forked from mirrors/linux
		
	 8c67da5bc1
			
		
	
	
		8c67da5bc1
		
	
	
	
	
		
			
			-----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZ6XhrQAKCRCRxhvAZXjc oujrAQCpGmhvh2jGIKcSmEigNHOGCUXDG+1QsVpnCeP9OaUrkAEA+dMo4Ai4hz4J nYeeAgpjGuu+XLMmi7EiGxpI0fQL3gc= =oN/E -----END PGP SIGNATURE----- Merge tag 'vfs-6.14-rc2.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs Pull vfs fixes from Christian Brauner: - Fix fsnotify FMODE_NONOTIFY* handling. This also disables fsnotify on all pseudo files by default apart from very select exceptions. This carries a regression risk so we need to watch out and adapt accordingly. However, it is overall a significant improvement over the current status quo where every rando file can get fsnotify enabled. - Cleanup and simplify lockref_init() after recent lockref changes. - Fix vboxfs build with gcc-15. - Add an assert into inode_set_cached_link() to catch corrupt links. - Allow users to also use an empty string check to detect whether a given mount option string was empty or not. - Fix how security options were appended to statmount()'s ->mnt_opt field. - Fix statmount() selftests to always check the returned mask. - Fix uninitialized value in vfs_statx_path(). - Fix pidfs_ioctl() sanity checks to guard against ioctl() overloading and preserve extensibility. * tag 'vfs-6.14-rc2.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: vfs: sanity check the length passed to inode_set_cached_link() pidfs: improve ioctl handling fsnotify: disable pre-content and permission events by default selftests: always check mask returned by statmount(2) fsnotify: disable notification by default for all pseudo files fs: fix adding security options to statmount.mnt_opt fsnotify: use accessor to set FMODE_NONOTIFY_* lockref: remove count argument of lockref_init gfs2: switch to lockref_init(..., 1) gfs2: use lockref_init for gl_lockref statmount: let unset strings be empty vboxsf: fix building with GCC 15 fs/stat.c: avoid harmless garbage value problem in vfs_statx_path()
		
			
				
	
	
		
			3264 lines
		
	
	
	
		
			86 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3264 lines
		
	
	
	
		
			86 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * fs/dcache.c
 | |
|  *
 | |
|  * Complete reimplementation
 | |
|  * (C) 1997 Thomas Schoebel-Theuer,
 | |
|  * with heavy changes by Linus Torvalds
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Notes on the allocation strategy:
 | |
|  *
 | |
|  * The dcache is a master of the icache - whenever a dcache entry
 | |
|  * exists, the inode will always exist. "iput()" is done either when
 | |
|  * the dcache entry is deleted or garbage collected.
 | |
|  */
 | |
| 
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/fscrypt.h>
 | |
| #include <linux/fsnotify.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/seqlock.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/bit_spinlock.h>
 | |
| #include <linux/rculist_bl.h>
 | |
| #include <linux/list_lru.h>
 | |
| #include "internal.h"
 | |
| #include "mount.h"
 | |
| 
 | |
| #include <asm/runtime-const.h>
 | |
| 
 | |
| /*
 | |
|  * Usage:
 | |
|  * dcache->d_inode->i_lock protects:
 | |
|  *   - i_dentry, d_u.d_alias, d_inode of aliases
 | |
|  * dcache_hash_bucket lock protects:
 | |
|  *   - the dcache hash table
 | |
|  * s_roots bl list spinlock protects:
 | |
|  *   - the s_roots list (see __d_drop)
 | |
|  * dentry->d_sb->s_dentry_lru_lock protects:
 | |
|  *   - the dcache lru lists and counters
 | |
|  * d_lock protects:
 | |
|  *   - d_flags
 | |
|  *   - d_name
 | |
|  *   - d_lru
 | |
|  *   - d_count
 | |
|  *   - d_unhashed()
 | |
|  *   - d_parent and d_chilren
 | |
|  *   - childrens' d_sib and d_parent
 | |
|  *   - d_u.d_alias, d_inode
 | |
|  *
 | |
|  * Ordering:
 | |
|  * dentry->d_inode->i_lock
 | |
|  *   dentry->d_lock
 | |
|  *     dentry->d_sb->s_dentry_lru_lock
 | |
|  *     dcache_hash_bucket lock
 | |
|  *     s_roots lock
 | |
|  *
 | |
|  * If there is an ancestor relationship:
 | |
|  * dentry->d_parent->...->d_parent->d_lock
 | |
|  *   ...
 | |
|  *     dentry->d_parent->d_lock
 | |
|  *       dentry->d_lock
 | |
|  *
 | |
|  * If no ancestor relationship:
 | |
|  * arbitrary, since it's serialized on rename_lock
 | |
|  */
 | |
| int sysctl_vfs_cache_pressure __read_mostly = 100;
 | |
| EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
 | |
| 
 | |
| __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
 | |
| 
 | |
| EXPORT_SYMBOL(rename_lock);
 | |
| 
 | |
| static struct kmem_cache *dentry_cache __ro_after_init;
 | |
| 
 | |
| const struct qstr empty_name = QSTR_INIT("", 0);
 | |
| EXPORT_SYMBOL(empty_name);
 | |
| const struct qstr slash_name = QSTR_INIT("/", 1);
 | |
| EXPORT_SYMBOL(slash_name);
 | |
| const struct qstr dotdot_name = QSTR_INIT("..", 2);
 | |
| EXPORT_SYMBOL(dotdot_name);
 | |
| 
 | |
| /*
 | |
|  * This is the single most critical data structure when it comes
 | |
|  * to the dcache: the hashtable for lookups. Somebody should try
 | |
|  * to make this good - I've just made it work.
 | |
|  *
 | |
|  * This hash-function tries to avoid losing too many bits of hash
 | |
|  * information, yet avoid using a prime hash-size or similar.
 | |
|  *
 | |
|  * Marking the variables "used" ensures that the compiler doesn't
 | |
|  * optimize them away completely on architectures with runtime
 | |
|  * constant infrastructure, this allows debuggers to see their
 | |
|  * values. But updating these values has no effect on those arches.
 | |
|  */
 | |
| 
 | |
| static unsigned int d_hash_shift __ro_after_init __used;
 | |
| 
 | |
| static struct hlist_bl_head *dentry_hashtable __ro_after_init __used;
 | |
| 
 | |
| static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
 | |
| {
 | |
| 	return runtime_const_ptr(dentry_hashtable) +
 | |
| 		runtime_const_shift_right_32(hashlen, d_hash_shift);
 | |
| }
 | |
| 
 | |
| #define IN_LOOKUP_SHIFT 10
 | |
| static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
 | |
| 
 | |
| static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
 | |
| 					unsigned int hash)
 | |
| {
 | |
| 	hash += (unsigned long) parent / L1_CACHE_BYTES;
 | |
| 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
 | |
| }
 | |
| 
 | |
| struct dentry_stat_t {
 | |
| 	long nr_dentry;
 | |
| 	long nr_unused;
 | |
| 	long age_limit;		/* age in seconds */
 | |
| 	long want_pages;	/* pages requested by system */
 | |
| 	long nr_negative;	/* # of unused negative dentries */
 | |
| 	long dummy;		/* Reserved for future use */
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(long, nr_dentry);
 | |
| static DEFINE_PER_CPU(long, nr_dentry_unused);
 | |
| static DEFINE_PER_CPU(long, nr_dentry_negative);
 | |
| static int dentry_negative_policy;
 | |
| 
 | |
| #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
 | |
| /* Statistics gathering. */
 | |
| static struct dentry_stat_t dentry_stat = {
 | |
| 	.age_limit = 45,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Here we resort to our own counters instead of using generic per-cpu counters
 | |
|  * for consistency with what the vfs inode code does. We are expected to harvest
 | |
|  * better code and performance by having our own specialized counters.
 | |
|  *
 | |
|  * Please note that the loop is done over all possible CPUs, not over all online
 | |
|  * CPUs. The reason for this is that we don't want to play games with CPUs going
 | |
|  * on and off. If one of them goes off, we will just keep their counters.
 | |
|  *
 | |
|  * glommer: See cffbc8a for details, and if you ever intend to change this,
 | |
|  * please update all vfs counters to match.
 | |
|  */
 | |
| static long get_nr_dentry(void)
 | |
| {
 | |
| 	int i;
 | |
| 	long sum = 0;
 | |
| 	for_each_possible_cpu(i)
 | |
| 		sum += per_cpu(nr_dentry, i);
 | |
| 	return sum < 0 ? 0 : sum;
 | |
| }
 | |
| 
 | |
| static long get_nr_dentry_unused(void)
 | |
| {
 | |
| 	int i;
 | |
| 	long sum = 0;
 | |
| 	for_each_possible_cpu(i)
 | |
| 		sum += per_cpu(nr_dentry_unused, i);
 | |
| 	return sum < 0 ? 0 : sum;
 | |
| }
 | |
| 
 | |
| static long get_nr_dentry_negative(void)
 | |
| {
 | |
| 	int i;
 | |
| 	long sum = 0;
 | |
| 
 | |
| 	for_each_possible_cpu(i)
 | |
| 		sum += per_cpu(nr_dentry_negative, i);
 | |
| 	return sum < 0 ? 0 : sum;
 | |
| }
 | |
| 
 | |
| static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
 | |
| 			  size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	dentry_stat.nr_dentry = get_nr_dentry();
 | |
| 	dentry_stat.nr_unused = get_nr_dentry_unused();
 | |
| 	dentry_stat.nr_negative = get_nr_dentry_negative();
 | |
| 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 | |
| }
 | |
| 
 | |
| static const struct ctl_table fs_dcache_sysctls[] = {
 | |
| 	{
 | |
| 		.procname	= "dentry-state",
 | |
| 		.data		= &dentry_stat,
 | |
| 		.maxlen		= 6*sizeof(long),
 | |
| 		.mode		= 0444,
 | |
| 		.proc_handler	= proc_nr_dentry,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "dentry-negative",
 | |
| 		.data		= &dentry_negative_policy,
 | |
| 		.maxlen		= sizeof(dentry_negative_policy),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= proc_dointvec_minmax,
 | |
| 		.extra1		= SYSCTL_ZERO,
 | |
| 		.extra2		= SYSCTL_ONE,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int __init init_fs_dcache_sysctls(void)
 | |
| {
 | |
| 	register_sysctl_init("fs", fs_dcache_sysctls);
 | |
| 	return 0;
 | |
| }
 | |
| fs_initcall(init_fs_dcache_sysctls);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
 | |
|  * The strings are both count bytes long, and count is non-zero.
 | |
|  */
 | |
| #ifdef CONFIG_DCACHE_WORD_ACCESS
 | |
| 
 | |
| #include <asm/word-at-a-time.h>
 | |
| /*
 | |
|  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
 | |
|  * aligned allocation for this particular component. We don't
 | |
|  * strictly need the load_unaligned_zeropad() safety, but it
 | |
|  * doesn't hurt either.
 | |
|  *
 | |
|  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
 | |
|  * need the careful unaligned handling.
 | |
|  */
 | |
| static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 | |
| {
 | |
| 	unsigned long a,b,mask;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		a = read_word_at_a_time(cs);
 | |
| 		b = load_unaligned_zeropad(ct);
 | |
| 		if (tcount < sizeof(unsigned long))
 | |
| 			break;
 | |
| 		if (unlikely(a != b))
 | |
| 			return 1;
 | |
| 		cs += sizeof(unsigned long);
 | |
| 		ct += sizeof(unsigned long);
 | |
| 		tcount -= sizeof(unsigned long);
 | |
| 		if (!tcount)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	mask = bytemask_from_count(tcount);
 | |
| 	return unlikely(!!((a ^ b) & mask));
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 | |
| {
 | |
| 	do {
 | |
| 		if (*cs != *ct)
 | |
| 			return 1;
 | |
| 		cs++;
 | |
| 		ct++;
 | |
| 		tcount--;
 | |
| 	} while (tcount);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
 | |
| {
 | |
| 	/*
 | |
| 	 * Be careful about RCU walk racing with rename:
 | |
| 	 * use 'READ_ONCE' to fetch the name pointer.
 | |
| 	 *
 | |
| 	 * NOTE! Even if a rename will mean that the length
 | |
| 	 * was not loaded atomically, we don't care. The
 | |
| 	 * RCU walk will check the sequence count eventually,
 | |
| 	 * and catch it. And we won't overrun the buffer,
 | |
| 	 * because we're reading the name pointer atomically,
 | |
| 	 * and a dentry name is guaranteed to be properly
 | |
| 	 * terminated with a NUL byte.
 | |
| 	 *
 | |
| 	 * End result: even if 'len' is wrong, we'll exit
 | |
| 	 * early because the data cannot match (there can
 | |
| 	 * be no NUL in the ct/tcount data)
 | |
| 	 */
 | |
| 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
 | |
| 
 | |
| 	return dentry_string_cmp(cs, ct, tcount);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * long names are allocated separately from dentry and never modified.
 | |
|  * Refcounted, freeing is RCU-delayed.  See take_dentry_name_snapshot()
 | |
|  * for the reason why ->count and ->head can't be combined into a union.
 | |
|  * dentry_string_cmp() relies upon ->name[] being word-aligned.
 | |
|  */
 | |
| struct external_name {
 | |
| 	atomic_t count;
 | |
| 	struct rcu_head head;
 | |
| 	unsigned char name[] __aligned(sizeof(unsigned long));
 | |
| };
 | |
| 
 | |
| static inline struct external_name *external_name(struct dentry *dentry)
 | |
| {
 | |
| 	return container_of(dentry->d_name.name, struct external_name, name[0]);
 | |
| }
 | |
| 
 | |
| static void __d_free(struct rcu_head *head)
 | |
| {
 | |
| 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 | |
| 
 | |
| 	kmem_cache_free(dentry_cache, dentry); 
 | |
| }
 | |
| 
 | |
| static void __d_free_external(struct rcu_head *head)
 | |
| {
 | |
| 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 | |
| 	kfree(external_name(dentry));
 | |
| 	kmem_cache_free(dentry_cache, dentry);
 | |
| }
 | |
| 
 | |
| static inline int dname_external(const struct dentry *dentry)
 | |
| {
 | |
| 	return dentry->d_name.name != dentry->d_shortname.string;
 | |
| }
 | |
| 
 | |
| void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
 | |
| {
 | |
| 	unsigned seq;
 | |
| 	const unsigned char *s;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| retry:
 | |
| 	seq = read_seqcount_begin(&dentry->d_seq);
 | |
| 	s = READ_ONCE(dentry->d_name.name);
 | |
| 	name->name.hash_len = dentry->d_name.hash_len;
 | |
| 	name->name.name = name->inline_name.string;
 | |
| 	if (likely(s == dentry->d_shortname.string)) {
 | |
| 		name->inline_name = dentry->d_shortname;
 | |
| 	} else {
 | |
| 		struct external_name *p;
 | |
| 		p = container_of(s, struct external_name, name[0]);
 | |
| 		// get a valid reference
 | |
| 		if (unlikely(!atomic_inc_not_zero(&p->count)))
 | |
| 			goto retry;
 | |
| 		name->name.name = s;
 | |
| 	}
 | |
| 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
 | |
| 		release_dentry_name_snapshot(name);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| EXPORT_SYMBOL(take_dentry_name_snapshot);
 | |
| 
 | |
| void release_dentry_name_snapshot(struct name_snapshot *name)
 | |
| {
 | |
| 	if (unlikely(name->name.name != name->inline_name.string)) {
 | |
| 		struct external_name *p;
 | |
| 		p = container_of(name->name.name, struct external_name, name[0]);
 | |
| 		if (unlikely(atomic_dec_and_test(&p->count)))
 | |
| 			kfree_rcu(p, head);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(release_dentry_name_snapshot);
 | |
| 
 | |
| static inline void __d_set_inode_and_type(struct dentry *dentry,
 | |
| 					  struct inode *inode,
 | |
| 					  unsigned type_flags)
 | |
| {
 | |
| 	unsigned flags;
 | |
| 
 | |
| 	dentry->d_inode = inode;
 | |
| 	flags = READ_ONCE(dentry->d_flags);
 | |
| 	flags &= ~DCACHE_ENTRY_TYPE;
 | |
| 	flags |= type_flags;
 | |
| 	smp_store_release(&dentry->d_flags, flags);
 | |
| }
 | |
| 
 | |
| static inline void __d_clear_type_and_inode(struct dentry *dentry)
 | |
| {
 | |
| 	unsigned flags = READ_ONCE(dentry->d_flags);
 | |
| 
 | |
| 	flags &= ~DCACHE_ENTRY_TYPE;
 | |
| 	WRITE_ONCE(dentry->d_flags, flags);
 | |
| 	dentry->d_inode = NULL;
 | |
| 	/*
 | |
| 	 * The negative counter only tracks dentries on the LRU. Don't inc if
 | |
| 	 * d_lru is on another list.
 | |
| 	 */
 | |
| 	if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
 | |
| 		this_cpu_inc(nr_dentry_negative);
 | |
| }
 | |
| 
 | |
| static void dentry_free(struct dentry *dentry)
 | |
| {
 | |
| 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
 | |
| 	if (unlikely(dname_external(dentry))) {
 | |
| 		struct external_name *p = external_name(dentry);
 | |
| 		if (likely(atomic_dec_and_test(&p->count))) {
 | |
| 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	/* if dentry was never visible to RCU, immediate free is OK */
 | |
| 	if (dentry->d_flags & DCACHE_NORCU)
 | |
| 		__d_free(&dentry->d_u.d_rcu);
 | |
| 	else
 | |
| 		call_rcu(&dentry->d_u.d_rcu, __d_free);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release the dentry's inode, using the filesystem
 | |
|  * d_iput() operation if defined.
 | |
|  */
 | |
| static void dentry_unlink_inode(struct dentry * dentry)
 | |
| 	__releases(dentry->d_lock)
 | |
| 	__releases(dentry->d_inode->i_lock)
 | |
| {
 | |
| 	struct inode *inode = dentry->d_inode;
 | |
| 
 | |
| 	raw_write_seqcount_begin(&dentry->d_seq);
 | |
| 	__d_clear_type_and_inode(dentry);
 | |
| 	hlist_del_init(&dentry->d_u.d_alias);
 | |
| 	raw_write_seqcount_end(&dentry->d_seq);
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| 	spin_unlock(&inode->i_lock);
 | |
| 	if (!inode->i_nlink)
 | |
| 		fsnotify_inoderemove(inode);
 | |
| 	if (dentry->d_op && dentry->d_op->d_iput)
 | |
| 		dentry->d_op->d_iput(dentry, inode);
 | |
| 	else
 | |
| 		iput(inode);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
 | |
|  * is in use - which includes both the "real" per-superblock
 | |
|  * LRU list _and_ the DCACHE_SHRINK_LIST use.
 | |
|  *
 | |
|  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
 | |
|  * on the shrink list (ie not on the superblock LRU list).
 | |
|  *
 | |
|  * The per-cpu "nr_dentry_unused" counters are updated with
 | |
|  * the DCACHE_LRU_LIST bit.
 | |
|  *
 | |
|  * The per-cpu "nr_dentry_negative" counters are only updated
 | |
|  * when deleted from or added to the per-superblock LRU list, not
 | |
|  * from/to the shrink list. That is to avoid an unneeded dec/inc
 | |
|  * pair when moving from LRU to shrink list in select_collect().
 | |
|  *
 | |
|  * These helper functions make sure we always follow the
 | |
|  * rules. d_lock must be held by the caller.
 | |
|  */
 | |
| #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
 | |
| static void d_lru_add(struct dentry *dentry)
 | |
| {
 | |
| 	D_FLAG_VERIFY(dentry, 0);
 | |
| 	dentry->d_flags |= DCACHE_LRU_LIST;
 | |
| 	this_cpu_inc(nr_dentry_unused);
 | |
| 	if (d_is_negative(dentry))
 | |
| 		this_cpu_inc(nr_dentry_negative);
 | |
| 	WARN_ON_ONCE(!list_lru_add_obj(
 | |
| 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 | |
| }
 | |
| 
 | |
| static void d_lru_del(struct dentry *dentry)
 | |
| {
 | |
| 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 | |
| 	dentry->d_flags &= ~DCACHE_LRU_LIST;
 | |
| 	this_cpu_dec(nr_dentry_unused);
 | |
| 	if (d_is_negative(dentry))
 | |
| 		this_cpu_dec(nr_dentry_negative);
 | |
| 	WARN_ON_ONCE(!list_lru_del_obj(
 | |
| 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 | |
| }
 | |
| 
 | |
| static void d_shrink_del(struct dentry *dentry)
 | |
| {
 | |
| 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 | |
| 	list_del_init(&dentry->d_lru);
 | |
| 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 | |
| 	this_cpu_dec(nr_dentry_unused);
 | |
| }
 | |
| 
 | |
| static void d_shrink_add(struct dentry *dentry, struct list_head *list)
 | |
| {
 | |
| 	D_FLAG_VERIFY(dentry, 0);
 | |
| 	list_add(&dentry->d_lru, list);
 | |
| 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
 | |
| 	this_cpu_inc(nr_dentry_unused);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These can only be called under the global LRU lock, ie during the
 | |
|  * callback for freeing the LRU list. "isolate" removes it from the
 | |
|  * LRU lists entirely, while shrink_move moves it to the indicated
 | |
|  * private list.
 | |
|  */
 | |
| static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
 | |
| {
 | |
| 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 | |
| 	dentry->d_flags &= ~DCACHE_LRU_LIST;
 | |
| 	this_cpu_dec(nr_dentry_unused);
 | |
| 	if (d_is_negative(dentry))
 | |
| 		this_cpu_dec(nr_dentry_negative);
 | |
| 	list_lru_isolate(lru, &dentry->d_lru);
 | |
| }
 | |
| 
 | |
| static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
 | |
| 			      struct list_head *list)
 | |
| {
 | |
| 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 | |
| 	dentry->d_flags |= DCACHE_SHRINK_LIST;
 | |
| 	if (d_is_negative(dentry))
 | |
| 		this_cpu_dec(nr_dentry_negative);
 | |
| 	list_lru_isolate_move(lru, &dentry->d_lru, list);
 | |
| }
 | |
| 
 | |
| static void ___d_drop(struct dentry *dentry)
 | |
| {
 | |
| 	struct hlist_bl_head *b;
 | |
| 	/*
 | |
| 	 * Hashed dentries are normally on the dentry hashtable,
 | |
| 	 * with the exception of those newly allocated by
 | |
| 	 * d_obtain_root, which are always IS_ROOT:
 | |
| 	 */
 | |
| 	if (unlikely(IS_ROOT(dentry)))
 | |
| 		b = &dentry->d_sb->s_roots;
 | |
| 	else
 | |
| 		b = d_hash(dentry->d_name.hash);
 | |
| 
 | |
| 	hlist_bl_lock(b);
 | |
| 	__hlist_bl_del(&dentry->d_hash);
 | |
| 	hlist_bl_unlock(b);
 | |
| }
 | |
| 
 | |
| void __d_drop(struct dentry *dentry)
 | |
| {
 | |
| 	if (!d_unhashed(dentry)) {
 | |
| 		___d_drop(dentry);
 | |
| 		dentry->d_hash.pprev = NULL;
 | |
| 		write_seqcount_invalidate(&dentry->d_seq);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(__d_drop);
 | |
| 
 | |
| /**
 | |
|  * d_drop - drop a dentry
 | |
|  * @dentry: dentry to drop
 | |
|  *
 | |
|  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
 | |
|  * be found through a VFS lookup any more. Note that this is different from
 | |
|  * deleting the dentry - d_delete will try to mark the dentry negative if
 | |
|  * possible, giving a successful _negative_ lookup, while d_drop will
 | |
|  * just make the cache lookup fail.
 | |
|  *
 | |
|  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
 | |
|  * reason (NFS timeouts or autofs deletes).
 | |
|  *
 | |
|  * __d_drop requires dentry->d_lock
 | |
|  *
 | |
|  * ___d_drop doesn't mark dentry as "unhashed"
 | |
|  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
 | |
|  */
 | |
| void d_drop(struct dentry *dentry)
 | |
| {
 | |
| 	spin_lock(&dentry->d_lock);
 | |
| 	__d_drop(dentry);
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(d_drop);
 | |
| 
 | |
| static inline void dentry_unlist(struct dentry *dentry)
 | |
| {
 | |
| 	struct dentry *next;
 | |
| 	/*
 | |
| 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
 | |
| 	 * attached to the dentry tree
 | |
| 	 */
 | |
| 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
 | |
| 	if (unlikely(hlist_unhashed(&dentry->d_sib)))
 | |
| 		return;
 | |
| 	__hlist_del(&dentry->d_sib);
 | |
| 	/*
 | |
| 	 * Cursors can move around the list of children.  While we'd been
 | |
| 	 * a normal list member, it didn't matter - ->d_sib.next would've
 | |
| 	 * been updated.  However, from now on it won't be and for the
 | |
| 	 * things like d_walk() it might end up with a nasty surprise.
 | |
| 	 * Normally d_walk() doesn't care about cursors moving around -
 | |
| 	 * ->d_lock on parent prevents that and since a cursor has no children
 | |
| 	 * of its own, we get through it without ever unlocking the parent.
 | |
| 	 * There is one exception, though - if we ascend from a child that
 | |
| 	 * gets killed as soon as we unlock it, the next sibling is found
 | |
| 	 * using the value left in its ->d_sib.next.  And if _that_
 | |
| 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
 | |
| 	 * before d_walk() regains parent->d_lock, we'll end up skipping
 | |
| 	 * everything the cursor had been moved past.
 | |
| 	 *
 | |
| 	 * Solution: make sure that the pointer left behind in ->d_sib.next
 | |
| 	 * points to something that won't be moving around.  I.e. skip the
 | |
| 	 * cursors.
 | |
| 	 */
 | |
| 	while (dentry->d_sib.next) {
 | |
| 		next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
 | |
| 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
 | |
| 			break;
 | |
| 		dentry->d_sib.next = next->d_sib.next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct dentry *__dentry_kill(struct dentry *dentry)
 | |
| {
 | |
| 	struct dentry *parent = NULL;
 | |
| 	bool can_free = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * The dentry is now unrecoverably dead to the world.
 | |
| 	 */
 | |
| 	lockref_mark_dead(&dentry->d_lockref);
 | |
| 
 | |
| 	/*
 | |
| 	 * inform the fs via d_prune that this dentry is about to be
 | |
| 	 * unhashed and destroyed.
 | |
| 	 */
 | |
| 	if (dentry->d_flags & DCACHE_OP_PRUNE)
 | |
| 		dentry->d_op->d_prune(dentry);
 | |
| 
 | |
| 	if (dentry->d_flags & DCACHE_LRU_LIST) {
 | |
| 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
 | |
| 			d_lru_del(dentry);
 | |
| 	}
 | |
| 	/* if it was on the hash then remove it */
 | |
| 	__d_drop(dentry);
 | |
| 	if (dentry->d_inode)
 | |
| 		dentry_unlink_inode(dentry);
 | |
| 	else
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 	this_cpu_dec(nr_dentry);
 | |
| 	if (dentry->d_op && dentry->d_op->d_release)
 | |
| 		dentry->d_op->d_release(dentry);
 | |
| 
 | |
| 	cond_resched();
 | |
| 	/* now that it's negative, ->d_parent is stable */
 | |
| 	if (!IS_ROOT(dentry)) {
 | |
| 		parent = dentry->d_parent;
 | |
| 		spin_lock(&parent->d_lock);
 | |
| 	}
 | |
| 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 | |
| 	dentry_unlist(dentry);
 | |
| 	if (dentry->d_flags & DCACHE_SHRINK_LIST)
 | |
| 		can_free = false;
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| 	if (likely(can_free))
 | |
| 		dentry_free(dentry);
 | |
| 	if (parent && --parent->d_lockref.count) {
 | |
| 		spin_unlock(&parent->d_lock);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return parent;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lock a dentry for feeding it to __dentry_kill().
 | |
|  * Called under rcu_read_lock() and dentry->d_lock; the former
 | |
|  * guarantees that nothing we access will be freed under us.
 | |
|  * Note that dentry is *not* protected from concurrent dentry_kill(),
 | |
|  * d_delete(), etc.
 | |
|  *
 | |
|  * Return false if dentry is busy.  Otherwise, return true and have
 | |
|  * that dentry's inode locked.
 | |
|  */
 | |
| 
 | |
| static bool lock_for_kill(struct dentry *dentry)
 | |
| {
 | |
| 	struct inode *inode = dentry->d_inode;
 | |
| 
 | |
| 	if (unlikely(dentry->d_lockref.count))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!inode || likely(spin_trylock(&inode->i_lock)))
 | |
| 		return true;
 | |
| 
 | |
| 	do {
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 		spin_lock(&inode->i_lock);
 | |
| 		spin_lock(&dentry->d_lock);
 | |
| 		if (likely(inode == dentry->d_inode))
 | |
| 			break;
 | |
| 		spin_unlock(&inode->i_lock);
 | |
| 		inode = dentry->d_inode;
 | |
| 	} while (inode);
 | |
| 	if (likely(!dentry->d_lockref.count))
 | |
| 		return true;
 | |
| 	if (inode)
 | |
| 		spin_unlock(&inode->i_lock);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decide if dentry is worth retaining.  Usually this is called with dentry
 | |
|  * locked; if not locked, we are more limited and might not be able to tell
 | |
|  * without a lock.  False in this case means "punt to locked path and recheck".
 | |
|  *
 | |
|  * In case we aren't locked, these predicates are not "stable". However, it is
 | |
|  * sufficient that at some point after we dropped the reference the dentry was
 | |
|  * hashed and the flags had the proper value. Other dentry users may have
 | |
|  * re-gotten a reference to the dentry and change that, but our work is done -
 | |
|  * we can leave the dentry around with a zero refcount.
 | |
|  */
 | |
| static inline bool retain_dentry(struct dentry *dentry, bool locked)
 | |
| {
 | |
| 	unsigned int d_flags;
 | |
| 
 | |
| 	smp_rmb();
 | |
| 	d_flags = READ_ONCE(dentry->d_flags);
 | |
| 
 | |
| 	// Unreachable? Nobody would be able to look it up, no point retaining
 | |
| 	if (unlikely(d_unhashed(dentry)))
 | |
| 		return false;
 | |
| 
 | |
| 	// Same if it's disconnected
 | |
| 	if (unlikely(d_flags & DCACHE_DISCONNECTED))
 | |
| 		return false;
 | |
| 
 | |
| 	// ->d_delete() might tell us not to bother, but that requires
 | |
| 	// ->d_lock; can't decide without it
 | |
| 	if (unlikely(d_flags & DCACHE_OP_DELETE)) {
 | |
| 		if (!locked || dentry->d_op->d_delete(dentry))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	// Explicitly told not to bother
 | |
| 	if (unlikely(d_flags & DCACHE_DONTCACHE))
 | |
| 		return false;
 | |
| 
 | |
| 	// At this point it looks like we ought to keep it.  We also might
 | |
| 	// need to do something - put it on LRU if it wasn't there already
 | |
| 	// and mark it referenced if it was on LRU, but not marked yet.
 | |
| 	// Unfortunately, both actions require ->d_lock, so in lockless
 | |
| 	// case we'd have to punt rather than doing those.
 | |
| 	if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
 | |
| 		if (!locked)
 | |
| 			return false;
 | |
| 		d_lru_add(dentry);
 | |
| 	} else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
 | |
| 		if (!locked)
 | |
| 			return false;
 | |
| 		dentry->d_flags |= DCACHE_REFERENCED;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void d_mark_dontcache(struct inode *inode)
 | |
| {
 | |
| 	struct dentry *de;
 | |
| 
 | |
| 	spin_lock(&inode->i_lock);
 | |
| 	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
 | |
| 		spin_lock(&de->d_lock);
 | |
| 		de->d_flags |= DCACHE_DONTCACHE;
 | |
| 		spin_unlock(&de->d_lock);
 | |
| 	}
 | |
| 	inode->i_state |= I_DONTCACHE;
 | |
| 	spin_unlock(&inode->i_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(d_mark_dontcache);
 | |
| 
 | |
| /*
 | |
|  * Try to do a lockless dput(), and return whether that was successful.
 | |
|  *
 | |
|  * If unsuccessful, we return false, having already taken the dentry lock.
 | |
|  * In that case refcount is guaranteed to be zero and we have already
 | |
|  * decided that it's not worth keeping around.
 | |
|  *
 | |
|  * The caller needs to hold the RCU read lock, so that the dentry is
 | |
|  * guaranteed to stay around even if the refcount goes down to zero!
 | |
|  */
 | |
| static inline bool fast_dput(struct dentry *dentry)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * try to decrement the lockref optimistically.
 | |
| 	 */
 | |
| 	ret = lockref_put_return(&dentry->d_lockref);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the lockref_put_return() failed due to the lock being held
 | |
| 	 * by somebody else, the fast path has failed. We will need to
 | |
| 	 * get the lock, and then check the count again.
 | |
| 	 */
 | |
| 	if (unlikely(ret < 0)) {
 | |
| 		spin_lock(&dentry->d_lock);
 | |
| 		if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
 | |
| 			spin_unlock(&dentry->d_lock);
 | |
| 			return true;
 | |
| 		}
 | |
| 		dentry->d_lockref.count--;
 | |
| 		goto locked;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we weren't the last ref, we're done.
 | |
| 	 */
 | |
| 	if (ret)
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Can we decide that decrement of refcount is all we needed without
 | |
| 	 * taking the lock?  There's a very common case when it's all we need -
 | |
| 	 * dentry looks like it ought to be retained and there's nothing else
 | |
| 	 * to do.
 | |
| 	 */
 | |
| 	if (retain_dentry(dentry, false))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Either not worth retaining or we can't tell without the lock.
 | |
| 	 * Get the lock, then.  We've already decremented the refcount to 0,
 | |
| 	 * but we'll need to re-check the situation after getting the lock.
 | |
| 	 */
 | |
| 	spin_lock(&dentry->d_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Did somebody else grab a reference to it in the meantime, and
 | |
| 	 * we're no longer the last user after all? Alternatively, somebody
 | |
| 	 * else could have killed it and marked it dead. Either way, we
 | |
| 	 * don't need to do anything else.
 | |
| 	 */
 | |
| locked:
 | |
| 	if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* 
 | |
|  * This is dput
 | |
|  *
 | |
|  * This is complicated by the fact that we do not want to put
 | |
|  * dentries that are no longer on any hash chain on the unused
 | |
|  * list: we'd much rather just get rid of them immediately.
 | |
|  *
 | |
|  * However, that implies that we have to traverse the dentry
 | |
|  * tree upwards to the parents which might _also_ now be
 | |
|  * scheduled for deletion (it may have been only waiting for
 | |
|  * its last child to go away).
 | |
|  *
 | |
|  * This tail recursion is done by hand as we don't want to depend
 | |
|  * on the compiler to always get this right (gcc generally doesn't).
 | |
|  * Real recursion would eat up our stack space.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * dput - release a dentry
 | |
|  * @dentry: dentry to release 
 | |
|  *
 | |
|  * Release a dentry. This will drop the usage count and if appropriate
 | |
|  * call the dentry unlink method as well as removing it from the queues and
 | |
|  * releasing its resources. If the parent dentries were scheduled for release
 | |
|  * they too may now get deleted.
 | |
|  */
 | |
| void dput(struct dentry *dentry)
 | |
| {
 | |
| 	if (!dentry)
 | |
| 		return;
 | |
| 	might_sleep();
 | |
| 	rcu_read_lock();
 | |
| 	if (likely(fast_dput(dentry))) {
 | |
| 		rcu_read_unlock();
 | |
| 		return;
 | |
| 	}
 | |
| 	while (lock_for_kill(dentry)) {
 | |
| 		rcu_read_unlock();
 | |
| 		dentry = __dentry_kill(dentry);
 | |
| 		if (!dentry)
 | |
| 			return;
 | |
| 		if (retain_dentry(dentry, true)) {
 | |
| 			spin_unlock(&dentry->d_lock);
 | |
| 			return;
 | |
| 		}
 | |
| 		rcu_read_lock();
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(dput);
 | |
| 
 | |
| static void to_shrink_list(struct dentry *dentry, struct list_head *list)
 | |
| __must_hold(&dentry->d_lock)
 | |
| {
 | |
| 	if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
 | |
| 		if (dentry->d_flags & DCACHE_LRU_LIST)
 | |
| 			d_lru_del(dentry);
 | |
| 		d_shrink_add(dentry, list);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void dput_to_list(struct dentry *dentry, struct list_head *list)
 | |
| {
 | |
| 	rcu_read_lock();
 | |
| 	if (likely(fast_dput(dentry))) {
 | |
| 		rcu_read_unlock();
 | |
| 		return;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	to_shrink_list(dentry, list);
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| }
 | |
| 
 | |
| struct dentry *dget_parent(struct dentry *dentry)
 | |
| {
 | |
| 	int gotref;
 | |
| 	struct dentry *ret;
 | |
| 	unsigned seq;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do optimistic parent lookup without any
 | |
| 	 * locking.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	seq = raw_seqcount_begin(&dentry->d_seq);
 | |
| 	ret = READ_ONCE(dentry->d_parent);
 | |
| 	gotref = lockref_get_not_zero(&ret->d_lockref);
 | |
| 	rcu_read_unlock();
 | |
| 	if (likely(gotref)) {
 | |
| 		if (!read_seqcount_retry(&dentry->d_seq, seq))
 | |
| 			return ret;
 | |
| 		dput(ret);
 | |
| 	}
 | |
| 
 | |
| repeat:
 | |
| 	/*
 | |
| 	 * Don't need rcu_dereference because we re-check it was correct under
 | |
| 	 * the lock.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	ret = dentry->d_parent;
 | |
| 	spin_lock(&ret->d_lock);
 | |
| 	if (unlikely(ret != dentry->d_parent)) {
 | |
| 		spin_unlock(&ret->d_lock);
 | |
| 		rcu_read_unlock();
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	BUG_ON(!ret->d_lockref.count);
 | |
| 	ret->d_lockref.count++;
 | |
| 	spin_unlock(&ret->d_lock);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(dget_parent);
 | |
| 
 | |
| static struct dentry * __d_find_any_alias(struct inode *inode)
 | |
| {
 | |
| 	struct dentry *alias;
 | |
| 
 | |
| 	if (hlist_empty(&inode->i_dentry))
 | |
| 		return NULL;
 | |
| 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
 | |
| 	lockref_get(&alias->d_lockref);
 | |
| 	return alias;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_find_any_alias - find any alias for a given inode
 | |
|  * @inode: inode to find an alias for
 | |
|  *
 | |
|  * If any aliases exist for the given inode, take and return a
 | |
|  * reference for one of them.  If no aliases exist, return %NULL.
 | |
|  */
 | |
| struct dentry *d_find_any_alias(struct inode *inode)
 | |
| {
 | |
| 	struct dentry *de;
 | |
| 
 | |
| 	spin_lock(&inode->i_lock);
 | |
| 	de = __d_find_any_alias(inode);
 | |
| 	spin_unlock(&inode->i_lock);
 | |
| 	return de;
 | |
| }
 | |
| EXPORT_SYMBOL(d_find_any_alias);
 | |
| 
 | |
| static struct dentry *__d_find_alias(struct inode *inode)
 | |
| {
 | |
| 	struct dentry *alias;
 | |
| 
 | |
| 	if (S_ISDIR(inode->i_mode))
 | |
| 		return __d_find_any_alias(inode);
 | |
| 
 | |
| 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
 | |
| 		spin_lock(&alias->d_lock);
 | |
|  		if (!d_unhashed(alias)) {
 | |
| 			dget_dlock(alias);
 | |
| 			spin_unlock(&alias->d_lock);
 | |
| 			return alias;
 | |
| 		}
 | |
| 		spin_unlock(&alias->d_lock);
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_find_alias - grab a hashed alias of inode
 | |
|  * @inode: inode in question
 | |
|  *
 | |
|  * If inode has a hashed alias, or is a directory and has any alias,
 | |
|  * acquire the reference to alias and return it. Otherwise return NULL.
 | |
|  * Notice that if inode is a directory there can be only one alias and
 | |
|  * it can be unhashed only if it has no children, or if it is the root
 | |
|  * of a filesystem, or if the directory was renamed and d_revalidate
 | |
|  * was the first vfs operation to notice.
 | |
|  *
 | |
|  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
 | |
|  * any other hashed alias over that one.
 | |
|  */
 | |
| struct dentry *d_find_alias(struct inode *inode)
 | |
| {
 | |
| 	struct dentry *de = NULL;
 | |
| 
 | |
| 	if (!hlist_empty(&inode->i_dentry)) {
 | |
| 		spin_lock(&inode->i_lock);
 | |
| 		de = __d_find_alias(inode);
 | |
| 		spin_unlock(&inode->i_lock);
 | |
| 	}
 | |
| 	return de;
 | |
| }
 | |
| EXPORT_SYMBOL(d_find_alias);
 | |
| 
 | |
| /*
 | |
|  *  Caller MUST be holding rcu_read_lock() and be guaranteed
 | |
|  *  that inode won't get freed until rcu_read_unlock().
 | |
|  */
 | |
| struct dentry *d_find_alias_rcu(struct inode *inode)
 | |
| {
 | |
| 	struct hlist_head *l = &inode->i_dentry;
 | |
| 	struct dentry *de = NULL;
 | |
| 
 | |
| 	spin_lock(&inode->i_lock);
 | |
| 	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
 | |
| 	// used without having I_FREEING set, which means no aliases left
 | |
| 	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
 | |
| 		if (S_ISDIR(inode->i_mode)) {
 | |
| 			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
 | |
| 		} else {
 | |
| 			hlist_for_each_entry(de, l, d_u.d_alias)
 | |
| 				if (!d_unhashed(de))
 | |
| 					break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&inode->i_lock);
 | |
| 	return de;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Try to kill dentries associated with this inode.
 | |
|  * WARNING: you must own a reference to inode.
 | |
|  */
 | |
| void d_prune_aliases(struct inode *inode)
 | |
| {
 | |
| 	LIST_HEAD(dispose);
 | |
| 	struct dentry *dentry;
 | |
| 
 | |
| 	spin_lock(&inode->i_lock);
 | |
| 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
 | |
| 		spin_lock(&dentry->d_lock);
 | |
| 		if (!dentry->d_lockref.count)
 | |
| 			to_shrink_list(dentry, &dispose);
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 	}
 | |
| 	spin_unlock(&inode->i_lock);
 | |
| 	shrink_dentry_list(&dispose);
 | |
| }
 | |
| EXPORT_SYMBOL(d_prune_aliases);
 | |
| 
 | |
| static inline void shrink_kill(struct dentry *victim)
 | |
| {
 | |
| 	do {
 | |
| 		rcu_read_unlock();
 | |
| 		victim = __dentry_kill(victim);
 | |
| 		rcu_read_lock();
 | |
| 	} while (victim && lock_for_kill(victim));
 | |
| 	rcu_read_unlock();
 | |
| 	if (victim)
 | |
| 		spin_unlock(&victim->d_lock);
 | |
| }
 | |
| 
 | |
| void shrink_dentry_list(struct list_head *list)
 | |
| {
 | |
| 	while (!list_empty(list)) {
 | |
| 		struct dentry *dentry;
 | |
| 
 | |
| 		dentry = list_entry(list->prev, struct dentry, d_lru);
 | |
| 		spin_lock(&dentry->d_lock);
 | |
| 		rcu_read_lock();
 | |
| 		if (!lock_for_kill(dentry)) {
 | |
| 			bool can_free;
 | |
| 			rcu_read_unlock();
 | |
| 			d_shrink_del(dentry);
 | |
| 			can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
 | |
| 			spin_unlock(&dentry->d_lock);
 | |
| 			if (can_free)
 | |
| 				dentry_free(dentry);
 | |
| 			continue;
 | |
| 		}
 | |
| 		d_shrink_del(dentry);
 | |
| 		shrink_kill(dentry);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static enum lru_status dentry_lru_isolate(struct list_head *item,
 | |
| 		struct list_lru_one *lru, void *arg)
 | |
| {
 | |
| 	struct list_head *freeable = arg;
 | |
| 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * we are inverting the lru lock/dentry->d_lock here,
 | |
| 	 * so use a trylock. If we fail to get the lock, just skip
 | |
| 	 * it
 | |
| 	 */
 | |
| 	if (!spin_trylock(&dentry->d_lock))
 | |
| 		return LRU_SKIP;
 | |
| 
 | |
| 	/*
 | |
| 	 * Referenced dentries are still in use. If they have active
 | |
| 	 * counts, just remove them from the LRU. Otherwise give them
 | |
| 	 * another pass through the LRU.
 | |
| 	 */
 | |
| 	if (dentry->d_lockref.count) {
 | |
| 		d_lru_isolate(lru, dentry);
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 		return LRU_REMOVED;
 | |
| 	}
 | |
| 
 | |
| 	if (dentry->d_flags & DCACHE_REFERENCED) {
 | |
| 		dentry->d_flags &= ~DCACHE_REFERENCED;
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * The list move itself will be made by the common LRU code. At
 | |
| 		 * this point, we've dropped the dentry->d_lock but keep the
 | |
| 		 * lru lock. This is safe to do, since every list movement is
 | |
| 		 * protected by the lru lock even if both locks are held.
 | |
| 		 *
 | |
| 		 * This is guaranteed by the fact that all LRU management
 | |
| 		 * functions are intermediated by the LRU API calls like
 | |
| 		 * list_lru_add_obj and list_lru_del_obj. List movement in this file
 | |
| 		 * only ever occur through this functions or through callbacks
 | |
| 		 * like this one, that are called from the LRU API.
 | |
| 		 *
 | |
| 		 * The only exceptions to this are functions like
 | |
| 		 * shrink_dentry_list, and code that first checks for the
 | |
| 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
 | |
| 		 * operating only with stack provided lists after they are
 | |
| 		 * properly isolated from the main list.  It is thus, always a
 | |
| 		 * local access.
 | |
| 		 */
 | |
| 		return LRU_ROTATE;
 | |
| 	}
 | |
| 
 | |
| 	d_lru_shrink_move(lru, dentry, freeable);
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| 
 | |
| 	return LRU_REMOVED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * prune_dcache_sb - shrink the dcache
 | |
|  * @sb: superblock
 | |
|  * @sc: shrink control, passed to list_lru_shrink_walk()
 | |
|  *
 | |
|  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
 | |
|  * is done when we need more memory and called from the superblock shrinker
 | |
|  * function.
 | |
|  *
 | |
|  * This function may fail to free any resources if all the dentries are in
 | |
|  * use.
 | |
|  */
 | |
| long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
 | |
| {
 | |
| 	LIST_HEAD(dispose);
 | |
| 	long freed;
 | |
| 
 | |
| 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
 | |
| 				     dentry_lru_isolate, &dispose);
 | |
| 	shrink_dentry_list(&dispose);
 | |
| 	return freed;
 | |
| }
 | |
| 
 | |
| static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
 | |
| 		struct list_lru_one *lru, void *arg)
 | |
| {
 | |
| 	struct list_head *freeable = arg;
 | |
| 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
 | |
| 
 | |
| 	/*
 | |
| 	 * we are inverting the lru lock/dentry->d_lock here,
 | |
| 	 * so use a trylock. If we fail to get the lock, just skip
 | |
| 	 * it
 | |
| 	 */
 | |
| 	if (!spin_trylock(&dentry->d_lock))
 | |
| 		return LRU_SKIP;
 | |
| 
 | |
| 	d_lru_shrink_move(lru, dentry, freeable);
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| 
 | |
| 	return LRU_REMOVED;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * shrink_dcache_sb - shrink dcache for a superblock
 | |
|  * @sb: superblock
 | |
|  *
 | |
|  * Shrink the dcache for the specified super block. This is used to free
 | |
|  * the dcache before unmounting a file system.
 | |
|  */
 | |
| void shrink_dcache_sb(struct super_block *sb)
 | |
| {
 | |
| 	do {
 | |
| 		LIST_HEAD(dispose);
 | |
| 
 | |
| 		list_lru_walk(&sb->s_dentry_lru,
 | |
| 			dentry_lru_isolate_shrink, &dispose, 1024);
 | |
| 		shrink_dentry_list(&dispose);
 | |
| 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
 | |
| }
 | |
| EXPORT_SYMBOL(shrink_dcache_sb);
 | |
| 
 | |
| /**
 | |
|  * enum d_walk_ret - action to talke during tree walk
 | |
|  * @D_WALK_CONTINUE:	contrinue walk
 | |
|  * @D_WALK_QUIT:	quit walk
 | |
|  * @D_WALK_NORETRY:	quit when retry is needed
 | |
|  * @D_WALK_SKIP:	skip this dentry and its children
 | |
|  */
 | |
| enum d_walk_ret {
 | |
| 	D_WALK_CONTINUE,
 | |
| 	D_WALK_QUIT,
 | |
| 	D_WALK_NORETRY,
 | |
| 	D_WALK_SKIP,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * d_walk - walk the dentry tree
 | |
|  * @parent:	start of walk
 | |
|  * @data:	data passed to @enter() and @finish()
 | |
|  * @enter:	callback when first entering the dentry
 | |
|  *
 | |
|  * The @enter() callbacks are called with d_lock held.
 | |
|  */
 | |
| static void d_walk(struct dentry *parent, void *data,
 | |
| 		   enum d_walk_ret (*enter)(void *, struct dentry *))
 | |
| {
 | |
| 	struct dentry *this_parent, *dentry;
 | |
| 	unsigned seq = 0;
 | |
| 	enum d_walk_ret ret;
 | |
| 	bool retry = true;
 | |
| 
 | |
| again:
 | |
| 	read_seqbegin_or_lock(&rename_lock, &seq);
 | |
| 	this_parent = parent;
 | |
| 	spin_lock(&this_parent->d_lock);
 | |
| 
 | |
| 	ret = enter(data, this_parent);
 | |
| 	switch (ret) {
 | |
| 	case D_WALK_CONTINUE:
 | |
| 		break;
 | |
| 	case D_WALK_QUIT:
 | |
| 	case D_WALK_SKIP:
 | |
| 		goto out_unlock;
 | |
| 	case D_WALK_NORETRY:
 | |
| 		retry = false;
 | |
| 		break;
 | |
| 	}
 | |
| repeat:
 | |
| 	dentry = d_first_child(this_parent);
 | |
| resume:
 | |
| 	hlist_for_each_entry_from(dentry, d_sib) {
 | |
| 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 | |
| 
 | |
| 		ret = enter(data, dentry);
 | |
| 		switch (ret) {
 | |
| 		case D_WALK_CONTINUE:
 | |
| 			break;
 | |
| 		case D_WALK_QUIT:
 | |
| 			spin_unlock(&dentry->d_lock);
 | |
| 			goto out_unlock;
 | |
| 		case D_WALK_NORETRY:
 | |
| 			retry = false;
 | |
| 			break;
 | |
| 		case D_WALK_SKIP:
 | |
| 			spin_unlock(&dentry->d_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!hlist_empty(&dentry->d_children)) {
 | |
| 			spin_unlock(&this_parent->d_lock);
 | |
| 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
 | |
| 			this_parent = dentry;
 | |
| 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * All done at this level ... ascend and resume the search.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| ascend:
 | |
| 	if (this_parent != parent) {
 | |
| 		dentry = this_parent;
 | |
| 		this_parent = dentry->d_parent;
 | |
| 
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 		spin_lock(&this_parent->d_lock);
 | |
| 
 | |
| 		/* might go back up the wrong parent if we have had a rename. */
 | |
| 		if (need_seqretry(&rename_lock, seq))
 | |
| 			goto rename_retry;
 | |
| 		/* go into the first sibling still alive */
 | |
| 		hlist_for_each_entry_continue(dentry, d_sib) {
 | |
| 			if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
 | |
| 				rcu_read_unlock();
 | |
| 				goto resume;
 | |
| 			}
 | |
| 		}
 | |
| 		goto ascend;
 | |
| 	}
 | |
| 	if (need_seqretry(&rename_lock, seq))
 | |
| 		goto rename_retry;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(&this_parent->d_lock);
 | |
| 	done_seqretry(&rename_lock, seq);
 | |
| 	return;
 | |
| 
 | |
| rename_retry:
 | |
| 	spin_unlock(&this_parent->d_lock);
 | |
| 	rcu_read_unlock();
 | |
| 	BUG_ON(seq & 1);
 | |
| 	if (!retry)
 | |
| 		return;
 | |
| 	seq = 1;
 | |
| 	goto again;
 | |
| }
 | |
| 
 | |
| struct check_mount {
 | |
| 	struct vfsmount *mnt;
 | |
| 	unsigned int mounted;
 | |
| };
 | |
| 
 | |
| static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
 | |
| {
 | |
| 	struct check_mount *info = data;
 | |
| 	struct path path = { .mnt = info->mnt, .dentry = dentry };
 | |
| 
 | |
| 	if (likely(!d_mountpoint(dentry)))
 | |
| 		return D_WALK_CONTINUE;
 | |
| 	if (__path_is_mountpoint(&path)) {
 | |
| 		info->mounted = 1;
 | |
| 		return D_WALK_QUIT;
 | |
| 	}
 | |
| 	return D_WALK_CONTINUE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * path_has_submounts - check for mounts over a dentry in the
 | |
|  *                      current namespace.
 | |
|  * @parent: path to check.
 | |
|  *
 | |
|  * Return true if the parent or its subdirectories contain
 | |
|  * a mount point in the current namespace.
 | |
|  */
 | |
| int path_has_submounts(const struct path *parent)
 | |
| {
 | |
| 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
 | |
| 
 | |
| 	read_seqlock_excl(&mount_lock);
 | |
| 	d_walk(parent->dentry, &data, path_check_mount);
 | |
| 	read_sequnlock_excl(&mount_lock);
 | |
| 
 | |
| 	return data.mounted;
 | |
| }
 | |
| EXPORT_SYMBOL(path_has_submounts);
 | |
| 
 | |
| /*
 | |
|  * Called by mount code to set a mountpoint and check if the mountpoint is
 | |
|  * reachable (e.g. NFS can unhash a directory dentry and then the complete
 | |
|  * subtree can become unreachable).
 | |
|  *
 | |
|  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
 | |
|  * this reason take rename_lock and d_lock on dentry and ancestors.
 | |
|  */
 | |
| int d_set_mounted(struct dentry *dentry)
 | |
| {
 | |
| 	struct dentry *p;
 | |
| 	int ret = -ENOENT;
 | |
| 	write_seqlock(&rename_lock);
 | |
| 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
 | |
| 		/* Need exclusion wrt. d_invalidate() */
 | |
| 		spin_lock(&p->d_lock);
 | |
| 		if (unlikely(d_unhashed(p))) {
 | |
| 			spin_unlock(&p->d_lock);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		spin_unlock(&p->d_lock);
 | |
| 	}
 | |
| 	spin_lock(&dentry->d_lock);
 | |
| 	if (!d_unlinked(dentry)) {
 | |
| 		ret = -EBUSY;
 | |
| 		if (!d_mountpoint(dentry)) {
 | |
| 			dentry->d_flags |= DCACHE_MOUNTED;
 | |
| 			ret = 0;
 | |
| 		}
 | |
| 	}
 | |
|  	spin_unlock(&dentry->d_lock);
 | |
| out:
 | |
| 	write_sequnlock(&rename_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Search the dentry child list of the specified parent,
 | |
|  * and move any unused dentries to the end of the unused
 | |
|  * list for prune_dcache(). We descend to the next level
 | |
|  * whenever the d_children list is non-empty and continue
 | |
|  * searching.
 | |
|  *
 | |
|  * It returns zero iff there are no unused children,
 | |
|  * otherwise  it returns the number of children moved to
 | |
|  * the end of the unused list. This may not be the total
 | |
|  * number of unused children, because select_parent can
 | |
|  * drop the lock and return early due to latency
 | |
|  * constraints.
 | |
|  */
 | |
| 
 | |
| struct select_data {
 | |
| 	struct dentry *start;
 | |
| 	union {
 | |
| 		long found;
 | |
| 		struct dentry *victim;
 | |
| 	};
 | |
| 	struct list_head dispose;
 | |
| };
 | |
| 
 | |
| static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
 | |
| {
 | |
| 	struct select_data *data = _data;
 | |
| 	enum d_walk_ret ret = D_WALK_CONTINUE;
 | |
| 
 | |
| 	if (data->start == dentry)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
 | |
| 		data->found++;
 | |
| 	} else if (!dentry->d_lockref.count) {
 | |
| 		to_shrink_list(dentry, &data->dispose);
 | |
| 		data->found++;
 | |
| 	} else if (dentry->d_lockref.count < 0) {
 | |
| 		data->found++;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * We can return to the caller if we have found some (this
 | |
| 	 * ensures forward progress). We'll be coming back to find
 | |
| 	 * the rest.
 | |
| 	 */
 | |
| 	if (!list_empty(&data->dispose))
 | |
| 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
 | |
| {
 | |
| 	struct select_data *data = _data;
 | |
| 	enum d_walk_ret ret = D_WALK_CONTINUE;
 | |
| 
 | |
| 	if (data->start == dentry)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!dentry->d_lockref.count) {
 | |
| 		if (dentry->d_flags & DCACHE_SHRINK_LIST) {
 | |
| 			rcu_read_lock();
 | |
| 			data->victim = dentry;
 | |
| 			return D_WALK_QUIT;
 | |
| 		}
 | |
| 		to_shrink_list(dentry, &data->dispose);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * We can return to the caller if we have found some (this
 | |
| 	 * ensures forward progress). We'll be coming back to find
 | |
| 	 * the rest.
 | |
| 	 */
 | |
| 	if (!list_empty(&data->dispose))
 | |
| 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * shrink_dcache_parent - prune dcache
 | |
|  * @parent: parent of entries to prune
 | |
|  *
 | |
|  * Prune the dcache to remove unused children of the parent dentry.
 | |
|  */
 | |
| void shrink_dcache_parent(struct dentry *parent)
 | |
| {
 | |
| 	for (;;) {
 | |
| 		struct select_data data = {.start = parent};
 | |
| 
 | |
| 		INIT_LIST_HEAD(&data.dispose);
 | |
| 		d_walk(parent, &data, select_collect);
 | |
| 
 | |
| 		if (!list_empty(&data.dispose)) {
 | |
| 			shrink_dentry_list(&data.dispose);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		cond_resched();
 | |
| 		if (!data.found)
 | |
| 			break;
 | |
| 		data.victim = NULL;
 | |
| 		d_walk(parent, &data, select_collect2);
 | |
| 		if (data.victim) {
 | |
| 			spin_lock(&data.victim->d_lock);
 | |
| 			if (!lock_for_kill(data.victim)) {
 | |
| 				spin_unlock(&data.victim->d_lock);
 | |
| 				rcu_read_unlock();
 | |
| 			} else {
 | |
| 				shrink_kill(data.victim);
 | |
| 			}
 | |
| 		}
 | |
| 		if (!list_empty(&data.dispose))
 | |
| 			shrink_dentry_list(&data.dispose);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(shrink_dcache_parent);
 | |
| 
 | |
| static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
 | |
| {
 | |
| 	/* it has busy descendents; complain about those instead */
 | |
| 	if (!hlist_empty(&dentry->d_children))
 | |
| 		return D_WALK_CONTINUE;
 | |
| 
 | |
| 	/* root with refcount 1 is fine */
 | |
| 	if (dentry == _data && dentry->d_lockref.count == 1)
 | |
| 		return D_WALK_CONTINUE;
 | |
| 
 | |
| 	WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
 | |
| 			" still in use (%d) [unmount of %s %s]\n",
 | |
| 		       dentry,
 | |
| 		       dentry->d_inode ?
 | |
| 		       dentry->d_inode->i_ino : 0UL,
 | |
| 		       dentry,
 | |
| 		       dentry->d_lockref.count,
 | |
| 		       dentry->d_sb->s_type->name,
 | |
| 		       dentry->d_sb->s_id);
 | |
| 	return D_WALK_CONTINUE;
 | |
| }
 | |
| 
 | |
| static void do_one_tree(struct dentry *dentry)
 | |
| {
 | |
| 	shrink_dcache_parent(dentry);
 | |
| 	d_walk(dentry, dentry, umount_check);
 | |
| 	d_drop(dentry);
 | |
| 	dput(dentry);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * destroy the dentries attached to a superblock on unmounting
 | |
|  */
 | |
| void shrink_dcache_for_umount(struct super_block *sb)
 | |
| {
 | |
| 	struct dentry *dentry;
 | |
| 
 | |
| 	rwsem_assert_held_write(&sb->s_umount);
 | |
| 
 | |
| 	dentry = sb->s_root;
 | |
| 	sb->s_root = NULL;
 | |
| 	do_one_tree(dentry);
 | |
| 
 | |
| 	while (!hlist_bl_empty(&sb->s_roots)) {
 | |
| 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
 | |
| 		do_one_tree(dentry);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
 | |
| {
 | |
| 	struct dentry **victim = _data;
 | |
| 	if (d_mountpoint(dentry)) {
 | |
| 		*victim = dget_dlock(dentry);
 | |
| 		return D_WALK_QUIT;
 | |
| 	}
 | |
| 	return D_WALK_CONTINUE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_invalidate - detach submounts, prune dcache, and drop
 | |
|  * @dentry: dentry to invalidate (aka detach, prune and drop)
 | |
|  */
 | |
| void d_invalidate(struct dentry *dentry)
 | |
| {
 | |
| 	bool had_submounts = false;
 | |
| 	spin_lock(&dentry->d_lock);
 | |
| 	if (d_unhashed(dentry)) {
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 	__d_drop(dentry);
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| 
 | |
| 	/* Negative dentries can be dropped without further checks */
 | |
| 	if (!dentry->d_inode)
 | |
| 		return;
 | |
| 
 | |
| 	shrink_dcache_parent(dentry);
 | |
| 	for (;;) {
 | |
| 		struct dentry *victim = NULL;
 | |
| 		d_walk(dentry, &victim, find_submount);
 | |
| 		if (!victim) {
 | |
| 			if (had_submounts)
 | |
| 				shrink_dcache_parent(dentry);
 | |
| 			return;
 | |
| 		}
 | |
| 		had_submounts = true;
 | |
| 		detach_mounts(victim);
 | |
| 		dput(victim);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(d_invalidate);
 | |
| 
 | |
| /**
 | |
|  * __d_alloc	-	allocate a dcache entry
 | |
|  * @sb: filesystem it will belong to
 | |
|  * @name: qstr of the name
 | |
|  *
 | |
|  * Allocates a dentry. It returns %NULL if there is insufficient memory
 | |
|  * available. On a success the dentry is returned. The name passed in is
 | |
|  * copied and the copy passed in may be reused after this call.
 | |
|  */
 | |
|  
 | |
| static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
 | |
| {
 | |
| 	struct dentry *dentry;
 | |
| 	char *dname;
 | |
| 	int err;
 | |
| 
 | |
| 	dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
 | |
| 				      GFP_KERNEL);
 | |
| 	if (!dentry)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * We guarantee that the inline name is always NUL-terminated.
 | |
| 	 * This way the memcpy() done by the name switching in rename
 | |
| 	 * will still always have a NUL at the end, even if we might
 | |
| 	 * be overwriting an internal NUL character
 | |
| 	 */
 | |
| 	dentry->d_shortname.string[DNAME_INLINE_LEN-1] = 0;
 | |
| 	if (unlikely(!name)) {
 | |
| 		name = &slash_name;
 | |
| 		dname = dentry->d_shortname.string;
 | |
| 	} else if (name->len > DNAME_INLINE_LEN-1) {
 | |
| 		size_t size = offsetof(struct external_name, name[1]);
 | |
| 		struct external_name *p = kmalloc(size + name->len,
 | |
| 						  GFP_KERNEL_ACCOUNT |
 | |
| 						  __GFP_RECLAIMABLE);
 | |
| 		if (!p) {
 | |
| 			kmem_cache_free(dentry_cache, dentry); 
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		atomic_set(&p->count, 1);
 | |
| 		dname = p->name;
 | |
| 	} else  {
 | |
| 		dname = dentry->d_shortname.string;
 | |
| 	}	
 | |
| 
 | |
| 	dentry->d_name.len = name->len;
 | |
| 	dentry->d_name.hash = name->hash;
 | |
| 	memcpy(dname, name->name, name->len);
 | |
| 	dname[name->len] = 0;
 | |
| 
 | |
| 	/* Make sure we always see the terminating NUL character */
 | |
| 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
 | |
| 
 | |
| 	dentry->d_flags = 0;
 | |
| 	lockref_init(&dentry->d_lockref);
 | |
| 	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
 | |
| 	dentry->d_inode = NULL;
 | |
| 	dentry->d_parent = dentry;
 | |
| 	dentry->d_sb = sb;
 | |
| 	dentry->d_op = NULL;
 | |
| 	dentry->d_fsdata = NULL;
 | |
| 	INIT_HLIST_BL_NODE(&dentry->d_hash);
 | |
| 	INIT_LIST_HEAD(&dentry->d_lru);
 | |
| 	INIT_HLIST_HEAD(&dentry->d_children);
 | |
| 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
 | |
| 	INIT_HLIST_NODE(&dentry->d_sib);
 | |
| 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
 | |
| 
 | |
| 	if (dentry->d_op && dentry->d_op->d_init) {
 | |
| 		err = dentry->d_op->d_init(dentry);
 | |
| 		if (err) {
 | |
| 			if (dname_external(dentry))
 | |
| 				kfree(external_name(dentry));
 | |
| 			kmem_cache_free(dentry_cache, dentry);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	this_cpu_inc(nr_dentry);
 | |
| 
 | |
| 	return dentry;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_alloc	-	allocate a dcache entry
 | |
|  * @parent: parent of entry to allocate
 | |
|  * @name: qstr of the name
 | |
|  *
 | |
|  * Allocates a dentry. It returns %NULL if there is insufficient memory
 | |
|  * available. On a success the dentry is returned. The name passed in is
 | |
|  * copied and the copy passed in may be reused after this call.
 | |
|  */
 | |
| struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
 | |
| {
 | |
| 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
 | |
| 	if (!dentry)
 | |
| 		return NULL;
 | |
| 	spin_lock(&parent->d_lock);
 | |
| 	/*
 | |
| 	 * don't need child lock because it is not subject
 | |
| 	 * to concurrency here
 | |
| 	 */
 | |
| 	dentry->d_parent = dget_dlock(parent);
 | |
| 	hlist_add_head(&dentry->d_sib, &parent->d_children);
 | |
| 	spin_unlock(&parent->d_lock);
 | |
| 
 | |
| 	return dentry;
 | |
| }
 | |
| EXPORT_SYMBOL(d_alloc);
 | |
| 
 | |
| struct dentry *d_alloc_anon(struct super_block *sb)
 | |
| {
 | |
| 	return __d_alloc(sb, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL(d_alloc_anon);
 | |
| 
 | |
| struct dentry *d_alloc_cursor(struct dentry * parent)
 | |
| {
 | |
| 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
 | |
| 	if (dentry) {
 | |
| 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
 | |
| 		dentry->d_parent = dget(parent);
 | |
| 	}
 | |
| 	return dentry;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
 | |
|  * @sb: the superblock
 | |
|  * @name: qstr of the name
 | |
|  *
 | |
|  * For a filesystem that just pins its dentries in memory and never
 | |
|  * performs lookups at all, return an unhashed IS_ROOT dentry.
 | |
|  * This is used for pipes, sockets et.al. - the stuff that should
 | |
|  * never be anyone's children or parents.  Unlike all other
 | |
|  * dentries, these will not have RCU delay between dropping the
 | |
|  * last reference and freeing them.
 | |
|  *
 | |
|  * The only user is alloc_file_pseudo() and that's what should
 | |
|  * be considered a public interface.  Don't use directly.
 | |
|  */
 | |
| struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
 | |
| {
 | |
| 	static const struct dentry_operations anon_ops = {
 | |
| 		.d_dname = simple_dname
 | |
| 	};
 | |
| 	struct dentry *dentry = __d_alloc(sb, name);
 | |
| 	if (likely(dentry)) {
 | |
| 		dentry->d_flags |= DCACHE_NORCU;
 | |
| 		if (!sb->s_d_op)
 | |
| 			d_set_d_op(dentry, &anon_ops);
 | |
| 	}
 | |
| 	return dentry;
 | |
| }
 | |
| 
 | |
| struct dentry *d_alloc_name(struct dentry *parent, const char *name)
 | |
| {
 | |
| 	struct qstr q;
 | |
| 
 | |
| 	q.name = name;
 | |
| 	q.hash_len = hashlen_string(parent, name);
 | |
| 	return d_alloc(parent, &q);
 | |
| }
 | |
| EXPORT_SYMBOL(d_alloc_name);
 | |
| 
 | |
| void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
 | |
| {
 | |
| 	WARN_ON_ONCE(dentry->d_op);
 | |
| 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
 | |
| 				DCACHE_OP_COMPARE	|
 | |
| 				DCACHE_OP_REVALIDATE	|
 | |
| 				DCACHE_OP_WEAK_REVALIDATE	|
 | |
| 				DCACHE_OP_DELETE	|
 | |
| 				DCACHE_OP_REAL));
 | |
| 	dentry->d_op = op;
 | |
| 	if (!op)
 | |
| 		return;
 | |
| 	if (op->d_hash)
 | |
| 		dentry->d_flags |= DCACHE_OP_HASH;
 | |
| 	if (op->d_compare)
 | |
| 		dentry->d_flags |= DCACHE_OP_COMPARE;
 | |
| 	if (op->d_revalidate)
 | |
| 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
 | |
| 	if (op->d_weak_revalidate)
 | |
| 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
 | |
| 	if (op->d_delete)
 | |
| 		dentry->d_flags |= DCACHE_OP_DELETE;
 | |
| 	if (op->d_prune)
 | |
| 		dentry->d_flags |= DCACHE_OP_PRUNE;
 | |
| 	if (op->d_real)
 | |
| 		dentry->d_flags |= DCACHE_OP_REAL;
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL(d_set_d_op);
 | |
| 
 | |
| static unsigned d_flags_for_inode(struct inode *inode)
 | |
| {
 | |
| 	unsigned add_flags = DCACHE_REGULAR_TYPE;
 | |
| 
 | |
| 	if (!inode)
 | |
| 		return DCACHE_MISS_TYPE;
 | |
| 
 | |
| 	if (S_ISDIR(inode->i_mode)) {
 | |
| 		add_flags = DCACHE_DIRECTORY_TYPE;
 | |
| 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
 | |
| 			if (unlikely(!inode->i_op->lookup))
 | |
| 				add_flags = DCACHE_AUTODIR_TYPE;
 | |
| 			else
 | |
| 				inode->i_opflags |= IOP_LOOKUP;
 | |
| 		}
 | |
| 		goto type_determined;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
 | |
| 		if (unlikely(inode->i_op->get_link)) {
 | |
| 			add_flags = DCACHE_SYMLINK_TYPE;
 | |
| 			goto type_determined;
 | |
| 		}
 | |
| 		inode->i_opflags |= IOP_NOFOLLOW;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!S_ISREG(inode->i_mode)))
 | |
| 		add_flags = DCACHE_SPECIAL_TYPE;
 | |
| 
 | |
| type_determined:
 | |
| 	if (unlikely(IS_AUTOMOUNT(inode)))
 | |
| 		add_flags |= DCACHE_NEED_AUTOMOUNT;
 | |
| 	return add_flags;
 | |
| }
 | |
| 
 | |
| static void __d_instantiate(struct dentry *dentry, struct inode *inode)
 | |
| {
 | |
| 	unsigned add_flags = d_flags_for_inode(inode);
 | |
| 	WARN_ON(d_in_lookup(dentry));
 | |
| 
 | |
| 	spin_lock(&dentry->d_lock);
 | |
| 	/*
 | |
| 	 * The negative counter only tracks dentries on the LRU. Don't dec if
 | |
| 	 * d_lru is on another list.
 | |
| 	 */
 | |
| 	if ((dentry->d_flags &
 | |
| 	     (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
 | |
| 		this_cpu_dec(nr_dentry_negative);
 | |
| 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
 | |
| 	raw_write_seqcount_begin(&dentry->d_seq);
 | |
| 	__d_set_inode_and_type(dentry, inode, add_flags);
 | |
| 	raw_write_seqcount_end(&dentry->d_seq);
 | |
| 	fsnotify_update_flags(dentry);
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_instantiate - fill in inode information for a dentry
 | |
|  * @entry: dentry to complete
 | |
|  * @inode: inode to attach to this dentry
 | |
|  *
 | |
|  * Fill in inode information in the entry.
 | |
|  *
 | |
|  * This turns negative dentries into productive full members
 | |
|  * of society.
 | |
|  *
 | |
|  * NOTE! This assumes that the inode count has been incremented
 | |
|  * (or otherwise set) by the caller to indicate that it is now
 | |
|  * in use by the dcache.
 | |
|  */
 | |
|  
 | |
| void d_instantiate(struct dentry *entry, struct inode * inode)
 | |
| {
 | |
| 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
 | |
| 	if (inode) {
 | |
| 		security_d_instantiate(entry, inode);
 | |
| 		spin_lock(&inode->i_lock);
 | |
| 		__d_instantiate(entry, inode);
 | |
| 		spin_unlock(&inode->i_lock);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(d_instantiate);
 | |
| 
 | |
| /*
 | |
|  * This should be equivalent to d_instantiate() + unlock_new_inode(),
 | |
|  * with lockdep-related part of unlock_new_inode() done before
 | |
|  * anything else.  Use that instead of open-coding d_instantiate()/
 | |
|  * unlock_new_inode() combinations.
 | |
|  */
 | |
| void d_instantiate_new(struct dentry *entry, struct inode *inode)
 | |
| {
 | |
| 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
 | |
| 	BUG_ON(!inode);
 | |
| 	lockdep_annotate_inode_mutex_key(inode);
 | |
| 	security_d_instantiate(entry, inode);
 | |
| 	spin_lock(&inode->i_lock);
 | |
| 	__d_instantiate(entry, inode);
 | |
| 	WARN_ON(!(inode->i_state & I_NEW));
 | |
| 	inode->i_state &= ~I_NEW & ~I_CREATING;
 | |
| 	/*
 | |
| 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
 | |
| 	 * ___wait_var_event() either sees the bit cleared or
 | |
| 	 * waitqueue_active() check in wake_up_var() sees the waiter.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	inode_wake_up_bit(inode, __I_NEW);
 | |
| 	spin_unlock(&inode->i_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(d_instantiate_new);
 | |
| 
 | |
| struct dentry *d_make_root(struct inode *root_inode)
 | |
| {
 | |
| 	struct dentry *res = NULL;
 | |
| 
 | |
| 	if (root_inode) {
 | |
| 		res = d_alloc_anon(root_inode->i_sb);
 | |
| 		if (res)
 | |
| 			d_instantiate(res, root_inode);
 | |
| 		else
 | |
| 			iput(root_inode);
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(d_make_root);
 | |
| 
 | |
| static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
 | |
| {
 | |
| 	struct super_block *sb;
 | |
| 	struct dentry *new, *res;
 | |
| 
 | |
| 	if (!inode)
 | |
| 		return ERR_PTR(-ESTALE);
 | |
| 	if (IS_ERR(inode))
 | |
| 		return ERR_CAST(inode);
 | |
| 
 | |
| 	sb = inode->i_sb;
 | |
| 
 | |
| 	res = d_find_any_alias(inode); /* existing alias? */
 | |
| 	if (res)
 | |
| 		goto out;
 | |
| 
 | |
| 	new = d_alloc_anon(sb);
 | |
| 	if (!new) {
 | |
| 		res = ERR_PTR(-ENOMEM);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	security_d_instantiate(new, inode);
 | |
| 	spin_lock(&inode->i_lock);
 | |
| 	res = __d_find_any_alias(inode); /* recheck under lock */
 | |
| 	if (likely(!res)) { /* still no alias, attach a disconnected dentry */
 | |
| 		unsigned add_flags = d_flags_for_inode(inode);
 | |
| 
 | |
| 		if (disconnected)
 | |
| 			add_flags |= DCACHE_DISCONNECTED;
 | |
| 
 | |
| 		spin_lock(&new->d_lock);
 | |
| 		__d_set_inode_and_type(new, inode, add_flags);
 | |
| 		hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
 | |
| 		if (!disconnected) {
 | |
| 			hlist_bl_lock(&sb->s_roots);
 | |
| 			hlist_bl_add_head(&new->d_hash, &sb->s_roots);
 | |
| 			hlist_bl_unlock(&sb->s_roots);
 | |
| 		}
 | |
| 		spin_unlock(&new->d_lock);
 | |
| 		spin_unlock(&inode->i_lock);
 | |
| 		inode = NULL; /* consumed by new->d_inode */
 | |
| 		res = new;
 | |
| 	} else {
 | |
| 		spin_unlock(&inode->i_lock);
 | |
| 		dput(new);
 | |
| 	}
 | |
| 
 | |
|  out:
 | |
| 	iput(inode);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
 | |
|  * @inode: inode to allocate the dentry for
 | |
|  *
 | |
|  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
 | |
|  * similar open by handle operations.  The returned dentry may be anonymous,
 | |
|  * or may have a full name (if the inode was already in the cache).
 | |
|  *
 | |
|  * When called on a directory inode, we must ensure that the inode only ever
 | |
|  * has one dentry.  If a dentry is found, that is returned instead of
 | |
|  * allocating a new one.
 | |
|  *
 | |
|  * On successful return, the reference to the inode has been transferred
 | |
|  * to the dentry.  In case of an error the reference on the inode is released.
 | |
|  * To make it easier to use in export operations a %NULL or IS_ERR inode may
 | |
|  * be passed in and the error will be propagated to the return value,
 | |
|  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
 | |
|  */
 | |
| struct dentry *d_obtain_alias(struct inode *inode)
 | |
| {
 | |
| 	return __d_obtain_alias(inode, true);
 | |
| }
 | |
| EXPORT_SYMBOL(d_obtain_alias);
 | |
| 
 | |
| /**
 | |
|  * d_obtain_root - find or allocate a dentry for a given inode
 | |
|  * @inode: inode to allocate the dentry for
 | |
|  *
 | |
|  * Obtain an IS_ROOT dentry for the root of a filesystem.
 | |
|  *
 | |
|  * We must ensure that directory inodes only ever have one dentry.  If a
 | |
|  * dentry is found, that is returned instead of allocating a new one.
 | |
|  *
 | |
|  * On successful return, the reference to the inode has been transferred
 | |
|  * to the dentry.  In case of an error the reference on the inode is
 | |
|  * released.  A %NULL or IS_ERR inode may be passed in and will be the
 | |
|  * error will be propagate to the return value, with a %NULL @inode
 | |
|  * replaced by ERR_PTR(-ESTALE).
 | |
|  */
 | |
| struct dentry *d_obtain_root(struct inode *inode)
 | |
| {
 | |
| 	return __d_obtain_alias(inode, false);
 | |
| }
 | |
| EXPORT_SYMBOL(d_obtain_root);
 | |
| 
 | |
| /**
 | |
|  * d_add_ci - lookup or allocate new dentry with case-exact name
 | |
|  * @dentry: the negative dentry that was passed to the parent's lookup func
 | |
|  * @inode:  the inode case-insensitive lookup has found
 | |
|  * @name:   the case-exact name to be associated with the returned dentry
 | |
|  *
 | |
|  * This is to avoid filling the dcache with case-insensitive names to the
 | |
|  * same inode, only the actual correct case is stored in the dcache for
 | |
|  * case-insensitive filesystems.
 | |
|  *
 | |
|  * For a case-insensitive lookup match and if the case-exact dentry
 | |
|  * already exists in the dcache, use it and return it.
 | |
|  *
 | |
|  * If no entry exists with the exact case name, allocate new dentry with
 | |
|  * the exact case, and return the spliced entry.
 | |
|  */
 | |
| struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
 | |
| 			struct qstr *name)
 | |
| {
 | |
| 	struct dentry *found, *res;
 | |
| 
 | |
| 	/*
 | |
| 	 * First check if a dentry matching the name already exists,
 | |
| 	 * if not go ahead and create it now.
 | |
| 	 */
 | |
| 	found = d_hash_and_lookup(dentry->d_parent, name);
 | |
| 	if (found) {
 | |
| 		iput(inode);
 | |
| 		return found;
 | |
| 	}
 | |
| 	if (d_in_lookup(dentry)) {
 | |
| 		found = d_alloc_parallel(dentry->d_parent, name,
 | |
| 					dentry->d_wait);
 | |
| 		if (IS_ERR(found) || !d_in_lookup(found)) {
 | |
| 			iput(inode);
 | |
| 			return found;
 | |
| 		}
 | |
| 	} else {
 | |
| 		found = d_alloc(dentry->d_parent, name);
 | |
| 		if (!found) {
 | |
| 			iput(inode);
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 		} 
 | |
| 	}
 | |
| 	res = d_splice_alias(inode, found);
 | |
| 	if (res) {
 | |
| 		d_lookup_done(found);
 | |
| 		dput(found);
 | |
| 		return res;
 | |
| 	}
 | |
| 	return found;
 | |
| }
 | |
| EXPORT_SYMBOL(d_add_ci);
 | |
| 
 | |
| /**
 | |
|  * d_same_name - compare dentry name with case-exact name
 | |
|  * @dentry: the negative dentry that was passed to the parent's lookup func
 | |
|  * @parent: parent dentry
 | |
|  * @name:   the case-exact name to be associated with the returned dentry
 | |
|  *
 | |
|  * Return: true if names are same, or false
 | |
|  */
 | |
| bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
 | |
| 		 const struct qstr *name)
 | |
| {
 | |
| 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
 | |
| 		if (dentry->d_name.len != name->len)
 | |
| 			return false;
 | |
| 		return dentry_cmp(dentry, name->name, name->len) == 0;
 | |
| 	}
 | |
| 	return parent->d_op->d_compare(dentry,
 | |
| 				       dentry->d_name.len, dentry->d_name.name,
 | |
| 				       name) == 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(d_same_name);
 | |
| 
 | |
| /*
 | |
|  * This is __d_lookup_rcu() when the parent dentry has
 | |
|  * DCACHE_OP_COMPARE, which makes things much nastier.
 | |
|  */
 | |
| static noinline struct dentry *__d_lookup_rcu_op_compare(
 | |
| 	const struct dentry *parent,
 | |
| 	const struct qstr *name,
 | |
| 	unsigned *seqp)
 | |
| {
 | |
| 	u64 hashlen = name->hash_len;
 | |
| 	struct hlist_bl_head *b = d_hash(hashlen);
 | |
| 	struct hlist_bl_node *node;
 | |
| 	struct dentry *dentry;
 | |
| 
 | |
| 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
 | |
| 		int tlen;
 | |
| 		const char *tname;
 | |
| 		unsigned seq;
 | |
| 
 | |
| seqretry:
 | |
| 		seq = raw_seqcount_begin(&dentry->d_seq);
 | |
| 		if (dentry->d_parent != parent)
 | |
| 			continue;
 | |
| 		if (d_unhashed(dentry))
 | |
| 			continue;
 | |
| 		if (dentry->d_name.hash != hashlen_hash(hashlen))
 | |
| 			continue;
 | |
| 		tlen = dentry->d_name.len;
 | |
| 		tname = dentry->d_name.name;
 | |
| 		/* we want a consistent (name,len) pair */
 | |
| 		if (read_seqcount_retry(&dentry->d_seq, seq)) {
 | |
| 			cpu_relax();
 | |
| 			goto seqretry;
 | |
| 		}
 | |
| 		if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
 | |
| 			continue;
 | |
| 		*seqp = seq;
 | |
| 		return dentry;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __d_lookup_rcu - search for a dentry (racy, store-free)
 | |
|  * @parent: parent dentry
 | |
|  * @name: qstr of name we wish to find
 | |
|  * @seqp: returns d_seq value at the point where the dentry was found
 | |
|  * Returns: dentry, or NULL
 | |
|  *
 | |
|  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
 | |
|  * resolution (store-free path walking) design described in
 | |
|  * Documentation/filesystems/path-lookup.txt.
 | |
|  *
 | |
|  * This is not to be used outside core vfs.
 | |
|  *
 | |
|  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
 | |
|  * held, and rcu_read_lock held. The returned dentry must not be stored into
 | |
|  * without taking d_lock and checking d_seq sequence count against @seq
 | |
|  * returned here.
 | |
|  *
 | |
|  * Alternatively, __d_lookup_rcu may be called again to look up the child of
 | |
|  * the returned dentry, so long as its parent's seqlock is checked after the
 | |
|  * child is looked up. Thus, an interlocking stepping of sequence lock checks
 | |
|  * is formed, giving integrity down the path walk.
 | |
|  *
 | |
|  * NOTE! The caller *has* to check the resulting dentry against the sequence
 | |
|  * number we've returned before using any of the resulting dentry state!
 | |
|  */
 | |
| struct dentry *__d_lookup_rcu(const struct dentry *parent,
 | |
| 				const struct qstr *name,
 | |
| 				unsigned *seqp)
 | |
| {
 | |
| 	u64 hashlen = name->hash_len;
 | |
| 	const unsigned char *str = name->name;
 | |
| 	struct hlist_bl_head *b = d_hash(hashlen);
 | |
| 	struct hlist_bl_node *node;
 | |
| 	struct dentry *dentry;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: There is significant duplication with __d_lookup_rcu which is
 | |
| 	 * required to prevent single threaded performance regressions
 | |
| 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
 | |
| 	 * Keep the two functions in sync.
 | |
| 	 */
 | |
| 
 | |
| 	if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
 | |
| 		return __d_lookup_rcu_op_compare(parent, name, seqp);
 | |
| 
 | |
| 	/*
 | |
| 	 * The hash list is protected using RCU.
 | |
| 	 *
 | |
| 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
 | |
| 	 * races with d_move().
 | |
| 	 *
 | |
| 	 * It is possible that concurrent renames can mess up our list
 | |
| 	 * walk here and result in missing our dentry, resulting in the
 | |
| 	 * false-negative result. d_lookup() protects against concurrent
 | |
| 	 * renames using rename_lock seqlock.
 | |
| 	 *
 | |
| 	 * See Documentation/filesystems/path-lookup.txt for more details.
 | |
| 	 */
 | |
| 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
 | |
| 		unsigned seq;
 | |
| 
 | |
| 		/*
 | |
| 		 * The dentry sequence count protects us from concurrent
 | |
| 		 * renames, and thus protects parent and name fields.
 | |
| 		 *
 | |
| 		 * The caller must perform a seqcount check in order
 | |
| 		 * to do anything useful with the returned dentry.
 | |
| 		 *
 | |
| 		 * NOTE! We do a "raw" seqcount_begin here. That means that
 | |
| 		 * we don't wait for the sequence count to stabilize if it
 | |
| 		 * is in the middle of a sequence change. If we do the slow
 | |
| 		 * dentry compare, we will do seqretries until it is stable,
 | |
| 		 * and if we end up with a successful lookup, we actually
 | |
| 		 * want to exit RCU lookup anyway.
 | |
| 		 *
 | |
| 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
 | |
| 		 * we are still guaranteed NUL-termination of ->d_name.name.
 | |
| 		 */
 | |
| 		seq = raw_seqcount_begin(&dentry->d_seq);
 | |
| 		if (dentry->d_parent != parent)
 | |
| 			continue;
 | |
| 		if (d_unhashed(dentry))
 | |
| 			continue;
 | |
| 		if (dentry->d_name.hash_len != hashlen)
 | |
| 			continue;
 | |
| 		if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
 | |
| 			continue;
 | |
| 		*seqp = seq;
 | |
| 		return dentry;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_lookup - search for a dentry
 | |
|  * @parent: parent dentry
 | |
|  * @name: qstr of name we wish to find
 | |
|  * Returns: dentry, or NULL
 | |
|  *
 | |
|  * d_lookup searches the children of the parent dentry for the name in
 | |
|  * question. If the dentry is found its reference count is incremented and the
 | |
|  * dentry is returned. The caller must use dput to free the entry when it has
 | |
|  * finished using it. %NULL is returned if the dentry does not exist.
 | |
|  */
 | |
| struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
 | |
| {
 | |
| 	struct dentry *dentry;
 | |
| 	unsigned seq;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqbegin(&rename_lock);
 | |
| 		dentry = __d_lookup(parent, name);
 | |
| 		if (dentry)
 | |
| 			break;
 | |
| 	} while (read_seqretry(&rename_lock, seq));
 | |
| 	return dentry;
 | |
| }
 | |
| EXPORT_SYMBOL(d_lookup);
 | |
| 
 | |
| /**
 | |
|  * __d_lookup - search for a dentry (racy)
 | |
|  * @parent: parent dentry
 | |
|  * @name: qstr of name we wish to find
 | |
|  * Returns: dentry, or NULL
 | |
|  *
 | |
|  * __d_lookup is like d_lookup, however it may (rarely) return a
 | |
|  * false-negative result due to unrelated rename activity.
 | |
|  *
 | |
|  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
 | |
|  * however it must be used carefully, eg. with a following d_lookup in
 | |
|  * the case of failure.
 | |
|  *
 | |
|  * __d_lookup callers must be commented.
 | |
|  */
 | |
| struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
 | |
| {
 | |
| 	unsigned int hash = name->hash;
 | |
| 	struct hlist_bl_head *b = d_hash(hash);
 | |
| 	struct hlist_bl_node *node;
 | |
| 	struct dentry *found = NULL;
 | |
| 	struct dentry *dentry;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: There is significant duplication with __d_lookup_rcu which is
 | |
| 	 * required to prevent single threaded performance regressions
 | |
| 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
 | |
| 	 * Keep the two functions in sync.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * The hash list is protected using RCU.
 | |
| 	 *
 | |
| 	 * Take d_lock when comparing a candidate dentry, to avoid races
 | |
| 	 * with d_move().
 | |
| 	 *
 | |
| 	 * It is possible that concurrent renames can mess up our list
 | |
| 	 * walk here and result in missing our dentry, resulting in the
 | |
| 	 * false-negative result. d_lookup() protects against concurrent
 | |
| 	 * renames using rename_lock seqlock.
 | |
| 	 *
 | |
| 	 * See Documentation/filesystems/path-lookup.txt for more details.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	
 | |
| 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
 | |
| 
 | |
| 		if (dentry->d_name.hash != hash)
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock(&dentry->d_lock);
 | |
| 		if (dentry->d_parent != parent)
 | |
| 			goto next;
 | |
| 		if (d_unhashed(dentry))
 | |
| 			goto next;
 | |
| 
 | |
| 		if (!d_same_name(dentry, parent, name))
 | |
| 			goto next;
 | |
| 
 | |
| 		dentry->d_lockref.count++;
 | |
| 		found = dentry;
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 		break;
 | |
| next:
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
|  	}
 | |
|  	rcu_read_unlock();
 | |
| 
 | |
|  	return found;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_hash_and_lookup - hash the qstr then search for a dentry
 | |
|  * @dir: Directory to search in
 | |
|  * @name: qstr of name we wish to find
 | |
|  *
 | |
|  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
 | |
|  */
 | |
| struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
 | |
| {
 | |
| 	/*
 | |
| 	 * Check for a fs-specific hash function. Note that we must
 | |
| 	 * calculate the standard hash first, as the d_op->d_hash()
 | |
| 	 * routine may choose to leave the hash value unchanged.
 | |
| 	 */
 | |
| 	name->hash = full_name_hash(dir, name->name, name->len);
 | |
| 	if (dir->d_flags & DCACHE_OP_HASH) {
 | |
| 		int err = dir->d_op->d_hash(dir, name);
 | |
| 		if (unlikely(err < 0))
 | |
| 			return ERR_PTR(err);
 | |
| 	}
 | |
| 	return d_lookup(dir, name);
 | |
| }
 | |
| EXPORT_SYMBOL(d_hash_and_lookup);
 | |
| 
 | |
| /*
 | |
|  * When a file is deleted, we have two options:
 | |
|  * - turn this dentry into a negative dentry
 | |
|  * - unhash this dentry and free it.
 | |
|  *
 | |
|  * Usually, we want to just turn this into
 | |
|  * a negative dentry, but if anybody else is
 | |
|  * currently using the dentry or the inode
 | |
|  * we can't do that and we fall back on removing
 | |
|  * it from the hash queues and waiting for
 | |
|  * it to be deleted later when it has no users
 | |
|  */
 | |
|  
 | |
| /**
 | |
|  * d_delete - delete a dentry
 | |
|  * @dentry: The dentry to delete
 | |
|  *
 | |
|  * Turn the dentry into a negative dentry if possible, otherwise
 | |
|  * remove it from the hash queues so it can be deleted later
 | |
|  */
 | |
|  
 | |
| void d_delete(struct dentry * dentry)
 | |
| {
 | |
| 	struct inode *inode = dentry->d_inode;
 | |
| 
 | |
| 	spin_lock(&inode->i_lock);
 | |
| 	spin_lock(&dentry->d_lock);
 | |
| 	/*
 | |
| 	 * Are we the only user?
 | |
| 	 */
 | |
| 	if (dentry->d_lockref.count == 1) {
 | |
| 		if (dentry_negative_policy)
 | |
| 			__d_drop(dentry);
 | |
| 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
 | |
| 		dentry_unlink_inode(dentry);
 | |
| 	} else {
 | |
| 		__d_drop(dentry);
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 		spin_unlock(&inode->i_lock);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(d_delete);
 | |
| 
 | |
| static void __d_rehash(struct dentry *entry)
 | |
| {
 | |
| 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
 | |
| 
 | |
| 	hlist_bl_lock(b);
 | |
| 	hlist_bl_add_head_rcu(&entry->d_hash, b);
 | |
| 	hlist_bl_unlock(b);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_rehash	- add an entry back to the hash
 | |
|  * @entry: dentry to add to the hash
 | |
|  *
 | |
|  * Adds a dentry to the hash according to its name.
 | |
|  */
 | |
|  
 | |
| void d_rehash(struct dentry * entry)
 | |
| {
 | |
| 	spin_lock(&entry->d_lock);
 | |
| 	__d_rehash(entry);
 | |
| 	spin_unlock(&entry->d_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(d_rehash);
 | |
| 
 | |
| static inline unsigned start_dir_add(struct inode *dir)
 | |
| {
 | |
| 	preempt_disable_nested();
 | |
| 	for (;;) {
 | |
| 		unsigned n = dir->i_dir_seq;
 | |
| 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
 | |
| 			return n;
 | |
| 		cpu_relax();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void end_dir_add(struct inode *dir, unsigned int n,
 | |
| 			       wait_queue_head_t *d_wait)
 | |
| {
 | |
| 	smp_store_release(&dir->i_dir_seq, n + 2);
 | |
| 	preempt_enable_nested();
 | |
| 	wake_up_all(d_wait);
 | |
| }
 | |
| 
 | |
| static void d_wait_lookup(struct dentry *dentry)
 | |
| {
 | |
| 	if (d_in_lookup(dentry)) {
 | |
| 		DECLARE_WAITQUEUE(wait, current);
 | |
| 		add_wait_queue(dentry->d_wait, &wait);
 | |
| 		do {
 | |
| 			set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 			spin_unlock(&dentry->d_lock);
 | |
| 			schedule();
 | |
| 			spin_lock(&dentry->d_lock);
 | |
| 		} while (d_in_lookup(dentry));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct dentry *d_alloc_parallel(struct dentry *parent,
 | |
| 				const struct qstr *name,
 | |
| 				wait_queue_head_t *wq)
 | |
| {
 | |
| 	unsigned int hash = name->hash;
 | |
| 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
 | |
| 	struct hlist_bl_node *node;
 | |
| 	struct dentry *new = d_alloc(parent, name);
 | |
| 	struct dentry *dentry;
 | |
| 	unsigned seq, r_seq, d_seq;
 | |
| 
 | |
| 	if (unlikely(!new))
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| retry:
 | |
| 	rcu_read_lock();
 | |
| 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
 | |
| 	r_seq = read_seqbegin(&rename_lock);
 | |
| 	dentry = __d_lookup_rcu(parent, name, &d_seq);
 | |
| 	if (unlikely(dentry)) {
 | |
| 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
 | |
| 			rcu_read_unlock();
 | |
| 			goto retry;
 | |
| 		}
 | |
| 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
 | |
| 			rcu_read_unlock();
 | |
| 			dput(dentry);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 		dput(new);
 | |
| 		return dentry;
 | |
| 	}
 | |
| 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
 | |
| 		rcu_read_unlock();
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(seq & 1)) {
 | |
| 		rcu_read_unlock();
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	hlist_bl_lock(b);
 | |
| 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
 | |
| 		hlist_bl_unlock(b);
 | |
| 		rcu_read_unlock();
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * No changes for the parent since the beginning of d_lookup().
 | |
| 	 * Since all removals from the chain happen with hlist_bl_lock(),
 | |
| 	 * any potential in-lookup matches are going to stay here until
 | |
| 	 * we unlock the chain.  All fields are stable in everything
 | |
| 	 * we encounter.
 | |
| 	 */
 | |
| 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
 | |
| 		if (dentry->d_name.hash != hash)
 | |
| 			continue;
 | |
| 		if (dentry->d_parent != parent)
 | |
| 			continue;
 | |
| 		if (!d_same_name(dentry, parent, name))
 | |
| 			continue;
 | |
| 		hlist_bl_unlock(b);
 | |
| 		/* now we can try to grab a reference */
 | |
| 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
 | |
| 			rcu_read_unlock();
 | |
| 			goto retry;
 | |
| 		}
 | |
| 
 | |
| 		rcu_read_unlock();
 | |
| 		/*
 | |
| 		 * somebody is likely to be still doing lookup for it;
 | |
| 		 * wait for them to finish
 | |
| 		 */
 | |
| 		spin_lock(&dentry->d_lock);
 | |
| 		d_wait_lookup(dentry);
 | |
| 		/*
 | |
| 		 * it's not in-lookup anymore; in principle we should repeat
 | |
| 		 * everything from dcache lookup, but it's likely to be what
 | |
| 		 * d_lookup() would've found anyway.  If it is, just return it;
 | |
| 		 * otherwise we really have to repeat the whole thing.
 | |
| 		 */
 | |
| 		if (unlikely(dentry->d_name.hash != hash))
 | |
| 			goto mismatch;
 | |
| 		if (unlikely(dentry->d_parent != parent))
 | |
| 			goto mismatch;
 | |
| 		if (unlikely(d_unhashed(dentry)))
 | |
| 			goto mismatch;
 | |
| 		if (unlikely(!d_same_name(dentry, parent, name)))
 | |
| 			goto mismatch;
 | |
| 		/* OK, it *is* a hashed match; return it */
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 		dput(new);
 | |
| 		return dentry;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	/* we can't take ->d_lock here; it's OK, though. */
 | |
| 	new->d_flags |= DCACHE_PAR_LOOKUP;
 | |
| 	new->d_wait = wq;
 | |
| 	hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
 | |
| 	hlist_bl_unlock(b);
 | |
| 	return new;
 | |
| mismatch:
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| 	dput(dentry);
 | |
| 	goto retry;
 | |
| }
 | |
| EXPORT_SYMBOL(d_alloc_parallel);
 | |
| 
 | |
| /*
 | |
|  * - Unhash the dentry
 | |
|  * - Retrieve and clear the waitqueue head in dentry
 | |
|  * - Return the waitqueue head
 | |
|  */
 | |
| static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
 | |
| {
 | |
| 	wait_queue_head_t *d_wait;
 | |
| 	struct hlist_bl_head *b;
 | |
| 
 | |
| 	lockdep_assert_held(&dentry->d_lock);
 | |
| 
 | |
| 	b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
 | |
| 	hlist_bl_lock(b);
 | |
| 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
 | |
| 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
 | |
| 	d_wait = dentry->d_wait;
 | |
| 	dentry->d_wait = NULL;
 | |
| 	hlist_bl_unlock(b);
 | |
| 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
 | |
| 	INIT_LIST_HEAD(&dentry->d_lru);
 | |
| 	return d_wait;
 | |
| }
 | |
| 
 | |
| void __d_lookup_unhash_wake(struct dentry *dentry)
 | |
| {
 | |
| 	spin_lock(&dentry->d_lock);
 | |
| 	wake_up_all(__d_lookup_unhash(dentry));
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(__d_lookup_unhash_wake);
 | |
| 
 | |
| /* inode->i_lock held if inode is non-NULL */
 | |
| 
 | |
| static inline void __d_add(struct dentry *dentry, struct inode *inode)
 | |
| {
 | |
| 	wait_queue_head_t *d_wait;
 | |
| 	struct inode *dir = NULL;
 | |
| 	unsigned n;
 | |
| 	spin_lock(&dentry->d_lock);
 | |
| 	if (unlikely(d_in_lookup(dentry))) {
 | |
| 		dir = dentry->d_parent->d_inode;
 | |
| 		n = start_dir_add(dir);
 | |
| 		d_wait = __d_lookup_unhash(dentry);
 | |
| 	}
 | |
| 	if (inode) {
 | |
| 		unsigned add_flags = d_flags_for_inode(inode);
 | |
| 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
 | |
| 		raw_write_seqcount_begin(&dentry->d_seq);
 | |
| 		__d_set_inode_and_type(dentry, inode, add_flags);
 | |
| 		raw_write_seqcount_end(&dentry->d_seq);
 | |
| 		fsnotify_update_flags(dentry);
 | |
| 	}
 | |
| 	__d_rehash(dentry);
 | |
| 	if (dir)
 | |
| 		end_dir_add(dir, n, d_wait);
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| 	if (inode)
 | |
| 		spin_unlock(&inode->i_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_add - add dentry to hash queues
 | |
|  * @entry: dentry to add
 | |
|  * @inode: The inode to attach to this dentry
 | |
|  *
 | |
|  * This adds the entry to the hash queues and initializes @inode.
 | |
|  * The entry was actually filled in earlier during d_alloc().
 | |
|  */
 | |
| 
 | |
| void d_add(struct dentry *entry, struct inode *inode)
 | |
| {
 | |
| 	if (inode) {
 | |
| 		security_d_instantiate(entry, inode);
 | |
| 		spin_lock(&inode->i_lock);
 | |
| 	}
 | |
| 	__d_add(entry, inode);
 | |
| }
 | |
| EXPORT_SYMBOL(d_add);
 | |
| 
 | |
| /**
 | |
|  * d_exact_alias - find and hash an exact unhashed alias
 | |
|  * @entry: dentry to add
 | |
|  * @inode: The inode to go with this dentry
 | |
|  *
 | |
|  * If an unhashed dentry with the same name/parent and desired
 | |
|  * inode already exists, hash and return it.  Otherwise, return
 | |
|  * NULL.
 | |
|  *
 | |
|  * Parent directory should be locked.
 | |
|  */
 | |
| struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
 | |
| {
 | |
| 	struct dentry *alias;
 | |
| 	unsigned int hash = entry->d_name.hash;
 | |
| 
 | |
| 	spin_lock(&inode->i_lock);
 | |
| 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
 | |
| 		/*
 | |
| 		 * Don't need alias->d_lock here, because aliases with
 | |
| 		 * d_parent == entry->d_parent are not subject to name or
 | |
| 		 * parent changes, because the parent inode i_mutex is held.
 | |
| 		 */
 | |
| 		if (alias->d_name.hash != hash)
 | |
| 			continue;
 | |
| 		if (alias->d_parent != entry->d_parent)
 | |
| 			continue;
 | |
| 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
 | |
| 			continue;
 | |
| 		spin_lock(&alias->d_lock);
 | |
| 		if (!d_unhashed(alias)) {
 | |
| 			spin_unlock(&alias->d_lock);
 | |
| 			alias = NULL;
 | |
| 		} else {
 | |
| 			dget_dlock(alias);
 | |
| 			__d_rehash(alias);
 | |
| 			spin_unlock(&alias->d_lock);
 | |
| 		}
 | |
| 		spin_unlock(&inode->i_lock);
 | |
| 		return alias;
 | |
| 	}
 | |
| 	spin_unlock(&inode->i_lock);
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(d_exact_alias);
 | |
| 
 | |
| static void swap_names(struct dentry *dentry, struct dentry *target)
 | |
| {
 | |
| 	if (unlikely(dname_external(target))) {
 | |
| 		if (unlikely(dname_external(dentry))) {
 | |
| 			/*
 | |
| 			 * Both external: swap the pointers
 | |
| 			 */
 | |
| 			swap(target->d_name.name, dentry->d_name.name);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * dentry:internal, target:external.  Steal target's
 | |
| 			 * storage and make target internal.
 | |
| 			 */
 | |
| 			dentry->d_name.name = target->d_name.name;
 | |
| 			target->d_shortname = dentry->d_shortname;
 | |
| 			target->d_name.name = target->d_shortname.string;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (unlikely(dname_external(dentry))) {
 | |
| 			/*
 | |
| 			 * dentry:external, target:internal.  Give dentry's
 | |
| 			 * storage to target and make dentry internal
 | |
| 			 */
 | |
| 			target->d_name.name = dentry->d_name.name;
 | |
| 			dentry->d_shortname = target->d_shortname;
 | |
| 			dentry->d_name.name = dentry->d_shortname.string;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Both are internal.
 | |
| 			 */
 | |
| 			for (int i = 0; i < DNAME_INLINE_WORDS; i++)
 | |
| 				swap(dentry->d_shortname.words[i],
 | |
| 				     target->d_shortname.words[i]);
 | |
| 		}
 | |
| 	}
 | |
| 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
 | |
| }
 | |
| 
 | |
| static void copy_name(struct dentry *dentry, struct dentry *target)
 | |
| {
 | |
| 	struct external_name *old_name = NULL;
 | |
| 	if (unlikely(dname_external(dentry)))
 | |
| 		old_name = external_name(dentry);
 | |
| 	if (unlikely(dname_external(target))) {
 | |
| 		atomic_inc(&external_name(target)->count);
 | |
| 		dentry->d_name = target->d_name;
 | |
| 	} else {
 | |
| 		dentry->d_shortname = target->d_shortname;
 | |
| 		dentry->d_name.name = dentry->d_shortname.string;
 | |
| 		dentry->d_name.hash_len = target->d_name.hash_len;
 | |
| 	}
 | |
| 	if (old_name && likely(atomic_dec_and_test(&old_name->count)))
 | |
| 		kfree_rcu(old_name, head);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __d_move - move a dentry
 | |
|  * @dentry: entry to move
 | |
|  * @target: new dentry
 | |
|  * @exchange: exchange the two dentries
 | |
|  *
 | |
|  * Update the dcache to reflect the move of a file name. Negative
 | |
|  * dcache entries should not be moved in this way. Caller must hold
 | |
|  * rename_lock, the i_mutex of the source and target directories,
 | |
|  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
 | |
|  */
 | |
| static void __d_move(struct dentry *dentry, struct dentry *target,
 | |
| 		     bool exchange)
 | |
| {
 | |
| 	struct dentry *old_parent, *p;
 | |
| 	wait_queue_head_t *d_wait;
 | |
| 	struct inode *dir = NULL;
 | |
| 	unsigned n;
 | |
| 
 | |
| 	WARN_ON(!dentry->d_inode);
 | |
| 	if (WARN_ON(dentry == target))
 | |
| 		return;
 | |
| 
 | |
| 	BUG_ON(d_ancestor(target, dentry));
 | |
| 	old_parent = dentry->d_parent;
 | |
| 	p = d_ancestor(old_parent, target);
 | |
| 	if (IS_ROOT(dentry)) {
 | |
| 		BUG_ON(p);
 | |
| 		spin_lock(&target->d_parent->d_lock);
 | |
| 	} else if (!p) {
 | |
| 		/* target is not a descendent of dentry->d_parent */
 | |
| 		spin_lock(&target->d_parent->d_lock);
 | |
| 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
 | |
| 	} else {
 | |
| 		BUG_ON(p == dentry);
 | |
| 		spin_lock(&old_parent->d_lock);
 | |
| 		if (p != target)
 | |
| 			spin_lock_nested(&target->d_parent->d_lock,
 | |
| 					DENTRY_D_LOCK_NESTED);
 | |
| 	}
 | |
| 	spin_lock_nested(&dentry->d_lock, 2);
 | |
| 	spin_lock_nested(&target->d_lock, 3);
 | |
| 
 | |
| 	if (unlikely(d_in_lookup(target))) {
 | |
| 		dir = target->d_parent->d_inode;
 | |
| 		n = start_dir_add(dir);
 | |
| 		d_wait = __d_lookup_unhash(target);
 | |
| 	}
 | |
| 
 | |
| 	write_seqcount_begin(&dentry->d_seq);
 | |
| 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
 | |
| 
 | |
| 	/* unhash both */
 | |
| 	if (!d_unhashed(dentry))
 | |
| 		___d_drop(dentry);
 | |
| 	if (!d_unhashed(target))
 | |
| 		___d_drop(target);
 | |
| 
 | |
| 	/* ... and switch them in the tree */
 | |
| 	dentry->d_parent = target->d_parent;
 | |
| 	if (!exchange) {
 | |
| 		copy_name(dentry, target);
 | |
| 		target->d_hash.pprev = NULL;
 | |
| 		dentry->d_parent->d_lockref.count++;
 | |
| 		if (dentry != old_parent) /* wasn't IS_ROOT */
 | |
| 			WARN_ON(!--old_parent->d_lockref.count);
 | |
| 	} else {
 | |
| 		target->d_parent = old_parent;
 | |
| 		swap_names(dentry, target);
 | |
| 		if (!hlist_unhashed(&target->d_sib))
 | |
| 			__hlist_del(&target->d_sib);
 | |
| 		hlist_add_head(&target->d_sib, &target->d_parent->d_children);
 | |
| 		__d_rehash(target);
 | |
| 		fsnotify_update_flags(target);
 | |
| 	}
 | |
| 	if (!hlist_unhashed(&dentry->d_sib))
 | |
| 		__hlist_del(&dentry->d_sib);
 | |
| 	hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
 | |
| 	__d_rehash(dentry);
 | |
| 	fsnotify_update_flags(dentry);
 | |
| 	fscrypt_handle_d_move(dentry);
 | |
| 
 | |
| 	write_seqcount_end(&target->d_seq);
 | |
| 	write_seqcount_end(&dentry->d_seq);
 | |
| 
 | |
| 	if (dir)
 | |
| 		end_dir_add(dir, n, d_wait);
 | |
| 
 | |
| 	if (dentry->d_parent != old_parent)
 | |
| 		spin_unlock(&dentry->d_parent->d_lock);
 | |
| 	if (dentry != old_parent)
 | |
| 		spin_unlock(&old_parent->d_lock);
 | |
| 	spin_unlock(&target->d_lock);
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * d_move - move a dentry
 | |
|  * @dentry: entry to move
 | |
|  * @target: new dentry
 | |
|  *
 | |
|  * Update the dcache to reflect the move of a file name. Negative
 | |
|  * dcache entries should not be moved in this way. See the locking
 | |
|  * requirements for __d_move.
 | |
|  */
 | |
| void d_move(struct dentry *dentry, struct dentry *target)
 | |
| {
 | |
| 	write_seqlock(&rename_lock);
 | |
| 	__d_move(dentry, target, false);
 | |
| 	write_sequnlock(&rename_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(d_move);
 | |
| 
 | |
| /*
 | |
|  * d_exchange - exchange two dentries
 | |
|  * @dentry1: first dentry
 | |
|  * @dentry2: second dentry
 | |
|  */
 | |
| void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
 | |
| {
 | |
| 	write_seqlock(&rename_lock);
 | |
| 
 | |
| 	WARN_ON(!dentry1->d_inode);
 | |
| 	WARN_ON(!dentry2->d_inode);
 | |
| 	WARN_ON(IS_ROOT(dentry1));
 | |
| 	WARN_ON(IS_ROOT(dentry2));
 | |
| 
 | |
| 	__d_move(dentry1, dentry2, true);
 | |
| 
 | |
| 	write_sequnlock(&rename_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_ancestor - search for an ancestor
 | |
|  * @p1: ancestor dentry
 | |
|  * @p2: child dentry
 | |
|  *
 | |
|  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
 | |
|  * an ancestor of p2, else NULL.
 | |
|  */
 | |
| struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
 | |
| {
 | |
| 	struct dentry *p;
 | |
| 
 | |
| 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
 | |
| 		if (p->d_parent == p1)
 | |
| 			return p;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This helper attempts to cope with remotely renamed directories
 | |
|  *
 | |
|  * It assumes that the caller is already holding
 | |
|  * dentry->d_parent->d_inode->i_mutex, and rename_lock
 | |
|  *
 | |
|  * Note: If ever the locking in lock_rename() changes, then please
 | |
|  * remember to update this too...
 | |
|  */
 | |
| static int __d_unalias(struct dentry *dentry, struct dentry *alias)
 | |
| {
 | |
| 	struct mutex *m1 = NULL;
 | |
| 	struct rw_semaphore *m2 = NULL;
 | |
| 	int ret = -ESTALE;
 | |
| 
 | |
| 	/* If alias and dentry share a parent, then no extra locks required */
 | |
| 	if (alias->d_parent == dentry->d_parent)
 | |
| 		goto out_unalias;
 | |
| 
 | |
| 	/* See lock_rename() */
 | |
| 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
 | |
| 		goto out_err;
 | |
| 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
 | |
| 	if (!inode_trylock_shared(alias->d_parent->d_inode))
 | |
| 		goto out_err;
 | |
| 	m2 = &alias->d_parent->d_inode->i_rwsem;
 | |
| out_unalias:
 | |
| 	if (alias->d_op && alias->d_op->d_unalias_trylock &&
 | |
| 	    !alias->d_op->d_unalias_trylock(alias))
 | |
| 		goto out_err;
 | |
| 	__d_move(alias, dentry, false);
 | |
| 	if (alias->d_op && alias->d_op->d_unalias_unlock)
 | |
| 		alias->d_op->d_unalias_unlock(alias);
 | |
| 	ret = 0;
 | |
| out_err:
 | |
| 	if (m2)
 | |
| 		up_read(m2);
 | |
| 	if (m1)
 | |
| 		mutex_unlock(m1);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * d_splice_alias - splice a disconnected dentry into the tree if one exists
 | |
|  * @inode:  the inode which may have a disconnected dentry
 | |
|  * @dentry: a negative dentry which we want to point to the inode.
 | |
|  *
 | |
|  * If inode is a directory and has an IS_ROOT alias, then d_move that in
 | |
|  * place of the given dentry and return it, else simply d_add the inode
 | |
|  * to the dentry and return NULL.
 | |
|  *
 | |
|  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
 | |
|  * we should error out: directories can't have multiple aliases.
 | |
|  *
 | |
|  * This is needed in the lookup routine of any filesystem that is exportable
 | |
|  * (via knfsd) so that we can build dcache paths to directories effectively.
 | |
|  *
 | |
|  * If a dentry was found and moved, then it is returned.  Otherwise NULL
 | |
|  * is returned.  This matches the expected return value of ->lookup.
 | |
|  *
 | |
|  * Cluster filesystems may call this function with a negative, hashed dentry.
 | |
|  * In that case, we know that the inode will be a regular file, and also this
 | |
|  * will only occur during atomic_open. So we need to check for the dentry
 | |
|  * being already hashed only in the final case.
 | |
|  */
 | |
| struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
 | |
| {
 | |
| 	if (IS_ERR(inode))
 | |
| 		return ERR_CAST(inode);
 | |
| 
 | |
| 	BUG_ON(!d_unhashed(dentry));
 | |
| 
 | |
| 	if (!inode)
 | |
| 		goto out;
 | |
| 
 | |
| 	security_d_instantiate(dentry, inode);
 | |
| 	spin_lock(&inode->i_lock);
 | |
| 	if (S_ISDIR(inode->i_mode)) {
 | |
| 		struct dentry *new = __d_find_any_alias(inode);
 | |
| 		if (unlikely(new)) {
 | |
| 			/* The reference to new ensures it remains an alias */
 | |
| 			spin_unlock(&inode->i_lock);
 | |
| 			write_seqlock(&rename_lock);
 | |
| 			if (unlikely(d_ancestor(new, dentry))) {
 | |
| 				write_sequnlock(&rename_lock);
 | |
| 				dput(new);
 | |
| 				new = ERR_PTR(-ELOOP);
 | |
| 				pr_warn_ratelimited(
 | |
| 					"VFS: Lookup of '%s' in %s %s"
 | |
| 					" would have caused loop\n",
 | |
| 					dentry->d_name.name,
 | |
| 					inode->i_sb->s_type->name,
 | |
| 					inode->i_sb->s_id);
 | |
| 			} else if (!IS_ROOT(new)) {
 | |
| 				struct dentry *old_parent = dget(new->d_parent);
 | |
| 				int err = __d_unalias(dentry, new);
 | |
| 				write_sequnlock(&rename_lock);
 | |
| 				if (err) {
 | |
| 					dput(new);
 | |
| 					new = ERR_PTR(err);
 | |
| 				}
 | |
| 				dput(old_parent);
 | |
| 			} else {
 | |
| 				__d_move(new, dentry, false);
 | |
| 				write_sequnlock(&rename_lock);
 | |
| 			}
 | |
| 			iput(inode);
 | |
| 			return new;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	__d_add(dentry, inode);
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(d_splice_alias);
 | |
| 
 | |
| /*
 | |
|  * Test whether new_dentry is a subdirectory of old_dentry.
 | |
|  *
 | |
|  * Trivially implemented using the dcache structure
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * is_subdir - is new dentry a subdirectory of old_dentry
 | |
|  * @new_dentry: new dentry
 | |
|  * @old_dentry: old dentry
 | |
|  *
 | |
|  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
 | |
|  * Returns false otherwise.
 | |
|  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
 | |
|  */
 | |
|   
 | |
| bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
 | |
| {
 | |
| 	bool subdir;
 | |
| 	unsigned seq;
 | |
| 
 | |
| 	if (new_dentry == old_dentry)
 | |
| 		return true;
 | |
| 
 | |
| 	/* Access d_parent under rcu as d_move() may change it. */
 | |
| 	rcu_read_lock();
 | |
| 	seq = read_seqbegin(&rename_lock);
 | |
| 	subdir = d_ancestor(old_dentry, new_dentry);
 | |
| 	 /* Try lockless once... */
 | |
| 	if (read_seqretry(&rename_lock, seq)) {
 | |
| 		/* ...else acquire lock for progress even on deep chains. */
 | |
| 		read_seqlock_excl(&rename_lock);
 | |
| 		subdir = d_ancestor(old_dentry, new_dentry);
 | |
| 		read_sequnlock_excl(&rename_lock);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return subdir;
 | |
| }
 | |
| EXPORT_SYMBOL(is_subdir);
 | |
| 
 | |
| static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
 | |
| {
 | |
| 	struct dentry *root = data;
 | |
| 	if (dentry != root) {
 | |
| 		if (d_unhashed(dentry) || !dentry->d_inode)
 | |
| 			return D_WALK_SKIP;
 | |
| 
 | |
| 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
 | |
| 			dentry->d_flags |= DCACHE_GENOCIDE;
 | |
| 			dentry->d_lockref.count--;
 | |
| 		}
 | |
| 	}
 | |
| 	return D_WALK_CONTINUE;
 | |
| }
 | |
| 
 | |
| void d_genocide(struct dentry *parent)
 | |
| {
 | |
| 	d_walk(parent, parent, d_genocide_kill);
 | |
| }
 | |
| 
 | |
| void d_mark_tmpfile(struct file *file, struct inode *inode)
 | |
| {
 | |
| 	struct dentry *dentry = file->f_path.dentry;
 | |
| 
 | |
| 	BUG_ON(dname_external(dentry) ||
 | |
| 		!hlist_unhashed(&dentry->d_u.d_alias) ||
 | |
| 		!d_unlinked(dentry));
 | |
| 	spin_lock(&dentry->d_parent->d_lock);
 | |
| 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 | |
| 	dentry->d_name.len = sprintf(dentry->d_shortname.string, "#%llu",
 | |
| 				(unsigned long long)inode->i_ino);
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| 	spin_unlock(&dentry->d_parent->d_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(d_mark_tmpfile);
 | |
| 
 | |
| void d_tmpfile(struct file *file, struct inode *inode)
 | |
| {
 | |
| 	struct dentry *dentry = file->f_path.dentry;
 | |
| 
 | |
| 	inode_dec_link_count(inode);
 | |
| 	d_mark_tmpfile(file, inode);
 | |
| 	d_instantiate(dentry, inode);
 | |
| }
 | |
| EXPORT_SYMBOL(d_tmpfile);
 | |
| 
 | |
| /*
 | |
|  * Obtain inode number of the parent dentry.
 | |
|  */
 | |
| ino_t d_parent_ino(struct dentry *dentry)
 | |
| {
 | |
| 	struct dentry *parent;
 | |
| 	struct inode *iparent;
 | |
| 	unsigned seq;
 | |
| 	ino_t ret;
 | |
| 
 | |
| 	scoped_guard(rcu) {
 | |
| 		seq = raw_seqcount_begin(&dentry->d_seq);
 | |
| 		parent = READ_ONCE(dentry->d_parent);
 | |
| 		iparent = d_inode_rcu(parent);
 | |
| 		if (likely(iparent)) {
 | |
| 			ret = iparent->i_ino;
 | |
| 			if (!read_seqcount_retry(&dentry->d_seq, seq))
 | |
| 				return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&dentry->d_lock);
 | |
| 	ret = dentry->d_parent->d_inode->i_ino;
 | |
| 	spin_unlock(&dentry->d_lock);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(d_parent_ino);
 | |
| 
 | |
| static __initdata unsigned long dhash_entries;
 | |
| static int __init set_dhash_entries(char *str)
 | |
| {
 | |
| 	if (!str)
 | |
| 		return 0;
 | |
| 	dhash_entries = simple_strtoul(str, &str, 0);
 | |
| 	return 1;
 | |
| }
 | |
| __setup("dhash_entries=", set_dhash_entries);
 | |
| 
 | |
| static void __init dcache_init_early(void)
 | |
| {
 | |
| 	/* If hashes are distributed across NUMA nodes, defer
 | |
| 	 * hash allocation until vmalloc space is available.
 | |
| 	 */
 | |
| 	if (hashdist)
 | |
| 		return;
 | |
| 
 | |
| 	dentry_hashtable =
 | |
| 		alloc_large_system_hash("Dentry cache",
 | |
| 					sizeof(struct hlist_bl_head),
 | |
| 					dhash_entries,
 | |
| 					13,
 | |
| 					HASH_EARLY | HASH_ZERO,
 | |
| 					&d_hash_shift,
 | |
| 					NULL,
 | |
| 					0,
 | |
| 					0);
 | |
| 	d_hash_shift = 32 - d_hash_shift;
 | |
| 
 | |
| 	runtime_const_init(shift, d_hash_shift);
 | |
| 	runtime_const_init(ptr, dentry_hashtable);
 | |
| }
 | |
| 
 | |
| static void __init dcache_init(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * A constructor could be added for stable state like the lists,
 | |
| 	 * but it is probably not worth it because of the cache nature
 | |
| 	 * of the dcache.
 | |
| 	 */
 | |
| 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
 | |
| 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
 | |
| 		d_shortname.string);
 | |
| 
 | |
| 	/* Hash may have been set up in dcache_init_early */
 | |
| 	if (!hashdist)
 | |
| 		return;
 | |
| 
 | |
| 	dentry_hashtable =
 | |
| 		alloc_large_system_hash("Dentry cache",
 | |
| 					sizeof(struct hlist_bl_head),
 | |
| 					dhash_entries,
 | |
| 					13,
 | |
| 					HASH_ZERO,
 | |
| 					&d_hash_shift,
 | |
| 					NULL,
 | |
| 					0,
 | |
| 					0);
 | |
| 	d_hash_shift = 32 - d_hash_shift;
 | |
| 
 | |
| 	runtime_const_init(shift, d_hash_shift);
 | |
| 	runtime_const_init(ptr, dentry_hashtable);
 | |
| }
 | |
| 
 | |
| /* SLAB cache for __getname() consumers */
 | |
| struct kmem_cache *names_cachep __ro_after_init;
 | |
| EXPORT_SYMBOL(names_cachep);
 | |
| 
 | |
| void __init vfs_caches_init_early(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
 | |
| 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
 | |
| 
 | |
| 	dcache_init_early();
 | |
| 	inode_init_early();
 | |
| }
 | |
| 
 | |
| void __init vfs_caches_init(void)
 | |
| {
 | |
| 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
 | |
| 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
 | |
| 
 | |
| 	dcache_init();
 | |
| 	inode_init();
 | |
| 	files_init();
 | |
| 	files_maxfiles_init();
 | |
| 	mnt_init();
 | |
| 	bdev_cache_init();
 | |
| 	chrdev_init();
 | |
| }
 |