_mask,
 | |
| 			     struct bio_set *bs);
 | |
| struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
 | |
| extern void bio_put(struct bio *);
 | |
| 
 | |
| struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
 | |
| 		gfp_t gfp, struct bio_set *bs);
 | |
| int bio_init_clone(struct block_device *bdev, struct bio *bio,
 | |
| 		struct bio *bio_src, gfp_t gfp);
 | |
| 
 | |
| extern struct bio_set fs_bio_set;
 | |
| 
 | |
| static inline struct bio *bio_alloc(struct block_device *bdev,
 | |
| 		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask)
 | |
| {
 | |
| 	return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
 | |
| }
 | |
| 
 | |
| void submit_bio(struct bio *bio);
 | |
| 
 | |
| extern void bio_endio(struct bio *);
 | |
| 
 | |
| static inline void bio_io_error(struct bio *bio)
 | |
| {
 | |
| 	bio->bi_status = BLK_STS_IOERR;
 | |
| 	bio_endio(bio);
 | |
| }
 | |
| 
 | |
| static inline void bio_wouldblock_error(struct bio *bio)
 | |
| {
 | |
| 	bio_set_flag(bio, BIO_QUIET);
 | |
| 	bio->bi_status = BLK_STS_AGAIN;
 | |
| 	bio_endio(bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate number of bvec segments that should be allocated to fit data
 | |
|  * pointed by @iter. If @iter is backed by bvec it's going to be reused
 | |
|  * instead of allocating a new one.
 | |
|  */
 | |
| static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
 | |
| {
 | |
| 	if (iov_iter_is_bvec(iter))
 | |
| 		return 0;
 | |
| 	return iov_iter_npages(iter, max_segs);
 | |
| }
 | |
| 
 | |
| struct request_queue;
 | |
| 
 | |
| extern int submit_bio_wait(struct bio *bio);
 | |
| void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
 | |
| 	      unsigned short max_vecs, blk_opf_t opf);
 | |
| extern void bio_uninit(struct bio *);
 | |
| void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf);
 | |
| void bio_chain(struct bio *, struct bio *);
 | |
| 
 | |
| int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len,
 | |
| 			      unsigned off);
 | |
| bool __must_check bio_add_folio(struct bio *bio, struct folio *folio,
 | |
| 				size_t len, size_t off);
 | |
| extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *,
 | |
| 			   unsigned int, unsigned int);
 | |
| void __bio_add_page(struct bio *bio, struct page *page,
 | |
| 		unsigned int len, unsigned int off);
 | |
| void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
 | |
| 			  size_t off);
 | |
| int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter);
 | |
| void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter);
 | |
| void __bio_release_pages(struct bio *bio, bool mark_dirty);
 | |
| extern void bio_set_pages_dirty(struct bio *bio);
 | |
| extern void bio_check_pages_dirty(struct bio *bio);
 | |
| 
 | |
| extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
 | |
| 			       struct bio *src, struct bvec_iter *src_iter);
 | |
| extern void bio_copy_data(struct bio *dst, struct bio *src);
 | |
| extern void bio_free_pages(struct bio *bio);
 | |
| void guard_bio_eod(struct bio *bio);
 | |
| void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter);
 | |
| 
 | |
| static inline void zero_fill_bio(struct bio *bio)
 | |
| {
 | |
| 	zero_fill_bio_iter(bio, bio->bi_iter);
 | |
| }
 | |
| 
 | |
| static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
 | |
| {
 | |
| 	if (bio_flagged(bio, BIO_PAGE_PINNED))
 | |
| 		__bio_release_pages(bio, mark_dirty);
 | |
| }
 | |
| 
 | |
| #define bio_dev(bio) \
 | |
| 	disk_devt((bio)->bi_bdev->bd_disk)
 | |
| 
 | |
| #ifdef CONFIG_BLK_CGROUP
 | |
| void bio_associate_blkg(struct bio *bio);
 | |
| void bio_associate_blkg_from_css(struct bio *bio,
 | |
| 				 struct cgroup_subsys_state *css);
 | |
| void bio_clone_blkg_association(struct bio *dst, struct bio *src);
 | |
| void blkcg_punt_bio_submit(struct bio *bio);
 | |
| #else	/* CONFIG_BLK_CGROUP */
 | |
| static inline void bio_associate_blkg(struct bio *bio) { }
 | |
| static inline void bio_associate_blkg_from_css(struct bio *bio,
 | |
| 					       struct cgroup_subsys_state *css)
 | |
| { }
 | |
| static inline void bio_clone_blkg_association(struct bio *dst,
 | |
| 					      struct bio *src) { }
 | |
| static inline void blkcg_punt_bio_submit(struct bio *bio)
 | |
| {
 | |
| 	submit_bio(bio);
 | |
| }
 | |
| #endif	/* CONFIG_BLK_CGROUP */
 | |
| 
 | |
| static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
 | |
| {
 | |
| 	bio_clear_flag(bio, BIO_REMAPPED);
 | |
| 	if (bio->bi_bdev != bdev)
 | |
| 		bio_clear_flag(bio, BIO_BPS_THROTTLED);
 | |
| 	bio->bi_bdev = bdev;
 | |
| 	bio_associate_blkg(bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
 | |
|  *
 | |
|  * A bio_list anchors a singly-linked list of bios chained through the bi_next
 | |
|  * member of the bio.  The bio_list also caches the last list member to allow
 | |
|  * fast access to the tail.
 | |
|  */
 | |
| struct bio_list {
 | |
| 	struct bio *head;
 | |
| 	struct bio *tail;
 | |
| };
 | |
| 
 | |
| static inline int bio_list_empty(const struct bio_list *bl)
 | |
| {
 | |
| 	return bl->head == NULL;
 | |
| }
 | |
| 
 | |
| static inline void bio_list_init(struct bio_list *bl)
 | |
| {
 | |
| 	bl->head = bl->tail = NULL;
 | |
| }
 | |
| 
 | |
| #define BIO_EMPTY_LIST	{ NULL, NULL }
 | |
| 
 | |
| #define bio_list_for_each(bio, bl) \
 | |
| 	for (bio = (bl)->head; bio; bio = bio->bi_next)
 | |
| 
 | |
| static inline unsigned bio_list_size(const struct bio_list *bl)
 | |
| {
 | |
| 	unsigned sz = 0;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	bio_list_for_each(bio, bl)
 | |
| 		sz++;
 | |
| 
 | |
| 	return sz;
 | |
| }
 | |
| 
 | |
| static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
 | |
| {
 | |
| 	bio->bi_next = NULL;
 | |
| 
 | |
| 	if (bl->tail)
 | |
| 		bl->tail->bi_next = bio;
 | |
| 	else
 | |
| 		bl->head = bio;
 | |
| 
 | |
| 	bl->tail = bio;
 | |
| }
 | |
| 
 | |
| static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
 | |
| {
 | |
| 	bio->bi_next = bl->head;
 | |
| 
 | |
| 	bl->head = bio;
 | |
| 
 | |
| 	if (!bl->tail)
 | |
| 		bl->tail = bio;
 | |
| }
 | |
| 
 | |
| static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
 | |
| {
 | |
| 	if (!bl2->head)
 | |
| 		return;
 | |
| 
 | |
| 	if (bl->tail)
 | |
| 		bl->tail->bi_next = bl2->head;
 | |
| 	else
 | |
| 		bl->head = bl2->head;
 | |
| 
 | |
| 	bl->tail = bl2->tail;
 | |
| }
 | |
| 
 | |
| static inline void bio_list_merge_init(struct bio_list *bl,
 | |
| 		struct bio_list *bl2)
 | |
| {
 | |
| 	bio_list_merge(bl, bl2);
 | |
| 	bio_list_init(bl2);
 | |
| }
 | |
| 
 | |
| static inline void bio_list_merge_head(struct bio_list *bl,
 | |
| 				       struct bio_list *bl2)
 | |
| {
 | |
| 	if (!bl2->head)
 | |
| 		return;
 | |
| 
 | |
| 	if (bl->head)
 | |
| 		bl2->tail->bi_next = bl->head;
 | |
| 	else
 | |
| 		bl->tail = bl2->tail;
 | |
| 
 | |
| 	bl->head = bl2->head;
 | |
| }
 | |
| 
 | |
| static inline struct bio *bio_list_peek(struct bio_list *bl)
 | |
| {
 | |
| 	return bl->head;
 | |
| }
 | |
| 
 | |
| static inline struct bio *bio_list_pop(struct bio_list *bl)
 | |
| {
 | |
| 	struct bio *bio = bl->head;
 | |
| 
 | |
| 	if (bio) {
 | |
| 		bl->head = bl->head->bi_next;
 | |
| 		if (!bl->head)
 | |
| 			bl->tail = NULL;
 | |
| 
 | |
| 		bio->bi_next = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return bio;
 | |
| }
 | |
| 
 | |
| static inline struct bio *bio_list_get(struct bio_list *bl)
 | |
| {
 | |
| 	struct bio *bio = bl->head;
 | |
| 
 | |
| 	bl->head = bl->tail = NULL;
 | |
| 
 | |
| 	return bio;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Increment chain count for the bio. Make sure the CHAIN flag update
 | |
|  * is visible before the raised count.
 | |
|  */
 | |
| static inline void bio_inc_remaining(struct bio *bio)
 | |
| {
 | |
| 	bio_set_flag(bio, BIO_CHAIN);
 | |
| 	smp_mb__before_atomic();
 | |
| 	atomic_inc(&bio->__bi_remaining);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * bio_set is used to allow other portions of the IO system to
 | |
|  * allocate their own private memory pools for bio and iovec structures.
 | |
|  * These memory pools in turn all allocate from the bio_slab
 | |
|  * and the bvec_slabs[].
 | |
|  */
 | |
| #define BIO_POOL_SIZE 2
 | |
| 
 | |
| struct bio_set {
 | |
| 	struct kmem_cache *bio_slab;
 | |
| 	unsigned int front_pad;
 | |
| 
 | |
| 	/*
 | |
| 	 * per-cpu bio alloc cache
 | |
| 	 */
 | |
| 	struct bio_alloc_cache __percpu *cache;
 | |
| 
 | |
| 	mempool_t bio_pool;
 | |
| 	mempool_t bvec_pool;
 | |
| #if defined(CONFIG_BLK_DEV_INTEGRITY)
 | |
| 	mempool_t bio_integrity_pool;
 | |
| 	mempool_t bvec_integrity_pool;
 | |
| #endif
 | |
| 
 | |
| 	unsigned int back_pad;
 | |
| 	/*
 | |
| 	 * Deadlock avoidance for stacking block drivers: see comments in
 | |
| 	 * bio_alloc_bioset() for details
 | |
| 	 */
 | |
| 	spinlock_t		rescue_lock;
 | |
| 	struct bio_list		rescue_list;
 | |
| 	struct work_struct	rescue_work;
 | |
| 	struct workqueue_struct	*rescue_workqueue;
 | |
| 
 | |
| 	/*
 | |
| 	 * Hot un-plug notifier for the per-cpu cache, if used
 | |
| 	 */
 | |
| 	struct hlist_node cpuhp_dead;
 | |
| };
 | |
| 
 | |
| static inline bool bioset_initialized(struct bio_set *bs)
 | |
| {
 | |
| 	return bs->bio_slab != NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark a bio as polled. Note that for async polled IO, the caller must
 | |
|  * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
 | |
|  * We cannot block waiting for requests on polled IO, as those completions
 | |
|  * must be found by the caller. This is different than IRQ driven IO, where
 | |
|  * it's safe to wait for IO to complete.
 | |
|  */
 | |
| static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
 | |
| {
 | |
| 	bio->bi_opf |= REQ_POLLED;
 | |
| 	if (kiocb->ki_flags & IOCB_NOWAIT)
 | |
| 		bio->bi_opf |= REQ_NOWAIT;
 | |
| }
 | |
| 
 | |
| static inline void bio_clear_polled(struct bio *bio)
 | |
| {
 | |
| 	bio->bi_opf &= ~REQ_POLLED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bio_is_zone_append - is this a zone append bio?
 | |
|  * @bio:	bio to check
 | |
|  *
 | |
|  * Check if @bio is a zone append operation.  Core block layer code and end_io
 | |
|  * handlers must use this instead of an open coded REQ_OP_ZONE_APPEND check
 | |
|  * because the block layer can rewrite REQ_OP_ZONE_APPEND to REQ_OP_WRITE if
 | |
|  * it is not natively supported.
 | |
|  */
 | |
| static inline bool bio_is_zone_append(struct bio *bio)
 | |
| {
 | |
| 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED))
 | |
| 		return false;
 | |
| 	return bio_op(bio) == REQ_OP_ZONE_APPEND ||
 | |
| 		bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
 | |
| }
 | |
| 
 | |
| struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
 | |
| 		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp);
 | |
| struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new);
 | |
| 
 | |
| struct bio *blk_alloc_discard_bio(struct block_device *bdev,
 | |
| 		sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask);
 | |
| 
 | |
| #endif /* __LINUX_BIO_H */
 |