forked from mirrors/linux
		
	 eb3e1d370b
			
		
	
	
		eb3e1d370b
		
	
	
	
	
		
			
			While the Hyper-V Reference TSC code is architecture neutral, the pv_ops.time.sched_clock() function is implemented for x86/x64, but not for ARM64. Current code calls a utility function under arch/x86 (and coming, under arch/arm64) to handle the difference. Change this approach to handle the difference inline based on whether GENERIC_SCHED_CLOCK is present. The new approach removes code under arch/* since the difference is tied more to the specifics of the Linux implementation than to the architecture. No functional change. Signed-off-by: Michael Kelley <mikelley@microsoft.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Link: https://lore.kernel.org/r/1614721102-2241-9-git-send-email-mikelley@microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org>
		
			
				
	
	
		
			506 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			506 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| 
 | |
| /*
 | |
|  * Clocksource driver for the synthetic counter and timers
 | |
|  * provided by the Hyper-V hypervisor to guest VMs, as described
 | |
|  * in the Hyper-V Top Level Functional Spec (TLFS). This driver
 | |
|  * is instruction set architecture independent.
 | |
|  *
 | |
|  * Copyright (C) 2019, Microsoft, Inc.
 | |
|  *
 | |
|  * Author:  Michael Kelley <mikelley@microsoft.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/clocksource.h>
 | |
| #include <linux/sched_clock.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/cpuhotplug.h>
 | |
| #include <clocksource/hyperv_timer.h>
 | |
| #include <asm/hyperv-tlfs.h>
 | |
| #include <asm/mshyperv.h>
 | |
| 
 | |
| static struct clock_event_device __percpu *hv_clock_event;
 | |
| static u64 hv_sched_clock_offset __ro_after_init;
 | |
| 
 | |
| /*
 | |
|  * If false, we're using the old mechanism for stimer0 interrupts
 | |
|  * where it sends a VMbus message when it expires. The old
 | |
|  * mechanism is used when running on older versions of Hyper-V
 | |
|  * that don't support Direct Mode. While Hyper-V provides
 | |
|  * four stimer's per CPU, Linux uses only stimer0.
 | |
|  *
 | |
|  * Because Direct Mode does not require processing a VMbus
 | |
|  * message, stimer interrupts can be enabled earlier in the
 | |
|  * process of booting a CPU, and consistent with when timer
 | |
|  * interrupts are enabled for other clocksource drivers.
 | |
|  * However, for legacy versions of Hyper-V when Direct Mode
 | |
|  * is not enabled, setting up stimer interrupts must be
 | |
|  * delayed until VMbus is initialized and can process the
 | |
|  * interrupt message.
 | |
|  */
 | |
| static bool direct_mode_enabled;
 | |
| 
 | |
| static int stimer0_irq;
 | |
| static int stimer0_vector;
 | |
| static int stimer0_message_sint;
 | |
| 
 | |
| /*
 | |
|  * ISR for when stimer0 is operating in Direct Mode.  Direct Mode
 | |
|  * does not use VMbus or any VMbus messages, so process here and not
 | |
|  * in the VMbus driver code.
 | |
|  */
 | |
| void hv_stimer0_isr(void)
 | |
| {
 | |
| 	struct clock_event_device *ce;
 | |
| 
 | |
| 	ce = this_cpu_ptr(hv_clock_event);
 | |
| 	ce->event_handler(ce);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hv_stimer0_isr);
 | |
| 
 | |
| static int hv_ce_set_next_event(unsigned long delta,
 | |
| 				struct clock_event_device *evt)
 | |
| {
 | |
| 	u64 current_tick;
 | |
| 
 | |
| 	current_tick = hv_read_reference_counter();
 | |
| 	current_tick += delta;
 | |
| 	hv_set_register(HV_REGISTER_STIMER0_COUNT, current_tick);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hv_ce_shutdown(struct clock_event_device *evt)
 | |
| {
 | |
| 	hv_set_register(HV_REGISTER_STIMER0_COUNT, 0);
 | |
| 	hv_set_register(HV_REGISTER_STIMER0_CONFIG, 0);
 | |
| 	if (direct_mode_enabled)
 | |
| 		hv_disable_stimer0_percpu_irq(stimer0_irq);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hv_ce_set_oneshot(struct clock_event_device *evt)
 | |
| {
 | |
| 	union hv_stimer_config timer_cfg;
 | |
| 
 | |
| 	timer_cfg.as_uint64 = 0;
 | |
| 	timer_cfg.enable = 1;
 | |
| 	timer_cfg.auto_enable = 1;
 | |
| 	if (direct_mode_enabled) {
 | |
| 		/*
 | |
| 		 * When it expires, the timer will directly interrupt
 | |
| 		 * on the specified hardware vector/IRQ.
 | |
| 		 */
 | |
| 		timer_cfg.direct_mode = 1;
 | |
| 		timer_cfg.apic_vector = stimer0_vector;
 | |
| 		hv_enable_stimer0_percpu_irq(stimer0_irq);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * When it expires, the timer will generate a VMbus message,
 | |
| 		 * to be handled by the normal VMbus interrupt handler.
 | |
| 		 */
 | |
| 		timer_cfg.direct_mode = 0;
 | |
| 		timer_cfg.sintx = stimer0_message_sint;
 | |
| 	}
 | |
| 	hv_set_register(HV_REGISTER_STIMER0_CONFIG, timer_cfg.as_uint64);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * hv_stimer_init - Per-cpu initialization of the clockevent
 | |
|  */
 | |
| static int hv_stimer_init(unsigned int cpu)
 | |
| {
 | |
| 	struct clock_event_device *ce;
 | |
| 
 | |
| 	if (!hv_clock_event)
 | |
| 		return 0;
 | |
| 
 | |
| 	ce = per_cpu_ptr(hv_clock_event, cpu);
 | |
| 	ce->name = "Hyper-V clockevent";
 | |
| 	ce->features = CLOCK_EVT_FEAT_ONESHOT;
 | |
| 	ce->cpumask = cpumask_of(cpu);
 | |
| 	ce->rating = 1000;
 | |
| 	ce->set_state_shutdown = hv_ce_shutdown;
 | |
| 	ce->set_state_oneshot = hv_ce_set_oneshot;
 | |
| 	ce->set_next_event = hv_ce_set_next_event;
 | |
| 
 | |
| 	clockevents_config_and_register(ce,
 | |
| 					HV_CLOCK_HZ,
 | |
| 					HV_MIN_DELTA_TICKS,
 | |
| 					HV_MAX_MAX_DELTA_TICKS);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * hv_stimer_cleanup - Per-cpu cleanup of the clockevent
 | |
|  */
 | |
| int hv_stimer_cleanup(unsigned int cpu)
 | |
| {
 | |
| 	struct clock_event_device *ce;
 | |
| 
 | |
| 	if (!hv_clock_event)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * In the legacy case where Direct Mode is not enabled
 | |
| 	 * (which can only be on x86/64), stimer cleanup happens
 | |
| 	 * relatively early in the CPU offlining process. We
 | |
| 	 * must unbind the stimer-based clockevent device so
 | |
| 	 * that the LAPIC timer can take over until clockevents
 | |
| 	 * are no longer needed in the offlining process. Note
 | |
| 	 * that clockevents_unbind_device() eventually calls
 | |
| 	 * hv_ce_shutdown().
 | |
| 	 *
 | |
| 	 * The unbind should not be done when Direct Mode is
 | |
| 	 * enabled because we may be on an architecture where
 | |
| 	 * there are no other clockevent devices to fallback to.
 | |
| 	 */
 | |
| 	ce = per_cpu_ptr(hv_clock_event, cpu);
 | |
| 	if (direct_mode_enabled)
 | |
| 		hv_ce_shutdown(ce);
 | |
| 	else
 | |
| 		clockevents_unbind_device(ce, cpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hv_stimer_cleanup);
 | |
| 
 | |
| /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */
 | |
| int hv_stimer_alloc(void)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Synthetic timers are always available except on old versions of
 | |
| 	 * Hyper-V on x86.  In that case, return as error as Linux will use a
 | |
| 	 * clockevent based on emulated LAPIC timer hardware.
 | |
| 	 */
 | |
| 	if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	hv_clock_event = alloc_percpu(struct clock_event_device);
 | |
| 	if (!hv_clock_event)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	direct_mode_enabled = ms_hyperv.misc_features &
 | |
| 			HV_STIMER_DIRECT_MODE_AVAILABLE;
 | |
| 	if (direct_mode_enabled) {
 | |
| 		ret = hv_setup_stimer0_irq(&stimer0_irq, &stimer0_vector,
 | |
| 				hv_stimer0_isr);
 | |
| 		if (ret)
 | |
| 			goto free_percpu;
 | |
| 
 | |
| 		/*
 | |
| 		 * Since we are in Direct Mode, stimer initialization
 | |
| 		 * can be done now with a CPUHP value in the same range
 | |
| 		 * as other clockevent devices.
 | |
| 		 */
 | |
| 		ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING,
 | |
| 				"clockevents/hyperv/stimer:starting",
 | |
| 				hv_stimer_init, hv_stimer_cleanup);
 | |
| 		if (ret < 0)
 | |
| 			goto free_stimer0_irq;
 | |
| 	}
 | |
| 	return ret;
 | |
| 
 | |
| free_stimer0_irq:
 | |
| 	hv_remove_stimer0_irq(stimer0_irq);
 | |
| 	stimer0_irq = 0;
 | |
| free_percpu:
 | |
| 	free_percpu(hv_clock_event);
 | |
| 	hv_clock_event = NULL;
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hv_stimer_alloc);
 | |
| 
 | |
| /*
 | |
|  * hv_stimer_legacy_init -- Called from the VMbus driver to handle
 | |
|  * the case when Direct Mode is not enabled, and the stimer
 | |
|  * must be initialized late in the CPU onlining process.
 | |
|  *
 | |
|  */
 | |
| void hv_stimer_legacy_init(unsigned int cpu, int sint)
 | |
| {
 | |
| 	if (direct_mode_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * This function gets called by each vCPU, so setting the
 | |
| 	 * global stimer_message_sint value each time is conceptually
 | |
| 	 * not ideal, but the value passed in is always the same and
 | |
| 	 * it avoids introducing yet another interface into this
 | |
| 	 * clocksource driver just to set the sint in the legacy case.
 | |
| 	 */
 | |
| 	stimer0_message_sint = sint;
 | |
| 	(void)hv_stimer_init(cpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hv_stimer_legacy_init);
 | |
| 
 | |
| /*
 | |
|  * hv_stimer_legacy_cleanup -- Called from the VMbus driver to
 | |
|  * handle the case when Direct Mode is not enabled, and the
 | |
|  * stimer must be cleaned up early in the CPU offlining
 | |
|  * process.
 | |
|  */
 | |
| void hv_stimer_legacy_cleanup(unsigned int cpu)
 | |
| {
 | |
| 	if (direct_mode_enabled)
 | |
| 		return;
 | |
| 	(void)hv_stimer_cleanup(cpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup);
 | |
| 
 | |
| 
 | |
| /* hv_stimer_free - Free global resources allocated by hv_stimer_alloc() */
 | |
| void hv_stimer_free(void)
 | |
| {
 | |
| 	if (!hv_clock_event)
 | |
| 		return;
 | |
| 
 | |
| 	if (direct_mode_enabled) {
 | |
| 		cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING);
 | |
| 		hv_remove_stimer0_irq(stimer0_irq);
 | |
| 		stimer0_irq = 0;
 | |
| 	}
 | |
| 	free_percpu(hv_clock_event);
 | |
| 	hv_clock_event = NULL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hv_stimer_free);
 | |
| 
 | |
| /*
 | |
|  * Do a global cleanup of clockevents for the cases of kexec and
 | |
|  * vmbus exit
 | |
|  */
 | |
| void hv_stimer_global_cleanup(void)
 | |
| {
 | |
| 	int	cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * hv_stime_legacy_cleanup() will stop the stimer if Direct
 | |
| 	 * Mode is not enabled, and fallback to the LAPIC timer.
 | |
| 	 */
 | |
| 	for_each_present_cpu(cpu) {
 | |
| 		hv_stimer_legacy_cleanup(cpu);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If Direct Mode is enabled, the cpuhp teardown callback
 | |
| 	 * (hv_stimer_cleanup) will be run on all CPUs to stop the
 | |
| 	 * stimers.
 | |
| 	 */
 | |
| 	hv_stimer_free();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup);
 | |
| 
 | |
| /*
 | |
|  * Code and definitions for the Hyper-V clocksources.  Two
 | |
|  * clocksources are defined: one that reads the Hyper-V defined MSR, and
 | |
|  * the other that uses the TSC reference page feature as defined in the
 | |
|  * TLFS.  The MSR version is for compatibility with old versions of
 | |
|  * Hyper-V and 32-bit x86.  The TSC reference page version is preferred.
 | |
|  *
 | |
|  * The Hyper-V clocksource ratings of 250 are chosen to be below the
 | |
|  * TSC clocksource rating of 300.  In configurations where Hyper-V offers
 | |
|  * an InvariantTSC, the TSC is not marked "unstable", so the TSC clocksource
 | |
|  * is available and preferred.  With the higher rating, it will be the
 | |
|  * default.  On older hardware and Hyper-V versions, the TSC is marked
 | |
|  * "unstable", so no TSC clocksource is created and the selected Hyper-V
 | |
|  * clocksource will be the default.
 | |
|  */
 | |
| 
 | |
| u64 (*hv_read_reference_counter)(void);
 | |
| EXPORT_SYMBOL_GPL(hv_read_reference_counter);
 | |
| 
 | |
| static union {
 | |
| 	struct ms_hyperv_tsc_page page;
 | |
| 	u8 reserved[PAGE_SIZE];
 | |
| } tsc_pg __aligned(PAGE_SIZE);
 | |
| 
 | |
| struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
 | |
| {
 | |
| 	return &tsc_pg.page;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hv_get_tsc_page);
 | |
| 
 | |
| static u64 notrace read_hv_clock_tsc(void)
 | |
| {
 | |
| 	u64 current_tick = hv_read_tsc_page(hv_get_tsc_page());
 | |
| 
 | |
| 	if (current_tick == U64_MAX)
 | |
| 		current_tick = hv_get_register(HV_REGISTER_TIME_REF_COUNT);
 | |
| 
 | |
| 	return current_tick;
 | |
| }
 | |
| 
 | |
| static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg)
 | |
| {
 | |
| 	return read_hv_clock_tsc();
 | |
| }
 | |
| 
 | |
| static u64 notrace read_hv_sched_clock_tsc(void)
 | |
| {
 | |
| 	return (read_hv_clock_tsc() - hv_sched_clock_offset) *
 | |
| 		(NSEC_PER_SEC / HV_CLOCK_HZ);
 | |
| }
 | |
| 
 | |
| static void suspend_hv_clock_tsc(struct clocksource *arg)
 | |
| {
 | |
| 	u64 tsc_msr;
 | |
| 
 | |
| 	/* Disable the TSC page */
 | |
| 	tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
 | |
| 	tsc_msr &= ~BIT_ULL(0);
 | |
| 	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void resume_hv_clock_tsc(struct clocksource *arg)
 | |
| {
 | |
| 	phys_addr_t phys_addr = virt_to_phys(&tsc_pg);
 | |
| 	u64 tsc_msr;
 | |
| 
 | |
| 	/* Re-enable the TSC page */
 | |
| 	tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
 | |
| 	tsc_msr &= GENMASK_ULL(11, 0);
 | |
| 	tsc_msr |= BIT_ULL(0) | (u64)phys_addr;
 | |
| 	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
 | |
| }
 | |
| 
 | |
| #ifdef VDSO_CLOCKMODE_HVCLOCK
 | |
| static int hv_cs_enable(struct clocksource *cs)
 | |
| {
 | |
| 	vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK);
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static struct clocksource hyperv_cs_tsc = {
 | |
| 	.name	= "hyperv_clocksource_tsc_page",
 | |
| 	.rating	= 250,
 | |
| 	.read	= read_hv_clock_tsc_cs,
 | |
| 	.mask	= CLOCKSOURCE_MASK(64),
 | |
| 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
 | |
| 	.suspend= suspend_hv_clock_tsc,
 | |
| 	.resume	= resume_hv_clock_tsc,
 | |
| #ifdef VDSO_CLOCKMODE_HVCLOCK
 | |
| 	.enable = hv_cs_enable,
 | |
| 	.vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK,
 | |
| #else
 | |
| 	.vdso_clock_mode = VDSO_CLOCKMODE_NONE,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static u64 notrace read_hv_clock_msr(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Read the partition counter to get the current tick count. This count
 | |
| 	 * is set to 0 when the partition is created and is incremented in
 | |
| 	 * 100 nanosecond units.
 | |
| 	 */
 | |
| 	return hv_get_register(HV_REGISTER_TIME_REF_COUNT);
 | |
| }
 | |
| 
 | |
| static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg)
 | |
| {
 | |
| 	return read_hv_clock_msr();
 | |
| }
 | |
| 
 | |
| static u64 notrace read_hv_sched_clock_msr(void)
 | |
| {
 | |
| 	return (read_hv_clock_msr() - hv_sched_clock_offset) *
 | |
| 		(NSEC_PER_SEC / HV_CLOCK_HZ);
 | |
| }
 | |
| 
 | |
| static struct clocksource hyperv_cs_msr = {
 | |
| 	.name	= "hyperv_clocksource_msr",
 | |
| 	.rating	= 250,
 | |
| 	.read	= read_hv_clock_msr_cs,
 | |
| 	.mask	= CLOCKSOURCE_MASK(64),
 | |
| 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Reference to pv_ops must be inline so objtool
 | |
|  * detection of noinstr violations can work correctly.
 | |
|  */
 | |
| #ifdef CONFIG_GENERIC_SCHED_CLOCK
 | |
| static __always_inline void hv_setup_sched_clock(void *sched_clock)
 | |
| {
 | |
| 	/*
 | |
| 	 * We're on an architecture with generic sched clock (not x86/x64).
 | |
| 	 * The Hyper-V sched clock read function returns nanoseconds, not
 | |
| 	 * the normal 100ns units of the Hyper-V synthetic clock.
 | |
| 	 */
 | |
| 	sched_clock_register(sched_clock, 64, NSEC_PER_SEC);
 | |
| }
 | |
| #elif defined CONFIG_PARAVIRT
 | |
| static __always_inline void hv_setup_sched_clock(void *sched_clock)
 | |
| {
 | |
| 	/* We're on x86/x64 *and* using PV ops */
 | |
| 	pv_ops.time.sched_clock = sched_clock;
 | |
| }
 | |
| #else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */
 | |
| static __always_inline void hv_setup_sched_clock(void *sched_clock) {}
 | |
| #endif /* CONFIG_GENERIC_SCHED_CLOCK */
 | |
| 
 | |
| static bool __init hv_init_tsc_clocksource(void)
 | |
| {
 | |
| 	u64		tsc_msr;
 | |
| 	phys_addr_t	phys_addr;
 | |
| 
 | |
| 	if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE))
 | |
| 		return false;
 | |
| 
 | |
| 	if (hv_root_partition)
 | |
| 		return false;
 | |
| 
 | |
| 	hv_read_reference_counter = read_hv_clock_tsc;
 | |
| 	phys_addr = virt_to_phys(hv_get_tsc_page());
 | |
| 
 | |
| 	/*
 | |
| 	 * The Hyper-V TLFS specifies to preserve the value of reserved
 | |
| 	 * bits in registers. So read the existing value, preserve the
 | |
| 	 * low order 12 bits, and add in the guest physical address
 | |
| 	 * (which already has at least the low 12 bits set to zero since
 | |
| 	 * it is page aligned). Also set the "enable" bit, which is bit 0.
 | |
| 	 */
 | |
| 	tsc_msr = hv_get_register(HV_REGISTER_REFERENCE_TSC);
 | |
| 	tsc_msr &= GENMASK_ULL(11, 0);
 | |
| 	tsc_msr = tsc_msr | 0x1 | (u64)phys_addr;
 | |
| 	hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr);
 | |
| 
 | |
| 	clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
 | |
| 
 | |
| 	hv_sched_clock_offset = hv_read_reference_counter();
 | |
| 	hv_setup_sched_clock(read_hv_sched_clock_tsc);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void __init hv_init_clocksource(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Try to set up the TSC page clocksource. If it succeeds, we're
 | |
| 	 * done. Otherwise, set up the MSR clocksoruce.  At least one of
 | |
| 	 * these will always be available except on very old versions of
 | |
| 	 * Hyper-V on x86.  In that case we won't have a Hyper-V
 | |
| 	 * clocksource, but Linux will still run with a clocksource based
 | |
| 	 * on the emulated PIT or LAPIC timer.
 | |
| 	 */
 | |
| 	if (hv_init_tsc_clocksource())
 | |
| 		return;
 | |
| 
 | |
| 	if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE))
 | |
| 		return;
 | |
| 
 | |
| 	hv_read_reference_counter = read_hv_clock_msr;
 | |
| 	clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
 | |
| 
 | |
| 	hv_sched_clock_offset = hv_read_reference_counter();
 | |
| 	hv_setup_sched_clock(read_hv_sched_clock_msr);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hv_init_clocksource);
 |