forked from mirrors/linux
		
	 f4752daf47
			
		
	
	
		f4752daf47
		
	
	
	
	
		
			
			pagb_lock has been replaced with eb_lock. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Carlos Maiolino <cem@kernel.org>
		
			
				
	
	
		
			906 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			906 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2010, 2023 Red Hat, Inc.
 | |
|  * All Rights Reserved.
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_shared.h"
 | |
| #include "xfs_format.h"
 | |
| #include "xfs_log_format.h"
 | |
| #include "xfs_trans_resv.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_btree.h"
 | |
| #include "xfs_alloc_btree.h"
 | |
| #include "xfs_alloc.h"
 | |
| #include "xfs_discard.h"
 | |
| #include "xfs_error.h"
 | |
| #include "xfs_extent_busy.h"
 | |
| #include "xfs_trace.h"
 | |
| #include "xfs_log.h"
 | |
| #include "xfs_ag.h"
 | |
| #include "xfs_health.h"
 | |
| #include "xfs_rtbitmap.h"
 | |
| #include "xfs_rtgroup.h"
 | |
| 
 | |
| /*
 | |
|  * Notes on an efficient, low latency fstrim algorithm
 | |
|  *
 | |
|  * We need to walk the filesystem free space and issue discards on the free
 | |
|  * space that meet the search criteria (size and location). We cannot issue
 | |
|  * discards on extents that might be in use, or are so recently in use they are
 | |
|  * still marked as busy. To serialise against extent state changes whilst we are
 | |
|  * gathering extents to trim, we must hold the AGF lock to lock out other
 | |
|  * allocations and extent free operations that might change extent state.
 | |
|  *
 | |
|  * However, we cannot just hold the AGF for the entire AG free space walk whilst
 | |
|  * we issue discards on each free space that is found. Storage devices can have
 | |
|  * extremely slow discard implementations (e.g. ceph RBD) and so walking a
 | |
|  * couple of million free extents and issuing synchronous discards on each
 | |
|  * extent can take a *long* time. Whilst we are doing this walk, nothing else
 | |
|  * can access the AGF, and we can stall transactions and hence the log whilst
 | |
|  * modifications wait for the AGF lock to be released. This can lead hung tasks
 | |
|  * kicking the hung task timer and rebooting the system. This is bad.
 | |
|  *
 | |
|  * Hence we need to take a leaf from the bulkstat playbook. It takes the AGI
 | |
|  * lock, gathers a range of inode cluster buffers that are allocated, drops the
 | |
|  * AGI lock and then reads all the inode cluster buffers and processes them. It
 | |
|  * loops doing this, using a cursor to keep track of where it is up to in the AG
 | |
|  * for each iteration to restart the INOBT lookup from.
 | |
|  *
 | |
|  * We can't do this exactly with free space - once we drop the AGF lock, the
 | |
|  * state of the free extent is out of our control and we cannot run a discard
 | |
|  * safely on it in this situation. Unless, of course, we've marked the free
 | |
|  * extent as busy and undergoing a discard operation whilst we held the AGF
 | |
|  * locked.
 | |
|  *
 | |
|  * This is exactly how online discard works - free extents are marked busy when
 | |
|  * they are freed, and once the extent free has been committed to the journal,
 | |
|  * the busy extent record is marked as "undergoing discard" and the discard is
 | |
|  * then issued on the free extent. Once the discard completes, the busy extent
 | |
|  * record is removed and the extent is able to be allocated again.
 | |
|  *
 | |
|  * In the context of fstrim, if we find a free extent we need to discard, we
 | |
|  * don't have to discard it immediately. All we need to do it record that free
 | |
|  * extent as being busy and under discard, and all the allocation routines will
 | |
|  * now avoid trying to allocate it. Hence if we mark the extent as busy under
 | |
|  * the AGF lock, we can safely discard it without holding the AGF lock because
 | |
|  * nothing will attempt to allocate that free space until the discard completes.
 | |
|  *
 | |
|  * This also allows us to issue discards asynchronously like we do with online
 | |
|  * discard, and so for fast devices fstrim will run much faster as we can have
 | |
|  * multiple discard operations in flight at once, as well as pipeline the free
 | |
|  * extent search so that it overlaps in flight discard IO.
 | |
|  */
 | |
| 
 | |
| #define XFS_DISCARD_MAX_EXAMINE	(100)
 | |
| 
 | |
| struct workqueue_struct *xfs_discard_wq;
 | |
| 
 | |
| static void
 | |
| xfs_discard_endio_work(
 | |
| 	struct work_struct	*work)
 | |
| {
 | |
| 	struct xfs_busy_extents	*extents =
 | |
| 		container_of(work, struct xfs_busy_extents, endio_work);
 | |
| 
 | |
| 	xfs_extent_busy_clear(&extents->extent_list, false);
 | |
| 	kfree(extents->owner);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Queue up the actual completion to a thread to avoid IRQ-safe locking for
 | |
|  * eb_lock.
 | |
|  */
 | |
| static void
 | |
| xfs_discard_endio(
 | |
| 	struct bio		*bio)
 | |
| {
 | |
| 	struct xfs_busy_extents	*extents = bio->bi_private;
 | |
| 
 | |
| 	INIT_WORK(&extents->endio_work, xfs_discard_endio_work);
 | |
| 	queue_work(xfs_discard_wq, &extents->endio_work);
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| static inline struct block_device *
 | |
| xfs_group_bdev(
 | |
| 	const struct xfs_group	*xg)
 | |
| {
 | |
| 	struct xfs_mount	*mp = xg->xg_mount;
 | |
| 
 | |
| 	switch (xg->xg_type) {
 | |
| 	case XG_TYPE_AG:
 | |
| 		return mp->m_ddev_targp->bt_bdev;
 | |
| 	case XG_TYPE_RTG:
 | |
| 		return mp->m_rtdev_targp->bt_bdev;
 | |
| 	default:
 | |
| 		ASSERT(0);
 | |
| 		break;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Walk the discard list and issue discards on all the busy extents in the
 | |
|  * list. We plug and chain the bios so that we only need a single completion
 | |
|  * call to clear all the busy extents once the discards are complete.
 | |
|  */
 | |
| int
 | |
| xfs_discard_extents(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_busy_extents	*extents)
 | |
| {
 | |
| 	struct xfs_extent_busy	*busyp;
 | |
| 	struct bio		*bio = NULL;
 | |
| 	struct blk_plug		plug;
 | |
| 	int			error = 0;
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 	list_for_each_entry(busyp, &extents->extent_list, list) {
 | |
| 		trace_xfs_discard_extent(busyp->group, busyp->bno,
 | |
| 				busyp->length);
 | |
| 
 | |
| 		error = __blkdev_issue_discard(xfs_group_bdev(busyp->group),
 | |
| 				xfs_gbno_to_daddr(busyp->group, busyp->bno),
 | |
| 				XFS_FSB_TO_BB(mp, busyp->length),
 | |
| 				GFP_KERNEL, &bio);
 | |
| 		if (error && error != -EOPNOTSUPP) {
 | |
| 			xfs_info(mp,
 | |
| 	 "discard failed for extent [0x%llx,%u], error %d",
 | |
| 				 (unsigned long long)busyp->bno,
 | |
| 				 busyp->length,
 | |
| 				 error);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (bio) {
 | |
| 		bio->bi_private = extents;
 | |
| 		bio->bi_end_io = xfs_discard_endio;
 | |
| 		submit_bio(bio);
 | |
| 	} else {
 | |
| 		xfs_discard_endio_work(&extents->endio_work);
 | |
| 	}
 | |
| 	blk_finish_plug(&plug);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| struct xfs_trim_cur {
 | |
| 	xfs_agblock_t	start;
 | |
| 	xfs_extlen_t	count;
 | |
| 	xfs_agblock_t	end;
 | |
| 	xfs_extlen_t	minlen;
 | |
| 	bool		by_bno;
 | |
| };
 | |
| 
 | |
| static int
 | |
| xfs_trim_gather_extents(
 | |
| 	struct xfs_perag	*pag,
 | |
| 	struct xfs_trim_cur	*tcur,
 | |
| 	struct xfs_busy_extents	*extents)
 | |
| {
 | |
| 	struct xfs_mount	*mp = pag_mount(pag);
 | |
| 	struct xfs_trans	*tp;
 | |
| 	struct xfs_btree_cur	*cur;
 | |
| 	struct xfs_buf		*agbp;
 | |
| 	int			error;
 | |
| 	int			i;
 | |
| 	int			batch = XFS_DISCARD_MAX_EXAMINE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Force out the log.  This means any transactions that might have freed
 | |
| 	 * space before we take the AGF buffer lock are now on disk, and the
 | |
| 	 * volatile disk cache is flushed.
 | |
| 	 */
 | |
| 	xfs_log_force(mp, XFS_LOG_SYNC);
 | |
| 
 | |
| 	error = xfs_trans_alloc_empty(mp, &tp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
 | |
| 	if (error)
 | |
| 		goto out_trans_cancel;
 | |
| 
 | |
| 	if (tcur->by_bno) {
 | |
| 		/* sub-AG discard request always starts at tcur->start */
 | |
| 		cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag);
 | |
| 		error = xfs_alloc_lookup_le(cur, tcur->start, 0, &i);
 | |
| 		if (!error && !i)
 | |
| 			error = xfs_alloc_lookup_ge(cur, tcur->start, 0, &i);
 | |
| 	} else if (tcur->start == 0) {
 | |
| 		/* first time through a by-len starts with max length */
 | |
| 		cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
 | |
| 		error = xfs_alloc_lookup_ge(cur, 0, tcur->count, &i);
 | |
| 	} else {
 | |
| 		/* nth time through a by-len starts where we left off */
 | |
| 		cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
 | |
| 		error = xfs_alloc_lookup_le(cur, tcur->start, tcur->count, &i);
 | |
| 	}
 | |
| 	if (error)
 | |
| 		goto out_del_cursor;
 | |
| 	if (i == 0) {
 | |
| 		/* nothing of that length left in the AG, we are done */
 | |
| 		tcur->count = 0;
 | |
| 		goto out_del_cursor;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Loop until we are done with all extents that are large
 | |
| 	 * enough to be worth discarding or we hit batch limits.
 | |
| 	 */
 | |
| 	while (i) {
 | |
| 		xfs_agblock_t	fbno;
 | |
| 		xfs_extlen_t	flen;
 | |
| 
 | |
| 		error = xfs_alloc_get_rec(cur, &fbno, &flen, &i);
 | |
| 		if (error)
 | |
| 			break;
 | |
| 		if (XFS_IS_CORRUPT(mp, i != 1)) {
 | |
| 			xfs_btree_mark_sick(cur);
 | |
| 			error = -EFSCORRUPTED;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (--batch <= 0) {
 | |
| 			/*
 | |
| 			 * Update the cursor to point at this extent so we
 | |
| 			 * restart the next batch from this extent.
 | |
| 			 */
 | |
| 			tcur->start = fbno;
 | |
| 			tcur->count = flen;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If the extent is entirely outside of the range we are
 | |
| 		 * supposed to skip it.  Do not bother to trim down partially
 | |
| 		 * overlapping ranges for now.
 | |
| 		 */
 | |
| 		if (fbno + flen < tcur->start) {
 | |
| 			trace_xfs_discard_exclude(pag_group(pag), fbno, flen);
 | |
| 			goto next_extent;
 | |
| 		}
 | |
| 		if (fbno > tcur->end) {
 | |
| 			trace_xfs_discard_exclude(pag_group(pag), fbno, flen);
 | |
| 			if (tcur->by_bno) {
 | |
| 				tcur->count = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			goto next_extent;
 | |
| 		}
 | |
| 
 | |
| 		/* Trim the extent returned to the range we want. */
 | |
| 		if (fbno < tcur->start) {
 | |
| 			flen -= tcur->start - fbno;
 | |
| 			fbno = tcur->start;
 | |
| 		}
 | |
| 		if (fbno + flen > tcur->end + 1)
 | |
| 			flen = tcur->end - fbno + 1;
 | |
| 
 | |
| 		/* Too small?  Give up. */
 | |
| 		if (flen < tcur->minlen) {
 | |
| 			trace_xfs_discard_toosmall(pag_group(pag), fbno, flen);
 | |
| 			if (tcur->by_bno)
 | |
| 				goto next_extent;
 | |
| 			tcur->count = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If any blocks in the range are still busy, skip the
 | |
| 		 * discard and try again the next time.
 | |
| 		 */
 | |
| 		if (xfs_extent_busy_search(pag_group(pag), fbno, flen)) {
 | |
| 			trace_xfs_discard_busy(pag_group(pag), fbno, flen);
 | |
| 			goto next_extent;
 | |
| 		}
 | |
| 
 | |
| 		xfs_extent_busy_insert_discard(pag_group(pag), fbno, flen,
 | |
| 				&extents->extent_list);
 | |
| next_extent:
 | |
| 		if (tcur->by_bno)
 | |
| 			error = xfs_btree_increment(cur, 0, &i);
 | |
| 		else
 | |
| 			error = xfs_btree_decrement(cur, 0, &i);
 | |
| 		if (error)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * If there's no more records in the tree, we are done. Set the
 | |
| 		 * cursor block count to 0 to indicate to the caller that there
 | |
| 		 * is no more extents to search.
 | |
| 		 */
 | |
| 		if (i == 0)
 | |
| 			tcur->count = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there was an error, release all the gathered busy extents because
 | |
| 	 * we aren't going to issue a discard on them any more.
 | |
| 	 */
 | |
| 	if (error)
 | |
| 		xfs_extent_busy_clear(&extents->extent_list, false);
 | |
| out_del_cursor:
 | |
| 	xfs_btree_del_cursor(cur, error);
 | |
| out_trans_cancel:
 | |
| 	xfs_trans_cancel(tp);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| xfs_trim_should_stop(void)
 | |
| {
 | |
| 	return fatal_signal_pending(current) || freezing(current);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Iterate the free list gathering extents and discarding them. We need a cursor
 | |
|  * for the repeated iteration of gather/discard loop, so use the longest extent
 | |
|  * we found in the last batch as the key to start the next.
 | |
|  */
 | |
| static int
 | |
| xfs_trim_perag_extents(
 | |
| 	struct xfs_perag	*pag,
 | |
| 	xfs_agblock_t		start,
 | |
| 	xfs_agblock_t		end,
 | |
| 	xfs_extlen_t		minlen)
 | |
| {
 | |
| 	struct xfs_trim_cur	tcur = {
 | |
| 		.start		= start,
 | |
| 		.count		= pag->pagf_longest,
 | |
| 		.end		= end,
 | |
| 		.minlen		= minlen,
 | |
| 	};
 | |
| 	int			error = 0;
 | |
| 
 | |
| 	if (start != 0 || end != pag_group(pag)->xg_block_count)
 | |
| 		tcur.by_bno = true;
 | |
| 
 | |
| 	do {
 | |
| 		struct xfs_busy_extents	*extents;
 | |
| 
 | |
| 		extents = kzalloc(sizeof(*extents), GFP_KERNEL);
 | |
| 		if (!extents) {
 | |
| 			error = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		extents->owner = extents;
 | |
| 		INIT_LIST_HEAD(&extents->extent_list);
 | |
| 
 | |
| 		error = xfs_trim_gather_extents(pag, &tcur, extents);
 | |
| 		if (error) {
 | |
| 			kfree(extents);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We hand the extent list to the discard function here so the
 | |
| 		 * discarded extents can be removed from the busy extent list.
 | |
| 		 * This allows the discards to run asynchronously with gathering
 | |
| 		 * the next round of extents to discard.
 | |
| 		 *
 | |
| 		 * However, we must ensure that we do not reference the extent
 | |
| 		 * list  after this function call, as it may have been freed by
 | |
| 		 * the time control returns to us.
 | |
| 		 */
 | |
| 		error = xfs_discard_extents(pag_mount(pag), extents);
 | |
| 		if (error)
 | |
| 			break;
 | |
| 
 | |
| 		if (xfs_trim_should_stop())
 | |
| 			break;
 | |
| 
 | |
| 	} while (tcur.count != 0);
 | |
| 
 | |
| 	return error;
 | |
| 
 | |
| }
 | |
| 
 | |
| static int
 | |
| xfs_trim_datadev_extents(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	xfs_daddr_t		start,
 | |
| 	xfs_daddr_t		end,
 | |
| 	xfs_extlen_t		minlen)
 | |
| {
 | |
| 	xfs_agnumber_t		start_agno, end_agno;
 | |
| 	xfs_agblock_t		start_agbno, end_agbno;
 | |
| 	struct xfs_perag	*pag = NULL;
 | |
| 	xfs_daddr_t		ddev_end;
 | |
| 	int			last_error = 0, error;
 | |
| 
 | |
| 	ddev_end = min_t(xfs_daddr_t, end,
 | |
| 			 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) - 1);
 | |
| 
 | |
| 	start_agno = xfs_daddr_to_agno(mp, start);
 | |
| 	start_agbno = xfs_daddr_to_agbno(mp, start);
 | |
| 	end_agno = xfs_daddr_to_agno(mp, ddev_end);
 | |
| 	end_agbno = xfs_daddr_to_agbno(mp, ddev_end);
 | |
| 
 | |
| 	while ((pag = xfs_perag_next_range(mp, pag, start_agno, end_agno))) {
 | |
| 		xfs_agblock_t	agend = pag_group(pag)->xg_block_count;
 | |
| 
 | |
| 		if (pag_agno(pag) == end_agno)
 | |
| 			agend = end_agbno;
 | |
| 		error = xfs_trim_perag_extents(pag, start_agbno, agend, minlen);
 | |
| 		if (error)
 | |
| 			last_error = error;
 | |
| 
 | |
| 		if (xfs_trim_should_stop()) {
 | |
| 			xfs_perag_rele(pag);
 | |
| 			break;
 | |
| 		}
 | |
| 		start_agbno = 0;
 | |
| 	}
 | |
| 
 | |
| 	return last_error;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_XFS_RT
 | |
| struct xfs_trim_rtdev {
 | |
| 	/* list of rt extents to free */
 | |
| 	struct list_head	extent_list;
 | |
| 
 | |
| 	/* minimum length that caller allows us to trim */
 | |
| 	xfs_rtblock_t		minlen_fsb;
 | |
| 
 | |
| 	/* restart point for the rtbitmap walk */
 | |
| 	xfs_rtxnum_t		restart_rtx;
 | |
| 
 | |
| 	/* stopping point for the current rtbitmap walk */
 | |
| 	xfs_rtxnum_t		stop_rtx;
 | |
| };
 | |
| 
 | |
| struct xfs_rtx_busy {
 | |
| 	struct list_head	list;
 | |
| 	xfs_rtblock_t		bno;
 | |
| 	xfs_rtblock_t		length;
 | |
| };
 | |
| 
 | |
| static void
 | |
| xfs_discard_free_rtdev_extents(
 | |
| 	struct xfs_trim_rtdev	*tr)
 | |
| {
 | |
| 	struct xfs_rtx_busy	*busyp, *n;
 | |
| 
 | |
| 	list_for_each_entry_safe(busyp, n, &tr->extent_list, list) {
 | |
| 		list_del_init(&busyp->list);
 | |
| 		kfree(busyp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Walk the discard list and issue discards on all the busy extents in the
 | |
|  * list. We plug and chain the bios so that we only need a single completion
 | |
|  * call to clear all the busy extents once the discards are complete.
 | |
|  */
 | |
| static int
 | |
| xfs_discard_rtdev_extents(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_trim_rtdev	*tr)
 | |
| {
 | |
| 	struct block_device	*bdev = mp->m_rtdev_targp->bt_bdev;
 | |
| 	struct xfs_rtx_busy	*busyp;
 | |
| 	struct bio		*bio = NULL;
 | |
| 	struct blk_plug		plug;
 | |
| 	xfs_rtblock_t		start = NULLRTBLOCK, length = 0;
 | |
| 	int			error = 0;
 | |
| 
 | |
| 	blk_start_plug(&plug);
 | |
| 	list_for_each_entry(busyp, &tr->extent_list, list) {
 | |
| 		if (start == NULLRTBLOCK)
 | |
| 			start = busyp->bno;
 | |
| 		length += busyp->length;
 | |
| 
 | |
| 		trace_xfs_discard_rtextent(mp, busyp->bno, busyp->length);
 | |
| 
 | |
| 		error = __blkdev_issue_discard(bdev,
 | |
| 				xfs_rtb_to_daddr(mp, busyp->bno),
 | |
| 				XFS_FSB_TO_BB(mp, busyp->length),
 | |
| 				GFP_NOFS, &bio);
 | |
| 		if (error)
 | |
| 			break;
 | |
| 	}
 | |
| 	xfs_discard_free_rtdev_extents(tr);
 | |
| 
 | |
| 	if (bio) {
 | |
| 		error = submit_bio_wait(bio);
 | |
| 		if (error == -EOPNOTSUPP)
 | |
| 			error = 0;
 | |
| 		if (error)
 | |
| 			xfs_info(mp,
 | |
| 	 "discard failed for rtextent [0x%llx,%llu], error %d",
 | |
| 				 (unsigned long long)start,
 | |
| 				 (unsigned long long)length,
 | |
| 				 error);
 | |
| 		bio_put(bio);
 | |
| 	}
 | |
| 	blk_finish_plug(&plug);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static int
 | |
| xfs_trim_gather_rtextent(
 | |
| 	struct xfs_rtgroup		*rtg,
 | |
| 	struct xfs_trans		*tp,
 | |
| 	const struct xfs_rtalloc_rec	*rec,
 | |
| 	void				*priv)
 | |
| {
 | |
| 	struct xfs_trim_rtdev		*tr = priv;
 | |
| 	struct xfs_rtx_busy		*busyp;
 | |
| 	xfs_rtblock_t			rbno, rlen;
 | |
| 
 | |
| 	if (rec->ar_startext > tr->stop_rtx) {
 | |
| 		/*
 | |
| 		 * If we've scanned a large number of rtbitmap blocks, update
 | |
| 		 * the cursor to point at this extent so we restart the next
 | |
| 		 * batch from this extent.
 | |
| 		 */
 | |
| 		tr->restart_rtx = rec->ar_startext;
 | |
| 		return -ECANCELED;
 | |
| 	}
 | |
| 
 | |
| 	rbno = xfs_rtx_to_rtb(rtg, rec->ar_startext);
 | |
| 	rlen = xfs_rtbxlen_to_blen(rtg_mount(rtg), rec->ar_extcount);
 | |
| 
 | |
| 	/* Ignore too small. */
 | |
| 	if (rlen < tr->minlen_fsb) {
 | |
| 		trace_xfs_discard_rttoosmall(rtg_mount(rtg), rbno, rlen);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	busyp = kzalloc(sizeof(struct xfs_rtx_busy), GFP_KERNEL);
 | |
| 	if (!busyp)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	busyp->bno = rbno;
 | |
| 	busyp->length = rlen;
 | |
| 	INIT_LIST_HEAD(&busyp->list);
 | |
| 	list_add_tail(&busyp->list, &tr->extent_list);
 | |
| 
 | |
| 	tr->restart_rtx = rec->ar_startext + rec->ar_extcount;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Trim extents on an !rtgroups realtime device */
 | |
| static int
 | |
| xfs_trim_rtextents(
 | |
| 	struct xfs_rtgroup	*rtg,
 | |
| 	xfs_rtxnum_t		low,
 | |
| 	xfs_rtxnum_t		high,
 | |
| 	xfs_daddr_t		minlen)
 | |
| {
 | |
| 	struct xfs_mount	*mp = rtg_mount(rtg);
 | |
| 	struct xfs_trim_rtdev	tr = {
 | |
| 		.minlen_fsb	= XFS_BB_TO_FSB(mp, minlen),
 | |
| 		.extent_list	= LIST_HEAD_INIT(tr.extent_list),
 | |
| 	};
 | |
| 	struct xfs_trans	*tp;
 | |
| 	int			error;
 | |
| 
 | |
| 	error = xfs_trans_alloc_empty(mp, &tp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Walk the free ranges between low and high.  The query_range function
 | |
| 	 * trims the extents returned.
 | |
| 	 */
 | |
| 	do {
 | |
| 		tr.stop_rtx = low + xfs_rtbitmap_rtx_per_rbmblock(mp);
 | |
| 		xfs_rtgroup_lock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
 | |
| 		error = xfs_rtalloc_query_range(rtg, tp, low, high,
 | |
| 				xfs_trim_gather_rtextent, &tr);
 | |
| 
 | |
| 		if (error == -ECANCELED)
 | |
| 			error = 0;
 | |
| 		if (error) {
 | |
| 			xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
 | |
| 			xfs_discard_free_rtdev_extents(&tr);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (list_empty(&tr.extent_list)) {
 | |
| 			xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		error = xfs_discard_rtdev_extents(mp, &tr);
 | |
| 		xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
 | |
| 		if (error)
 | |
| 			break;
 | |
| 
 | |
| 		low = tr.restart_rtx;
 | |
| 	} while (!xfs_trim_should_stop() && low <= high);
 | |
| 
 | |
| 	xfs_trans_cancel(tp);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| struct xfs_trim_rtgroup {
 | |
| 	/* list of rtgroup extents to free */
 | |
| 	struct xfs_busy_extents	*extents;
 | |
| 
 | |
| 	/* minimum length that caller allows us to trim */
 | |
| 	xfs_rtblock_t		minlen_fsb;
 | |
| 
 | |
| 	/* restart point for the rtbitmap walk */
 | |
| 	xfs_rtxnum_t		restart_rtx;
 | |
| 
 | |
| 	/* number of extents to examine before stopping to issue discard ios */
 | |
| 	int			batch;
 | |
| 
 | |
| 	/* number of extents queued for discard */
 | |
| 	int			queued;
 | |
| };
 | |
| 
 | |
| static int
 | |
| xfs_trim_gather_rtgroup_extent(
 | |
| 	struct xfs_rtgroup		*rtg,
 | |
| 	struct xfs_trans		*tp,
 | |
| 	const struct xfs_rtalloc_rec	*rec,
 | |
| 	void				*priv)
 | |
| {
 | |
| 	struct xfs_trim_rtgroup		*tr = priv;
 | |
| 	xfs_rgblock_t			rgbno;
 | |
| 	xfs_extlen_t			len;
 | |
| 
 | |
| 	if (--tr->batch <= 0) {
 | |
| 		/*
 | |
| 		 * If we've checked a large number of extents, update the
 | |
| 		 * cursor to point at this extent so we restart the next batch
 | |
| 		 * from this extent.
 | |
| 		 */
 | |
| 		tr->restart_rtx = rec->ar_startext;
 | |
| 		return -ECANCELED;
 | |
| 	}
 | |
| 
 | |
| 	rgbno = xfs_rtx_to_rgbno(rtg, rec->ar_startext);
 | |
| 	len = xfs_rtxlen_to_extlen(rtg_mount(rtg), rec->ar_extcount);
 | |
| 
 | |
| 	/* Ignore too small. */
 | |
| 	if (len < tr->minlen_fsb) {
 | |
| 		trace_xfs_discard_toosmall(rtg_group(rtg), rgbno, len);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If any blocks in the range are still busy, skip the discard and try
 | |
| 	 * again the next time.
 | |
| 	 */
 | |
| 	if (xfs_extent_busy_search(rtg_group(rtg), rgbno, len)) {
 | |
| 		trace_xfs_discard_busy(rtg_group(rtg), rgbno, len);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	xfs_extent_busy_insert_discard(rtg_group(rtg), rgbno, len,
 | |
| 			&tr->extents->extent_list);
 | |
| 
 | |
| 	tr->queued++;
 | |
| 	tr->restart_rtx = rec->ar_startext + rec->ar_extcount;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Trim extents in this rtgroup using the busy extent machinery. */
 | |
| static int
 | |
| xfs_trim_rtgroup_extents(
 | |
| 	struct xfs_rtgroup	*rtg,
 | |
| 	xfs_rtxnum_t		low,
 | |
| 	xfs_rtxnum_t		high,
 | |
| 	xfs_daddr_t		minlen)
 | |
| {
 | |
| 	struct xfs_mount	*mp = rtg_mount(rtg);
 | |
| 	struct xfs_trim_rtgroup	tr = {
 | |
| 		.minlen_fsb	= XFS_BB_TO_FSB(mp, minlen),
 | |
| 	};
 | |
| 	struct xfs_trans	*tp;
 | |
| 	int			error;
 | |
| 
 | |
| 	error = xfs_trans_alloc_empty(mp, &tp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Walk the free ranges between low and high.  The query_range function
 | |
| 	 * trims the extents returned.
 | |
| 	 */
 | |
| 	do {
 | |
| 		tr.extents = kzalloc(sizeof(*tr.extents), GFP_KERNEL);
 | |
| 		if (!tr.extents) {
 | |
| 			error = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		tr.queued = 0;
 | |
| 		tr.batch = XFS_DISCARD_MAX_EXAMINE;
 | |
| 		tr.extents->owner = tr.extents;
 | |
| 		INIT_LIST_HEAD(&tr.extents->extent_list);
 | |
| 
 | |
| 		xfs_rtgroup_lock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
 | |
| 		error = xfs_rtalloc_query_range(rtg, tp, low, high,
 | |
| 				xfs_trim_gather_rtgroup_extent, &tr);
 | |
| 		xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
 | |
| 		if (error == -ECANCELED)
 | |
| 			error = 0;
 | |
| 		if (error) {
 | |
| 			kfree(tr.extents);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (!tr.queued)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * We hand the extent list to the discard function here so the
 | |
| 		 * discarded extents can be removed from the busy extent list.
 | |
| 		 * This allows the discards to run asynchronously with
 | |
| 		 * gathering the next round of extents to discard.
 | |
| 		 *
 | |
| 		 * However, we must ensure that we do not reference the extent
 | |
| 		 * list  after this function call, as it may have been freed by
 | |
| 		 * the time control returns to us.
 | |
| 		 */
 | |
| 		error = xfs_discard_extents(rtg_mount(rtg), tr.extents);
 | |
| 		if (error)
 | |
| 			break;
 | |
| 
 | |
| 		low = tr.restart_rtx;
 | |
| 	} while (!xfs_trim_should_stop() && low <= high);
 | |
| 
 | |
| 	xfs_trans_cancel(tp);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static int
 | |
| xfs_trim_rtdev_extents(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	xfs_daddr_t		start,
 | |
| 	xfs_daddr_t		end,
 | |
| 	xfs_daddr_t		minlen)
 | |
| {
 | |
| 	xfs_rtblock_t		start_rtbno, end_rtbno;
 | |
| 	xfs_rtxnum_t		start_rtx, end_rtx;
 | |
| 	xfs_rgnumber_t		start_rgno, end_rgno;
 | |
| 	xfs_daddr_t		daddr_offset;
 | |
| 	int			last_error = 0, error;
 | |
| 	struct xfs_rtgroup	*rtg = NULL;
 | |
| 
 | |
| 	/* Shift the start and end downwards to match the rt device. */
 | |
| 	daddr_offset = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 | |
| 	if (start > daddr_offset)
 | |
| 		start -= daddr_offset;
 | |
| 	else
 | |
| 		start = 0;
 | |
| 	start_rtbno = xfs_daddr_to_rtb(mp, start);
 | |
| 	start_rtx = xfs_rtb_to_rtx(mp, start_rtbno);
 | |
| 	start_rgno = xfs_rtb_to_rgno(mp, start_rtbno);
 | |
| 
 | |
| 	if (end <= daddr_offset)
 | |
| 		return 0;
 | |
| 	else
 | |
| 		end -= daddr_offset;
 | |
| 	end_rtbno = xfs_daddr_to_rtb(mp, end);
 | |
| 	end_rtx = xfs_rtb_to_rtx(mp, end_rtbno + mp->m_sb.sb_rextsize - 1);
 | |
| 	end_rgno = xfs_rtb_to_rgno(mp, end_rtbno);
 | |
| 
 | |
| 	while ((rtg = xfs_rtgroup_next_range(mp, rtg, start_rgno, end_rgno))) {
 | |
| 		xfs_rtxnum_t	rtg_end = rtg->rtg_extents;
 | |
| 
 | |
| 		if (rtg_rgno(rtg) == end_rgno)
 | |
| 			rtg_end = min(rtg_end, end_rtx);
 | |
| 
 | |
| 		if (xfs_has_rtgroups(mp))
 | |
| 			error = xfs_trim_rtgroup_extents(rtg, start_rtx,
 | |
| 					rtg_end, minlen);
 | |
| 		else
 | |
| 			error = xfs_trim_rtextents(rtg, start_rtx, rtg_end,
 | |
| 					minlen);
 | |
| 		if (error)
 | |
| 			last_error = error;
 | |
| 
 | |
| 		if (xfs_trim_should_stop()) {
 | |
| 			xfs_rtgroup_rele(rtg);
 | |
| 			break;
 | |
| 		}
 | |
| 		start_rtx = 0;
 | |
| 	}
 | |
| 
 | |
| 	return last_error;
 | |
| }
 | |
| #else
 | |
| # define xfs_trim_rtdev_extents(...)	(-EOPNOTSUPP)
 | |
| #endif /* CONFIG_XFS_RT */
 | |
| 
 | |
| /*
 | |
|  * trim a range of the filesystem.
 | |
|  *
 | |
|  * Note: the parameters passed from userspace are byte ranges into the
 | |
|  * filesystem which does not match to the format we use for filesystem block
 | |
|  * addressing. FSB addressing is sparse (AGNO|AGBNO), while the incoming format
 | |
|  * is a linear address range. Hence we need to use DADDR based conversions and
 | |
|  * comparisons for determining the correct offset and regions to trim.
 | |
|  *
 | |
|  * The realtime device is mapped into the FITRIM "address space" immediately
 | |
|  * after the data device.
 | |
|  */
 | |
| int
 | |
| xfs_ioc_trim(
 | |
| 	struct xfs_mount		*mp,
 | |
| 	struct fstrim_range __user	*urange)
 | |
| {
 | |
| 	unsigned int		granularity =
 | |
| 		bdev_discard_granularity(mp->m_ddev_targp->bt_bdev);
 | |
| 	struct block_device	*rt_bdev = NULL;
 | |
| 	struct fstrim_range	range;
 | |
| 	xfs_daddr_t		start, end;
 | |
| 	xfs_extlen_t		minlen;
 | |
| 	xfs_rfsblock_t		max_blocks;
 | |
| 	int			error, last_error = 0;
 | |
| 
 | |
| 	if (!capable(CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 	if (mp->m_rtdev_targp &&
 | |
| 	    bdev_max_discard_sectors(mp->m_rtdev_targp->bt_bdev))
 | |
| 		rt_bdev = mp->m_rtdev_targp->bt_bdev;
 | |
| 	if (!bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev) && !rt_bdev)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	if (rt_bdev)
 | |
| 		granularity = max(granularity,
 | |
| 				  bdev_discard_granularity(rt_bdev));
 | |
| 
 | |
| 	/*
 | |
| 	 * We haven't recovered the log, so we cannot use our bnobt-guided
 | |
| 	 * storage zapping commands.
 | |
| 	 */
 | |
| 	if (xfs_has_norecovery(mp))
 | |
| 		return -EROFS;
 | |
| 
 | |
| 	if (copy_from_user(&range, urange, sizeof(range)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	range.minlen = max_t(u64, granularity, range.minlen);
 | |
| 	minlen = XFS_B_TO_FSB(mp, range.minlen);
 | |
| 
 | |
| 	/*
 | |
| 	 * Truncating down the len isn't actually quite correct, but using
 | |
| 	 * BBTOB would mean we trivially get overflows for values
 | |
| 	 * of ULLONG_MAX or slightly lower.  And ULLONG_MAX is the default
 | |
| 	 * used by the fstrim application.  In the end it really doesn't
 | |
| 	 * matter as trimming blocks is an advisory interface.
 | |
| 	 */
 | |
| 	max_blocks = mp->m_sb.sb_dblocks + mp->m_sb.sb_rblocks;
 | |
| 	if (range.start >= XFS_FSB_TO_B(mp, max_blocks) ||
 | |
| 	    range.minlen > XFS_FSB_TO_B(mp, mp->m_ag_max_usable) ||
 | |
| 	    range.len < mp->m_sb.sb_blocksize)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	start = BTOBB(range.start);
 | |
| 	end = start + BTOBBT(range.len) - 1;
 | |
| 
 | |
| 	if (bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev)) {
 | |
| 		error = xfs_trim_datadev_extents(mp, start, end, minlen);
 | |
| 		if (error)
 | |
| 			last_error = error;
 | |
| 	}
 | |
| 
 | |
| 	if (rt_bdev && !xfs_trim_should_stop()) {
 | |
| 		error = xfs_trim_rtdev_extents(mp, start, end, minlen);
 | |
| 		if (error)
 | |
| 			last_error = error;
 | |
| 	}
 | |
| 
 | |
| 	if (last_error)
 | |
| 		return last_error;
 | |
| 
 | |
| 	range.len = min_t(unsigned long long, range.len,
 | |
| 			  XFS_FSB_TO_B(mp, max_blocks) - range.start);
 | |
| 	if (copy_to_user(urange, &range, sizeof(range)))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 |