forked from mirrors/linux
		
	 be42fc1393
			
		
	
	
		be42fc1393
		
	
	
	
	
		
			
			Make a report to the health monitoring subsystem any time we encounter something in the metadata directory tree that looks like corruption. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
		
			
				
	
	
		
			2347 lines
		
	
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2347 lines
		
	
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_fs.h"
 | |
| #include "xfs_shared.h"
 | |
| #include "xfs_format.h"
 | |
| #include "xfs_log_format.h"
 | |
| #include "xfs_trans_resv.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_trans_priv.h"
 | |
| #include "xfs_inode_item.h"
 | |
| #include "xfs_quota.h"
 | |
| #include "xfs_trace.h"
 | |
| #include "xfs_icache.h"
 | |
| #include "xfs_bmap_util.h"
 | |
| #include "xfs_dquot_item.h"
 | |
| #include "xfs_dquot.h"
 | |
| #include "xfs_reflink.h"
 | |
| #include "xfs_ialloc.h"
 | |
| #include "xfs_ag.h"
 | |
| #include "xfs_log_priv.h"
 | |
| #include "xfs_health.h"
 | |
| #include "xfs_da_format.h"
 | |
| #include "xfs_dir2.h"
 | |
| #include "xfs_metafile.h"
 | |
| 
 | |
| #include <linux/iversion.h>
 | |
| 
 | |
| /* Radix tree tags for incore inode tree. */
 | |
| 
 | |
| /* inode is to be reclaimed */
 | |
| #define XFS_ICI_RECLAIM_TAG	0
 | |
| /* Inode has speculative preallocations (posteof or cow) to clean. */
 | |
| #define XFS_ICI_BLOCKGC_TAG	1
 | |
| 
 | |
| /*
 | |
|  * The goal for walking incore inodes.  These can correspond with incore inode
 | |
|  * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
 | |
|  */
 | |
| enum xfs_icwalk_goal {
 | |
| 	/* Goals directly associated with tagged inodes. */
 | |
| 	XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG,
 | |
| 	XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG,
 | |
| };
 | |
| 
 | |
| static int xfs_icwalk(struct xfs_mount *mp,
 | |
| 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
 | |
| static int xfs_icwalk_ag(struct xfs_perag *pag,
 | |
| 		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
 | |
| 
 | |
| /*
 | |
|  * Private inode cache walk flags for struct xfs_icwalk.  Must not
 | |
|  * coincide with XFS_ICWALK_FLAGS_VALID.
 | |
|  */
 | |
| 
 | |
| /* Stop scanning after icw_scan_limit inodes. */
 | |
| #define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28)
 | |
| 
 | |
| #define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27)
 | |
| #define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */
 | |
| 
 | |
| #define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_SCAN_LIMIT | \
 | |
| 					 XFS_ICWALK_FLAG_RECLAIM_SICK | \
 | |
| 					 XFS_ICWALK_FLAG_UNION)
 | |
| 
 | |
| /* Marks for the perag xarray */
 | |
| #define XFS_PERAG_RECLAIM_MARK	XA_MARK_0
 | |
| #define XFS_PERAG_BLOCKGC_MARK	XA_MARK_1
 | |
| 
 | |
| static inline xa_mark_t ici_tag_to_mark(unsigned int tag)
 | |
| {
 | |
| 	if (tag == XFS_ICI_RECLAIM_TAG)
 | |
| 		return XFS_PERAG_RECLAIM_MARK;
 | |
| 	ASSERT(tag == XFS_ICI_BLOCKGC_TAG);
 | |
| 	return XFS_PERAG_BLOCKGC_MARK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate and initialise an xfs_inode.
 | |
|  */
 | |
| struct xfs_inode *
 | |
| xfs_inode_alloc(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	xfs_ino_t		ino)
 | |
| {
 | |
| 	struct xfs_inode	*ip;
 | |
| 
 | |
| 	/*
 | |
| 	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
 | |
| 	 * and return NULL here on ENOMEM.
 | |
| 	 */
 | |
| 	ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
 | |
| 
 | |
| 	if (inode_init_always(mp->m_super, VFS_I(ip))) {
 | |
| 		kmem_cache_free(xfs_inode_cache, ip);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* VFS doesn't initialise i_mode! */
 | |
| 	VFS_I(ip)->i_mode = 0;
 | |
| 	mapping_set_folio_min_order(VFS_I(ip)->i_mapping,
 | |
| 				    M_IGEO(mp)->min_folio_order);
 | |
| 
 | |
| 	XFS_STATS_INC(mp, vn_active);
 | |
| 	ASSERT(atomic_read(&ip->i_pincount) == 0);
 | |
| 	ASSERT(ip->i_ino == 0);
 | |
| 
 | |
| 	/* initialise the xfs inode */
 | |
| 	ip->i_ino = ino;
 | |
| 	ip->i_mount = mp;
 | |
| 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
 | |
| 	ip->i_cowfp = NULL;
 | |
| 	memset(&ip->i_af, 0, sizeof(ip->i_af));
 | |
| 	ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
 | |
| 	memset(&ip->i_df, 0, sizeof(ip->i_df));
 | |
| 	ip->i_flags = 0;
 | |
| 	ip->i_delayed_blks = 0;
 | |
| 	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
 | |
| 	ip->i_nblocks = 0;
 | |
| 	ip->i_forkoff = 0;
 | |
| 	ip->i_sick = 0;
 | |
| 	ip->i_checked = 0;
 | |
| 	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
 | |
| 	INIT_LIST_HEAD(&ip->i_ioend_list);
 | |
| 	spin_lock_init(&ip->i_ioend_lock);
 | |
| 	ip->i_next_unlinked = NULLAGINO;
 | |
| 	ip->i_prev_unlinked = 0;
 | |
| 
 | |
| 	return ip;
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_inode_free_callback(
 | |
| 	struct rcu_head		*head)
 | |
| {
 | |
| 	struct inode		*inode = container_of(head, struct inode, i_rcu);
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 
 | |
| 	switch (VFS_I(ip)->i_mode & S_IFMT) {
 | |
| 	case S_IFREG:
 | |
| 	case S_IFDIR:
 | |
| 	case S_IFLNK:
 | |
| 		xfs_idestroy_fork(&ip->i_df);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	xfs_ifork_zap_attr(ip);
 | |
| 
 | |
| 	if (ip->i_cowfp) {
 | |
| 		xfs_idestroy_fork(ip->i_cowfp);
 | |
| 		kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
 | |
| 	}
 | |
| 	if (ip->i_itemp) {
 | |
| 		ASSERT(!test_bit(XFS_LI_IN_AIL,
 | |
| 				 &ip->i_itemp->ili_item.li_flags));
 | |
| 		xfs_inode_item_destroy(ip);
 | |
| 		ip->i_itemp = NULL;
 | |
| 	}
 | |
| 
 | |
| 	kmem_cache_free(xfs_inode_cache, ip);
 | |
| }
 | |
| 
 | |
| static void
 | |
| __xfs_inode_free(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	/* asserts to verify all state is correct here */
 | |
| 	ASSERT(atomic_read(&ip->i_pincount) == 0);
 | |
| 	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
 | |
| 	XFS_STATS_DEC(ip->i_mount, vn_active);
 | |
| 
 | |
| 	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_inode_free(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
 | |
| 
 | |
| 	/*
 | |
| 	 * Because we use RCU freeing we need to ensure the inode always
 | |
| 	 * appears to be reclaimed with an invalid inode number when in the
 | |
| 	 * free state. The ip->i_flags_lock provides the barrier against lookup
 | |
| 	 * races.
 | |
| 	 */
 | |
| 	spin_lock(&ip->i_flags_lock);
 | |
| 	ip->i_flags = XFS_IRECLAIM;
 | |
| 	ip->i_ino = 0;
 | |
| 	spin_unlock(&ip->i_flags_lock);
 | |
| 
 | |
| 	__xfs_inode_free(ip);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Queue background inode reclaim work if there are reclaimable inodes and there
 | |
|  * isn't reclaim work already scheduled or in progress.
 | |
|  */
 | |
| static void
 | |
| xfs_reclaim_work_queue(
 | |
| 	struct xfs_mount        *mp)
 | |
| {
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) {
 | |
| 		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
 | |
| 			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Background scanning to trim preallocated space. This is queued based on the
 | |
|  * 'speculative_prealloc_lifetime' tunable (5m by default).
 | |
|  */
 | |
| static inline void
 | |
| xfs_blockgc_queue(
 | |
| 	struct xfs_perag	*pag)
 | |
| {
 | |
| 	struct xfs_mount	*mp = pag_mount(pag);
 | |
| 
 | |
| 	if (!xfs_is_blockgc_enabled(mp))
 | |
| 		return;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
 | |
| 		queue_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work,
 | |
| 				   msecs_to_jiffies(xfs_blockgc_secs * 1000));
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /* Set a tag on both the AG incore inode tree and the AG radix tree. */
 | |
| static void
 | |
| xfs_perag_set_inode_tag(
 | |
| 	struct xfs_perag	*pag,
 | |
| 	xfs_agino_t		agino,
 | |
| 	unsigned int		tag)
 | |
| {
 | |
| 	bool			was_tagged;
 | |
| 
 | |
| 	lockdep_assert_held(&pag->pag_ici_lock);
 | |
| 
 | |
| 	was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
 | |
| 	radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
 | |
| 
 | |
| 	if (tag == XFS_ICI_RECLAIM_TAG)
 | |
| 		pag->pag_ici_reclaimable++;
 | |
| 
 | |
| 	if (was_tagged)
 | |
| 		return;
 | |
| 
 | |
| 	/* propagate the tag up into the pag xarray tree */
 | |
| 	xfs_group_set_mark(pag_group(pag), ici_tag_to_mark(tag));
 | |
| 
 | |
| 	/* start background work */
 | |
| 	switch (tag) {
 | |
| 	case XFS_ICI_RECLAIM_TAG:
 | |
| 		xfs_reclaim_work_queue(pag_mount(pag));
 | |
| 		break;
 | |
| 	case XFS_ICI_BLOCKGC_TAG:
 | |
| 		xfs_blockgc_queue(pag);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
 | |
| }
 | |
| 
 | |
| /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
 | |
| static void
 | |
| xfs_perag_clear_inode_tag(
 | |
| 	struct xfs_perag	*pag,
 | |
| 	xfs_agino_t		agino,
 | |
| 	unsigned int		tag)
 | |
| {
 | |
| 	lockdep_assert_held(&pag->pag_ici_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reclaim can signal (with a null agino) that it cleared its own tag
 | |
| 	 * by removing the inode from the radix tree.
 | |
| 	 */
 | |
| 	if (agino != NULLAGINO)
 | |
| 		radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
 | |
| 	else
 | |
| 		ASSERT(tag == XFS_ICI_RECLAIM_TAG);
 | |
| 
 | |
| 	if (tag == XFS_ICI_RECLAIM_TAG)
 | |
| 		pag->pag_ici_reclaimable--;
 | |
| 
 | |
| 	if (radix_tree_tagged(&pag->pag_ici_root, tag))
 | |
| 		return;
 | |
| 
 | |
| 	/* clear the tag from the pag xarray */
 | |
| 	xfs_group_clear_mark(pag_group(pag), ici_tag_to_mark(tag));
 | |
| 	trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the next AG after @pag, or the first AG if @pag is NULL.
 | |
|  */
 | |
| static struct xfs_perag *
 | |
| xfs_perag_grab_next_tag(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_perag	*pag,
 | |
| 	int			tag)
 | |
| {
 | |
| 	return to_perag(xfs_group_grab_next_mark(mp,
 | |
| 			pag ? pag_group(pag) : NULL,
 | |
| 			ici_tag_to_mark(tag), XG_TYPE_AG));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 | |
|  * part of the structure. This is made more complex by the fact we store
 | |
|  * information about the on-disk values in the VFS inode and so we can't just
 | |
|  * overwrite the values unconditionally. Hence we save the parameters we
 | |
|  * need to retain across reinitialisation, and rewrite them into the VFS inode
 | |
|  * after reinitialisation even if it fails.
 | |
|  */
 | |
| static int
 | |
| xfs_reinit_inode(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct inode		*inode)
 | |
| {
 | |
| 	int			error;
 | |
| 	uint32_t		nlink = inode->i_nlink;
 | |
| 	uint32_t		generation = inode->i_generation;
 | |
| 	uint64_t		version = inode_peek_iversion(inode);
 | |
| 	umode_t			mode = inode->i_mode;
 | |
| 	dev_t			dev = inode->i_rdev;
 | |
| 	kuid_t			uid = inode->i_uid;
 | |
| 	kgid_t			gid = inode->i_gid;
 | |
| 	unsigned long		state = inode->i_state;
 | |
| 
 | |
| 	error = inode_init_always(mp->m_super, inode);
 | |
| 
 | |
| 	set_nlink(inode, nlink);
 | |
| 	inode->i_generation = generation;
 | |
| 	inode_set_iversion_queried(inode, version);
 | |
| 	inode->i_mode = mode;
 | |
| 	inode->i_rdev = dev;
 | |
| 	inode->i_uid = uid;
 | |
| 	inode->i_gid = gid;
 | |
| 	inode->i_state = state;
 | |
| 	mapping_set_folio_min_order(inode->i_mapping,
 | |
| 				    M_IGEO(mp)->min_folio_order);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Carefully nudge an inode whose VFS state has been torn down back into a
 | |
|  * usable state.  Drops the i_flags_lock and the rcu read lock.
 | |
|  */
 | |
| static int
 | |
| xfs_iget_recycle(
 | |
| 	struct xfs_perag	*pag,
 | |
| 	struct xfs_inode	*ip) __releases(&ip->i_flags_lock)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	struct inode		*inode = VFS_I(ip);
 | |
| 	int			error;
 | |
| 
 | |
| 	trace_xfs_iget_recycle(ip);
 | |
| 
 | |
| 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to make it look like the inode is being reclaimed to prevent
 | |
| 	 * the actual reclaim workers from stomping over us while we recycle
 | |
| 	 * the inode.  We can't clear the radix tree tag yet as it requires
 | |
| 	 * pag_ici_lock to be held exclusive.
 | |
| 	 */
 | |
| 	ip->i_flags |= XFS_IRECLAIM;
 | |
| 
 | |
| 	spin_unlock(&ip->i_flags_lock);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
 | |
| 	error = xfs_reinit_inode(mp, inode);
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 	if (error) {
 | |
| 		/*
 | |
| 		 * Re-initializing the inode failed, and we are in deep
 | |
| 		 * trouble.  Try to re-add it to the reclaim list.
 | |
| 		 */
 | |
| 		rcu_read_lock();
 | |
| 		spin_lock(&ip->i_flags_lock);
 | |
| 		ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
 | |
| 		ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
 | |
| 		spin_unlock(&ip->i_flags_lock);
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		trace_xfs_iget_recycle_fail(ip);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&pag->pag_ici_lock);
 | |
| 	spin_lock(&ip->i_flags_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear the per-lifetime state in the inode as we are now effectively
 | |
| 	 * a new inode and need to return to the initial state before reuse
 | |
| 	 * occurs.
 | |
| 	 */
 | |
| 	ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
 | |
| 	ip->i_flags |= XFS_INEW;
 | |
| 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
 | |
| 			XFS_ICI_RECLAIM_TAG);
 | |
| 	inode->i_state = I_NEW;
 | |
| 	spin_unlock(&ip->i_flags_lock);
 | |
| 	spin_unlock(&pag->pag_ici_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we are allocating a new inode, then check what was returned is
 | |
|  * actually a free, empty inode. If we are not allocating an inode,
 | |
|  * then check we didn't find a free inode.
 | |
|  *
 | |
|  * Returns:
 | |
|  *	0		if the inode free state matches the lookup context
 | |
|  *	-ENOENT		if the inode is free and we are not allocating
 | |
|  *	-EFSCORRUPTED	if there is any state mismatch at all
 | |
|  */
 | |
| static int
 | |
| xfs_iget_check_free_state(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	int			flags)
 | |
| {
 | |
| 	if (flags & XFS_IGET_CREATE) {
 | |
| 		/* should be a free inode */
 | |
| 		if (VFS_I(ip)->i_mode != 0) {
 | |
| 			xfs_warn(ip->i_mount,
 | |
| "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
 | |
| 				ip->i_ino, VFS_I(ip)->i_mode);
 | |
| 			xfs_agno_mark_sick(ip->i_mount,
 | |
| 					XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
 | |
| 					XFS_SICK_AG_INOBT);
 | |
| 			return -EFSCORRUPTED;
 | |
| 		}
 | |
| 
 | |
| 		if (ip->i_nblocks != 0) {
 | |
| 			xfs_warn(ip->i_mount,
 | |
| "Corruption detected! Free inode 0x%llx has blocks allocated!",
 | |
| 				ip->i_ino);
 | |
| 			xfs_agno_mark_sick(ip->i_mount,
 | |
| 					XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
 | |
| 					XFS_SICK_AG_INOBT);
 | |
| 			return -EFSCORRUPTED;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* should be an allocated inode */
 | |
| 	if (VFS_I(ip)->i_mode == 0)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Make all pending inactivation work start immediately. */
 | |
| static bool
 | |
| xfs_inodegc_queue_all(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	struct xfs_inodegc	*gc;
 | |
| 	int			cpu;
 | |
| 	bool			ret = false;
 | |
| 
 | |
| 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
 | |
| 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
 | |
| 		if (!llist_empty(&gc->list)) {
 | |
| 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
 | |
| 			ret = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Wait for all queued work and collect errors */
 | |
| static int
 | |
| xfs_inodegc_wait_all(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	int			cpu;
 | |
| 	int			error = 0;
 | |
| 
 | |
| 	flush_workqueue(mp->m_inodegc_wq);
 | |
| 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
 | |
| 		struct xfs_inodegc	*gc;
 | |
| 
 | |
| 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
 | |
| 		if (gc->error && !error)
 | |
| 			error = gc->error;
 | |
| 		gc->error = 0;
 | |
| 	}
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check the validity of the inode we just found it the cache
 | |
|  */
 | |
| static int
 | |
| xfs_iget_cache_hit(
 | |
| 	struct xfs_perag	*pag,
 | |
| 	struct xfs_inode	*ip,
 | |
| 	xfs_ino_t		ino,
 | |
| 	int			flags,
 | |
| 	int			lock_flags) __releases(RCU)
 | |
| {
 | |
| 	struct inode		*inode = VFS_I(ip);
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	int			error;
 | |
| 
 | |
| 	/*
 | |
| 	 * check for re-use of an inode within an RCU grace period due to the
 | |
| 	 * radix tree nodes not being updated yet. We monitor for this by
 | |
| 	 * setting the inode number to zero before freeing the inode structure.
 | |
| 	 * If the inode has been reallocated and set up, then the inode number
 | |
| 	 * will not match, so check for that, too.
 | |
| 	 */
 | |
| 	spin_lock(&ip->i_flags_lock);
 | |
| 	if (ip->i_ino != ino)
 | |
| 		goto out_skip;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are racing with another cache hit that is currently
 | |
| 	 * instantiating this inode or currently recycling it out of
 | |
| 	 * reclaimable state, wait for the initialisation to complete
 | |
| 	 * before continuing.
 | |
| 	 *
 | |
| 	 * If we're racing with the inactivation worker we also want to wait.
 | |
| 	 * If we're creating a new file, it's possible that the worker
 | |
| 	 * previously marked the inode as free on disk but hasn't finished
 | |
| 	 * updating the incore state yet.  The AGI buffer will be dirty and
 | |
| 	 * locked to the icreate transaction, so a synchronous push of the
 | |
| 	 * inodegc workers would result in deadlock.  For a regular iget, the
 | |
| 	 * worker is running already, so we might as well wait.
 | |
| 	 *
 | |
| 	 * XXX(hch): eventually we should do something equivalent to
 | |
| 	 *	     wait_on_inode to wait for these flags to be cleared
 | |
| 	 *	     instead of polling for it.
 | |
| 	 */
 | |
| 	if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
 | |
| 		goto out_skip;
 | |
| 
 | |
| 	if (ip->i_flags & XFS_NEED_INACTIVE) {
 | |
| 		/* Unlinked inodes cannot be re-grabbed. */
 | |
| 		if (VFS_I(ip)->i_nlink == 0) {
 | |
| 			error = -ENOENT;
 | |
| 			goto out_error;
 | |
| 		}
 | |
| 		goto out_inodegc_flush;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check the inode free state is valid. This also detects lookup
 | |
| 	 * racing with unlinks.
 | |
| 	 */
 | |
| 	error = xfs_iget_check_free_state(ip, flags);
 | |
| 	if (error)
 | |
| 		goto out_error;
 | |
| 
 | |
| 	/* Skip inodes that have no vfs state. */
 | |
| 	if ((flags & XFS_IGET_INCORE) &&
 | |
| 	    (ip->i_flags & XFS_IRECLAIMABLE))
 | |
| 		goto out_skip;
 | |
| 
 | |
| 	/* The inode fits the selection criteria; process it. */
 | |
| 	if (ip->i_flags & XFS_IRECLAIMABLE) {
 | |
| 		/* Drops i_flags_lock and RCU read lock. */
 | |
| 		error = xfs_iget_recycle(pag, ip);
 | |
| 		if (error == -EAGAIN)
 | |
| 			goto out_skip;
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	} else {
 | |
| 		/* If the VFS inode is being torn down, pause and try again. */
 | |
| 		if (!igrab(inode))
 | |
| 			goto out_skip;
 | |
| 
 | |
| 		/* We've got a live one. */
 | |
| 		spin_unlock(&ip->i_flags_lock);
 | |
| 		rcu_read_unlock();
 | |
| 		trace_xfs_iget_hit(ip);
 | |
| 	}
 | |
| 
 | |
| 	if (lock_flags != 0)
 | |
| 		xfs_ilock(ip, lock_flags);
 | |
| 
 | |
| 	if (!(flags & XFS_IGET_INCORE))
 | |
| 		xfs_iflags_clear(ip, XFS_ISTALE);
 | |
| 	XFS_STATS_INC(mp, xs_ig_found);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_skip:
 | |
| 	trace_xfs_iget_skip(ip);
 | |
| 	XFS_STATS_INC(mp, xs_ig_frecycle);
 | |
| 	error = -EAGAIN;
 | |
| out_error:
 | |
| 	spin_unlock(&ip->i_flags_lock);
 | |
| 	rcu_read_unlock();
 | |
| 	return error;
 | |
| 
 | |
| out_inodegc_flush:
 | |
| 	spin_unlock(&ip->i_flags_lock);
 | |
| 	rcu_read_unlock();
 | |
| 	/*
 | |
| 	 * Do not wait for the workers, because the caller could hold an AGI
 | |
| 	 * buffer lock.  We're just going to sleep in a loop anyway.
 | |
| 	 */
 | |
| 	if (xfs_is_inodegc_enabled(mp))
 | |
| 		xfs_inodegc_queue_all(mp);
 | |
| 	return -EAGAIN;
 | |
| }
 | |
| 
 | |
| static int
 | |
| xfs_iget_cache_miss(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_perag	*pag,
 | |
| 	xfs_trans_t		*tp,
 | |
| 	xfs_ino_t		ino,
 | |
| 	struct xfs_inode	**ipp,
 | |
| 	int			flags,
 | |
| 	int			lock_flags)
 | |
| {
 | |
| 	struct xfs_inode	*ip;
 | |
| 	int			error;
 | |
| 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
 | |
| 
 | |
| 	ip = xfs_inode_alloc(mp, ino);
 | |
| 	if (!ip)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
 | |
| 	if (error)
 | |
| 		goto out_destroy;
 | |
| 
 | |
| 	/*
 | |
| 	 * For version 5 superblocks, if we are initialising a new inode and we
 | |
| 	 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
 | |
| 	 * simply build the new inode core with a random generation number.
 | |
| 	 *
 | |
| 	 * For version 4 (and older) superblocks, log recovery is dependent on
 | |
| 	 * the i_flushiter field being initialised from the current on-disk
 | |
| 	 * value and hence we must also read the inode off disk even when
 | |
| 	 * initializing new inodes.
 | |
| 	 */
 | |
| 	if (xfs_has_v3inodes(mp) &&
 | |
| 	    (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
 | |
| 		VFS_I(ip)->i_generation = get_random_u32();
 | |
| 	} else {
 | |
| 		struct xfs_buf		*bp;
 | |
| 
 | |
| 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
 | |
| 		if (error)
 | |
| 			goto out_destroy;
 | |
| 
 | |
| 		error = xfs_inode_from_disk(ip,
 | |
| 				xfs_buf_offset(bp, ip->i_imap.im_boffset));
 | |
| 		if (!error)
 | |
| 			xfs_buf_set_ref(bp, XFS_INO_REF);
 | |
| 		else
 | |
| 			xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
 | |
| 		xfs_trans_brelse(tp, bp);
 | |
| 
 | |
| 		if (error)
 | |
| 			goto out_destroy;
 | |
| 	}
 | |
| 
 | |
| 	trace_xfs_iget_miss(ip);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check the inode free state is valid. This also detects lookup
 | |
| 	 * racing with unlinks.
 | |
| 	 */
 | |
| 	error = xfs_iget_check_free_state(ip, flags);
 | |
| 	if (error)
 | |
| 		goto out_destroy;
 | |
| 
 | |
| 	/*
 | |
| 	 * Preload the radix tree so we can insert safely under the
 | |
| 	 * write spinlock. Note that we cannot sleep inside the preload
 | |
| 	 * region.
 | |
| 	 */
 | |
| 	if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) {
 | |
| 		error = -EAGAIN;
 | |
| 		goto out_destroy;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Because the inode hasn't been added to the radix-tree yet it can't
 | |
| 	 * be found by another thread, so we can do the non-sleeping lock here.
 | |
| 	 */
 | |
| 	if (lock_flags) {
 | |
| 		if (!xfs_ilock_nowait(ip, lock_flags))
 | |
| 			BUG();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * These values must be set before inserting the inode into the radix
 | |
| 	 * tree as the moment it is inserted a concurrent lookup (allowed by the
 | |
| 	 * RCU locking mechanism) can find it and that lookup must see that this
 | |
| 	 * is an inode currently under construction (i.e. that XFS_INEW is set).
 | |
| 	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
 | |
| 	 * memory barrier that ensures this detection works correctly at lookup
 | |
| 	 * time.
 | |
| 	 */
 | |
| 	if (flags & XFS_IGET_DONTCACHE)
 | |
| 		d_mark_dontcache(VFS_I(ip));
 | |
| 	ip->i_udquot = NULL;
 | |
| 	ip->i_gdquot = NULL;
 | |
| 	ip->i_pdquot = NULL;
 | |
| 	xfs_iflags_set(ip, XFS_INEW);
 | |
| 
 | |
| 	/* insert the new inode */
 | |
| 	spin_lock(&pag->pag_ici_lock);
 | |
| 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
 | |
| 	if (unlikely(error)) {
 | |
| 		WARN_ON(error != -EEXIST);
 | |
| 		XFS_STATS_INC(mp, xs_ig_dup);
 | |
| 		error = -EAGAIN;
 | |
| 		goto out_preload_end;
 | |
| 	}
 | |
| 	spin_unlock(&pag->pag_ici_lock);
 | |
| 	radix_tree_preload_end();
 | |
| 
 | |
| 	*ipp = ip;
 | |
| 	return 0;
 | |
| 
 | |
| out_preload_end:
 | |
| 	spin_unlock(&pag->pag_ici_lock);
 | |
| 	radix_tree_preload_end();
 | |
| 	if (lock_flags)
 | |
| 		xfs_iunlock(ip, lock_flags);
 | |
| out_destroy:
 | |
| 	__destroy_inode(VFS_I(ip));
 | |
| 	xfs_inode_free(ip);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look up an inode by number in the given file system.  The inode is looked up
 | |
|  * in the cache held in each AG.  If the inode is found in the cache, initialise
 | |
|  * the vfs inode if necessary.
 | |
|  *
 | |
|  * If it is not in core, read it in from the file system's device, add it to the
 | |
|  * cache and initialise the vfs inode.
 | |
|  *
 | |
|  * The inode is locked according to the value of the lock_flags parameter.
 | |
|  * Inode lookup is only done during metadata operations and not as part of the
 | |
|  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
 | |
|  */
 | |
| int
 | |
| xfs_iget(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_trans	*tp,
 | |
| 	xfs_ino_t		ino,
 | |
| 	uint			flags,
 | |
| 	uint			lock_flags,
 | |
| 	struct xfs_inode	**ipp)
 | |
| {
 | |
| 	struct xfs_inode	*ip;
 | |
| 	struct xfs_perag	*pag;
 | |
| 	xfs_agino_t		agino;
 | |
| 	int			error;
 | |
| 
 | |
| 	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
 | |
| 
 | |
| 	/* reject inode numbers outside existing AGs */
 | |
| 	if (!xfs_verify_ino(mp, ino))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	XFS_STATS_INC(mp, xs_ig_attempts);
 | |
| 
 | |
| 	/* get the perag structure and ensure that it's inode capable */
 | |
| 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
 | |
| 	agino = XFS_INO_TO_AGINO(mp, ino);
 | |
| 
 | |
| again:
 | |
| 	error = 0;
 | |
| 	rcu_read_lock();
 | |
| 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
 | |
| 
 | |
| 	if (ip) {
 | |
| 		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
 | |
| 		if (error)
 | |
| 			goto out_error_or_again;
 | |
| 	} else {
 | |
| 		rcu_read_unlock();
 | |
| 		if (flags & XFS_IGET_INCORE) {
 | |
| 			error = -ENODATA;
 | |
| 			goto out_error_or_again;
 | |
| 		}
 | |
| 		XFS_STATS_INC(mp, xs_ig_missed);
 | |
| 
 | |
| 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
 | |
| 							flags, lock_flags);
 | |
| 		if (error)
 | |
| 			goto out_error_or_again;
 | |
| 	}
 | |
| 	xfs_perag_put(pag);
 | |
| 
 | |
| 	*ipp = ip;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have a real type for an on-disk inode, we can setup the inode
 | |
| 	 * now.	 If it's a new inode being created, xfs_init_new_inode will
 | |
| 	 * handle it.
 | |
| 	 */
 | |
| 	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
 | |
| 		xfs_setup_existing_inode(ip);
 | |
| 	return 0;
 | |
| 
 | |
| out_error_or_again:
 | |
| 	if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
 | |
| 	    error == -EAGAIN) {
 | |
| 		delay(1);
 | |
| 		goto again;
 | |
| 	}
 | |
| 	xfs_perag_put(pag);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get a metadata inode.
 | |
|  *
 | |
|  * The metafile type must match the file mode exactly, and for files in the
 | |
|  * metadata directory tree, it must match the inode's metatype exactly.
 | |
|  */
 | |
| int
 | |
| xfs_trans_metafile_iget(
 | |
| 	struct xfs_trans	*tp,
 | |
| 	xfs_ino_t		ino,
 | |
| 	enum xfs_metafile_type	metafile_type,
 | |
| 	struct xfs_inode	**ipp)
 | |
| {
 | |
| 	struct xfs_mount	*mp = tp->t_mountp;
 | |
| 	struct xfs_inode	*ip;
 | |
| 	umode_t			mode;
 | |
| 	int			error;
 | |
| 
 | |
| 	error = xfs_iget(mp, tp, ino, 0, 0, &ip);
 | |
| 	if (error == -EFSCORRUPTED || error == -EINVAL)
 | |
| 		goto whine;
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	if (VFS_I(ip)->i_nlink == 0)
 | |
| 		goto bad_rele;
 | |
| 
 | |
| 	if (metafile_type == XFS_METAFILE_DIR)
 | |
| 		mode = S_IFDIR;
 | |
| 	else
 | |
| 		mode = S_IFREG;
 | |
| 	if (inode_wrong_type(VFS_I(ip), mode))
 | |
| 		goto bad_rele;
 | |
| 	if (xfs_has_metadir(mp)) {
 | |
| 		if (!xfs_is_metadir_inode(ip))
 | |
| 			goto bad_rele;
 | |
| 		if (metafile_type != ip->i_metatype)
 | |
| 			goto bad_rele;
 | |
| 	}
 | |
| 
 | |
| 	*ipp = ip;
 | |
| 	return 0;
 | |
| bad_rele:
 | |
| 	xfs_irele(ip);
 | |
| whine:
 | |
| 	xfs_err(mp, "metadata inode 0x%llx type %u is corrupt", ino,
 | |
| 			metafile_type);
 | |
| 	xfs_fs_mark_sick(mp, XFS_SICK_FS_METADIR);
 | |
| 	return -EFSCORRUPTED;
 | |
| }
 | |
| 
 | |
| /* Grab a metadata file if the caller doesn't already have a transaction. */
 | |
| int
 | |
| xfs_metafile_iget(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	xfs_ino_t		ino,
 | |
| 	enum xfs_metafile_type	metafile_type,
 | |
| 	struct xfs_inode	**ipp)
 | |
| {
 | |
| 	struct xfs_trans	*tp;
 | |
| 	int			error;
 | |
| 
 | |
| 	error = xfs_trans_alloc_empty(mp, &tp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	error = xfs_trans_metafile_iget(tp, ino, metafile_type, ipp);
 | |
| 	xfs_trans_cancel(tp);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Grab the inode for reclaim exclusively.
 | |
|  *
 | |
|  * We have found this inode via a lookup under RCU, so the inode may have
 | |
|  * already been freed, or it may be in the process of being recycled by
 | |
|  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
 | |
|  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
 | |
|  * will not be set. Hence we need to check for both these flag conditions to
 | |
|  * avoid inodes that are no longer reclaim candidates.
 | |
|  *
 | |
|  * Note: checking for other state flags here, under the i_flags_lock or not, is
 | |
|  * racy and should be avoided. Those races should be resolved only after we have
 | |
|  * ensured that we are able to reclaim this inode and the world can see that we
 | |
|  * are going to reclaim it.
 | |
|  *
 | |
|  * Return true if we grabbed it, false otherwise.
 | |
|  */
 | |
| static bool
 | |
| xfs_reclaim_igrab(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_icwalk	*icw)
 | |
| {
 | |
| 	ASSERT(rcu_read_lock_held());
 | |
| 
 | |
| 	spin_lock(&ip->i_flags_lock);
 | |
| 	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
 | |
| 	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
 | |
| 		/* not a reclaim candidate. */
 | |
| 		spin_unlock(&ip->i_flags_lock);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* Don't reclaim a sick inode unless the caller asked for it. */
 | |
| 	if (ip->i_sick &&
 | |
| 	    (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
 | |
| 		spin_unlock(&ip->i_flags_lock);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	__xfs_iflags_set(ip, XFS_IRECLAIM);
 | |
| 	spin_unlock(&ip->i_flags_lock);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Inode reclaim is non-blocking, so the default action if progress cannot be
 | |
|  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
 | |
|  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
 | |
|  * blocking anymore and hence we can wait for the inode to be able to reclaim
 | |
|  * it.
 | |
|  *
 | |
|  * We do no IO here - if callers require inodes to be cleaned they must push the
 | |
|  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
 | |
|  * done in the background in a non-blocking manner, and enables memory reclaim
 | |
|  * to make progress without blocking.
 | |
|  */
 | |
| static void
 | |
| xfs_reclaim_inode(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_perag	*pag)
 | |
| {
 | |
| 	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
 | |
| 
 | |
| 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
 | |
| 		goto out;
 | |
| 	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
 | |
| 		goto out_iunlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for log shutdown because aborting the inode can move the log
 | |
| 	 * tail and corrupt in memory state. This is fine if the log is shut
 | |
| 	 * down, but if the log is still active and only the mount is shut down
 | |
| 	 * then the in-memory log tail movement caused by the abort can be
 | |
| 	 * incorrectly propagated to disk.
 | |
| 	 */
 | |
| 	if (xlog_is_shutdown(ip->i_mount->m_log)) {
 | |
| 		xfs_iunpin_wait(ip);
 | |
| 		xfs_iflush_shutdown_abort(ip);
 | |
| 		goto reclaim;
 | |
| 	}
 | |
| 	if (xfs_ipincount(ip))
 | |
| 		goto out_clear_flush;
 | |
| 	if (!xfs_inode_clean(ip))
 | |
| 		goto out_clear_flush;
 | |
| 
 | |
| 	xfs_iflags_clear(ip, XFS_IFLUSHING);
 | |
| reclaim:
 | |
| 	trace_xfs_inode_reclaiming(ip);
 | |
| 
 | |
| 	/*
 | |
| 	 * Because we use RCU freeing we need to ensure the inode always appears
 | |
| 	 * to be reclaimed with an invalid inode number when in the free state.
 | |
| 	 * We do this as early as possible under the ILOCK so that
 | |
| 	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
 | |
| 	 * detect races with us here. By doing this, we guarantee that once
 | |
| 	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
 | |
| 	 * it will see either a valid inode that will serialise correctly, or it
 | |
| 	 * will see an invalid inode that it can skip.
 | |
| 	 */
 | |
| 	spin_lock(&ip->i_flags_lock);
 | |
| 	ip->i_flags = XFS_IRECLAIM;
 | |
| 	ip->i_ino = 0;
 | |
| 	ip->i_sick = 0;
 | |
| 	ip->i_checked = 0;
 | |
| 	spin_unlock(&ip->i_flags_lock);
 | |
| 
 | |
| 	ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 
 | |
| 	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
 | |
| 	/*
 | |
| 	 * Remove the inode from the per-AG radix tree.
 | |
| 	 *
 | |
| 	 * Because radix_tree_delete won't complain even if the item was never
 | |
| 	 * added to the tree assert that it's been there before to catch
 | |
| 	 * problems with the inode life time early on.
 | |
| 	 */
 | |
| 	spin_lock(&pag->pag_ici_lock);
 | |
| 	if (!radix_tree_delete(&pag->pag_ici_root,
 | |
| 				XFS_INO_TO_AGINO(ip->i_mount, ino)))
 | |
| 		ASSERT(0);
 | |
| 	xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
 | |
| 	spin_unlock(&pag->pag_ici_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Here we do an (almost) spurious inode lock in order to coordinate
 | |
| 	 * with inode cache radix tree lookups.  This is because the lookup
 | |
| 	 * can reference the inodes in the cache without taking references.
 | |
| 	 *
 | |
| 	 * We make that OK here by ensuring that we wait until the inode is
 | |
| 	 * unlocked after the lookup before we go ahead and free it.
 | |
| 	 */
 | |
| 	xfs_ilock(ip, XFS_ILOCK_EXCL);
 | |
| 	ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 	ASSERT(xfs_inode_clean(ip));
 | |
| 
 | |
| 	__xfs_inode_free(ip);
 | |
| 	return;
 | |
| 
 | |
| out_clear_flush:
 | |
| 	xfs_iflags_clear(ip, XFS_IFLUSHING);
 | |
| out_iunlock:
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| out:
 | |
| 	xfs_iflags_clear(ip, XFS_IRECLAIM);
 | |
| }
 | |
| 
 | |
| /* Reclaim sick inodes if we're unmounting or the fs went down. */
 | |
| static inline bool
 | |
| xfs_want_reclaim_sick(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
 | |
| 	       xfs_is_shutdown(mp);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_reclaim_inodes(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	struct xfs_icwalk	icw = {
 | |
| 		.icw_flags	= 0,
 | |
| 	};
 | |
| 
 | |
| 	if (xfs_want_reclaim_sick(mp))
 | |
| 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
 | |
| 
 | |
| 	while (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) {
 | |
| 		xfs_ail_push_all_sync(mp->m_ail);
 | |
| 		xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The shrinker infrastructure determines how many inodes we should scan for
 | |
|  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
 | |
|  * push the AIL here. We also want to proactively free up memory if we can to
 | |
|  * minimise the amount of work memory reclaim has to do so we kick the
 | |
|  * background reclaim if it isn't already scheduled.
 | |
|  */
 | |
| long
 | |
| xfs_reclaim_inodes_nr(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	unsigned long		nr_to_scan)
 | |
| {
 | |
| 	struct xfs_icwalk	icw = {
 | |
| 		.icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT,
 | |
| 		.icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan),
 | |
| 	};
 | |
| 
 | |
| 	if (xfs_want_reclaim_sick(mp))
 | |
| 		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
 | |
| 
 | |
| 	/* kick background reclaimer and push the AIL */
 | |
| 	xfs_reclaim_work_queue(mp);
 | |
| 	xfs_ail_push_all(mp->m_ail);
 | |
| 
 | |
| 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of reclaimable inodes in the filesystem for
 | |
|  * the shrinker to determine how much to reclaim.
 | |
|  */
 | |
| long
 | |
| xfs_reclaim_inodes_count(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	XA_STATE		(xas, &mp->m_groups[XG_TYPE_AG].xa, 0);
 | |
| 	long			reclaimable = 0;
 | |
| 	struct xfs_perag	*pag;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	xas_for_each_marked(&xas, pag, ULONG_MAX, XFS_PERAG_RECLAIM_MARK) {
 | |
| 		trace_xfs_reclaim_inodes_count(pag, _THIS_IP_);
 | |
| 		reclaimable += pag->pag_ici_reclaimable;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return reclaimable;
 | |
| }
 | |
| 
 | |
| STATIC bool
 | |
| xfs_icwalk_match_id(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_icwalk	*icw)
 | |
| {
 | |
| 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
 | |
| 	    !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
 | |
| 		return false;
 | |
| 
 | |
| 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
 | |
| 	    !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
 | |
| 		return false;
 | |
| 
 | |
| 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
 | |
| 	    ip->i_projid != icw->icw_prid)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A union-based inode filtering algorithm. Process the inode if any of the
 | |
|  * criteria match. This is for global/internal scans only.
 | |
|  */
 | |
| STATIC bool
 | |
| xfs_icwalk_match_id_union(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_icwalk	*icw)
 | |
| {
 | |
| 	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
 | |
| 	    uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
 | |
| 		return true;
 | |
| 
 | |
| 	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
 | |
| 	    gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
 | |
| 		return true;
 | |
| 
 | |
| 	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
 | |
| 	    ip->i_projid == icw->icw_prid)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Is this inode @ip eligible for eof/cow block reclamation, given some
 | |
|  * filtering parameters @icw?  The inode is eligible if @icw is null or
 | |
|  * if the predicate functions match.
 | |
|  */
 | |
| static bool
 | |
| xfs_icwalk_match(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_icwalk	*icw)
 | |
| {
 | |
| 	bool			match;
 | |
| 
 | |
| 	if (!icw)
 | |
| 		return true;
 | |
| 
 | |
| 	if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
 | |
| 		match = xfs_icwalk_match_id_union(ip, icw);
 | |
| 	else
 | |
| 		match = xfs_icwalk_match_id(ip, icw);
 | |
| 	if (!match)
 | |
| 		return false;
 | |
| 
 | |
| 	/* skip the inode if the file size is too small */
 | |
| 	if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
 | |
| 	    XFS_ISIZE(ip) < icw->icw_min_file_size)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a fast pass over the inode cache to try to get reclaim moving on as
 | |
|  * many inodes as possible in a short period of time. It kicks itself every few
 | |
|  * seconds, as well as being kicked by the inode cache shrinker when memory
 | |
|  * goes low.
 | |
|  */
 | |
| void
 | |
| xfs_reclaim_worker(
 | |
| 	struct work_struct *work)
 | |
| {
 | |
| 	struct xfs_mount *mp = container_of(to_delayed_work(work),
 | |
| 					struct xfs_mount, m_reclaim_work);
 | |
| 
 | |
| 	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
 | |
| 	xfs_reclaim_work_queue(mp);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_inode_free_eofblocks(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_icwalk	*icw,
 | |
| 	unsigned int		*lockflags)
 | |
| {
 | |
| 	bool			wait;
 | |
| 
 | |
| 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
 | |
| 
 | |
| 	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the mapping is dirty the operation can block and wait for some
 | |
| 	 * time. Unless we are waiting, skip it.
 | |
| 	 */
 | |
| 	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!xfs_icwalk_match(ip, icw))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the caller is waiting, return -EAGAIN to keep the background
 | |
| 	 * scanner moving and revisit the inode in a subsequent pass.
 | |
| 	 */
 | |
| 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
 | |
| 		if (wait)
 | |
| 			return -EAGAIN;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	*lockflags |= XFS_IOLOCK_EXCL;
 | |
| 
 | |
| 	if (xfs_can_free_eofblocks(ip))
 | |
| 		return xfs_free_eofblocks(ip);
 | |
| 
 | |
| 	/* inode could be preallocated */
 | |
| 	trace_xfs_inode_free_eofblocks_invalid(ip);
 | |
| 	xfs_inode_clear_eofblocks_tag(ip);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| xfs_blockgc_set_iflag(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	unsigned long		iflag)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	struct xfs_perag	*pag;
 | |
| 
 | |
| 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't bother locking the AG and looking up in the radix trees
 | |
| 	 * if we already know that we have the tag set.
 | |
| 	 */
 | |
| 	if (ip->i_flags & iflag)
 | |
| 		return;
 | |
| 	spin_lock(&ip->i_flags_lock);
 | |
| 	ip->i_flags |= iflag;
 | |
| 	spin_unlock(&ip->i_flags_lock);
 | |
| 
 | |
| 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 | |
| 	spin_lock(&pag->pag_ici_lock);
 | |
| 
 | |
| 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
 | |
| 			XFS_ICI_BLOCKGC_TAG);
 | |
| 
 | |
| 	spin_unlock(&pag->pag_ici_lock);
 | |
| 	xfs_perag_put(pag);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_inode_set_eofblocks_tag(
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	trace_xfs_inode_set_eofblocks_tag(ip);
 | |
| 	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
 | |
| }
 | |
| 
 | |
| static void
 | |
| xfs_blockgc_clear_iflag(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	unsigned long		iflag)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	struct xfs_perag	*pag;
 | |
| 	bool			clear_tag;
 | |
| 
 | |
| 	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
 | |
| 
 | |
| 	spin_lock(&ip->i_flags_lock);
 | |
| 	ip->i_flags &= ~iflag;
 | |
| 	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
 | |
| 	spin_unlock(&ip->i_flags_lock);
 | |
| 
 | |
| 	if (!clear_tag)
 | |
| 		return;
 | |
| 
 | |
| 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 | |
| 	spin_lock(&pag->pag_ici_lock);
 | |
| 
 | |
| 	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
 | |
| 			XFS_ICI_BLOCKGC_TAG);
 | |
| 
 | |
| 	spin_unlock(&pag->pag_ici_lock);
 | |
| 	xfs_perag_put(pag);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_inode_clear_eofblocks_tag(
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	trace_xfs_inode_clear_eofblocks_tag(ip);
 | |
| 	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prepare to free COW fork blocks from an inode.
 | |
|  */
 | |
| static bool
 | |
| xfs_prep_free_cowblocks(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_icwalk	*icw)
 | |
| {
 | |
| 	bool			sync;
 | |
| 
 | |
| 	sync = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
 | |
| 
 | |
| 	/*
 | |
| 	 * Just clear the tag if we have an empty cow fork or none at all. It's
 | |
| 	 * possible the inode was fully unshared since it was originally tagged.
 | |
| 	 */
 | |
| 	if (!xfs_inode_has_cow_data(ip)) {
 | |
| 		trace_xfs_inode_free_cowblocks_invalid(ip);
 | |
| 		xfs_inode_clear_cowblocks_tag(ip);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * A cowblocks trim of an inode can have a significant effect on
 | |
| 	 * fragmentation even when a reasonable COW extent size hint is set.
 | |
| 	 * Therefore, we prefer to not process cowblocks unless they are clean
 | |
| 	 * and idle. We can never process a cowblocks inode that is dirty or has
 | |
| 	 * in-flight I/O under any circumstances, because outstanding writeback
 | |
| 	 * or dio expects targeted COW fork blocks exist through write
 | |
| 	 * completion where they can be remapped into the data fork.
 | |
| 	 *
 | |
| 	 * Therefore, the heuristic used here is to never process inodes
 | |
| 	 * currently opened for write from background (i.e. non-sync) scans. For
 | |
| 	 * sync scans, use the pagecache/dio state of the inode to ensure we
 | |
| 	 * never free COW fork blocks out from under pending I/O.
 | |
| 	 */
 | |
| 	if (!sync && inode_is_open_for_write(VFS_I(ip)))
 | |
| 		return false;
 | |
| 	return xfs_can_free_cowblocks(ip);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Automatic CoW Reservation Freeing
 | |
|  *
 | |
|  * These functions automatically garbage collect leftover CoW reservations
 | |
|  * that were made on behalf of a cowextsize hint when we start to run out
 | |
|  * of quota or when the reservations sit around for too long.  If the file
 | |
|  * has dirty pages or is undergoing writeback, its CoW reservations will
 | |
|  * be retained.
 | |
|  *
 | |
|  * The actual garbage collection piggybacks off the same code that runs
 | |
|  * the speculative EOF preallocation garbage collector.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_inode_free_cowblocks(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_icwalk	*icw,
 | |
| 	unsigned int		*lockflags)
 | |
| {
 | |
| 	bool			wait;
 | |
| 	int			ret = 0;
 | |
| 
 | |
| 	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
 | |
| 
 | |
| 	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!xfs_prep_free_cowblocks(ip, icw))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!xfs_icwalk_match(ip, icw))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the caller is waiting, return -EAGAIN to keep the background
 | |
| 	 * scanner moving and revisit the inode in a subsequent pass.
 | |
| 	 */
 | |
| 	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
 | |
| 	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
 | |
| 		if (wait)
 | |
| 			return -EAGAIN;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	*lockflags |= XFS_IOLOCK_EXCL;
 | |
| 
 | |
| 	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
 | |
| 		if (wait)
 | |
| 			return -EAGAIN;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	*lockflags |= XFS_MMAPLOCK_EXCL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check again, nobody else should be able to dirty blocks or change
 | |
| 	 * the reflink iflag now that we have the first two locks held.
 | |
| 	 */
 | |
| 	if (xfs_prep_free_cowblocks(ip, icw))
 | |
| 		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_inode_set_cowblocks_tag(
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	trace_xfs_inode_set_cowblocks_tag(ip);
 | |
| 	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_inode_clear_cowblocks_tag(
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	trace_xfs_inode_clear_cowblocks_tag(ip);
 | |
| 	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
 | |
| }
 | |
| 
 | |
| /* Disable post-EOF and CoW block auto-reclamation. */
 | |
| void
 | |
| xfs_blockgc_stop(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	struct xfs_perag	*pag = NULL;
 | |
| 
 | |
| 	if (!xfs_clear_blockgc_enabled(mp))
 | |
| 		return;
 | |
| 
 | |
| 	while ((pag = xfs_perag_next(mp, pag)))
 | |
| 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
 | |
| 	trace_xfs_blockgc_stop(mp, __return_address);
 | |
| }
 | |
| 
 | |
| /* Enable post-EOF and CoW block auto-reclamation. */
 | |
| void
 | |
| xfs_blockgc_start(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	struct xfs_perag	*pag = NULL;
 | |
| 
 | |
| 	if (xfs_set_blockgc_enabled(mp))
 | |
| 		return;
 | |
| 
 | |
| 	trace_xfs_blockgc_start(mp, __return_address);
 | |
| 	while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
 | |
| 		xfs_blockgc_queue(pag);
 | |
| }
 | |
| 
 | |
| /* Don't try to run block gc on an inode that's in any of these states. */
 | |
| #define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \
 | |
| 					 XFS_NEED_INACTIVE | \
 | |
| 					 XFS_INACTIVATING | \
 | |
| 					 XFS_IRECLAIMABLE | \
 | |
| 					 XFS_IRECLAIM)
 | |
| /*
 | |
|  * Decide if the given @ip is eligible for garbage collection of speculative
 | |
|  * preallocations, and grab it if so.  Returns true if it's ready to go or
 | |
|  * false if we should just ignore it.
 | |
|  */
 | |
| static bool
 | |
| xfs_blockgc_igrab(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	struct inode		*inode = VFS_I(ip);
 | |
| 
 | |
| 	ASSERT(rcu_read_lock_held());
 | |
| 
 | |
| 	/* Check for stale RCU freed inode */
 | |
| 	spin_lock(&ip->i_flags_lock);
 | |
| 	if (!ip->i_ino)
 | |
| 		goto out_unlock_noent;
 | |
| 
 | |
| 	if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
 | |
| 		goto out_unlock_noent;
 | |
| 	spin_unlock(&ip->i_flags_lock);
 | |
| 
 | |
| 	/* nothing to sync during shutdown */
 | |
| 	if (xfs_is_shutdown(ip->i_mount))
 | |
| 		return false;
 | |
| 
 | |
| 	/* If we can't grab the inode, it must on it's way to reclaim. */
 | |
| 	if (!igrab(inode))
 | |
| 		return false;
 | |
| 
 | |
| 	/* inode is valid */
 | |
| 	return true;
 | |
| 
 | |
| out_unlock_noent:
 | |
| 	spin_unlock(&ip->i_flags_lock);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* Scan one incore inode for block preallocations that we can remove. */
 | |
| static int
 | |
| xfs_blockgc_scan_inode(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_icwalk	*icw)
 | |
| {
 | |
| 	unsigned int		lockflags = 0;
 | |
| 	int			error;
 | |
| 
 | |
| 	error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
 | |
| 	if (error)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
 | |
| unlock:
 | |
| 	if (lockflags)
 | |
| 		xfs_iunlock(ip, lockflags);
 | |
| 	xfs_irele(ip);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /* Background worker that trims preallocated space. */
 | |
| void
 | |
| xfs_blockgc_worker(
 | |
| 	struct work_struct	*work)
 | |
| {
 | |
| 	struct xfs_perag	*pag = container_of(to_delayed_work(work),
 | |
| 					struct xfs_perag, pag_blockgc_work);
 | |
| 	struct xfs_mount	*mp = pag_mount(pag);
 | |
| 	int			error;
 | |
| 
 | |
| 	trace_xfs_blockgc_worker(mp, __return_address);
 | |
| 
 | |
| 	error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
 | |
| 	if (error)
 | |
| 		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
 | |
| 				pag_agno(pag), error);
 | |
| 	xfs_blockgc_queue(pag);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to free space in the filesystem by purging inactive inodes, eofblocks
 | |
|  * and cowblocks.
 | |
|  */
 | |
| int
 | |
| xfs_blockgc_free_space(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_icwalk	*icw)
 | |
| {
 | |
| 	int			error;
 | |
| 
 | |
| 	trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
 | |
| 
 | |
| 	error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	return xfs_inodegc_flush(mp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reclaim all the free space that we can by scheduling the background blockgc
 | |
|  * and inodegc workers immediately and waiting for them all to clear.
 | |
|  */
 | |
| int
 | |
| xfs_blockgc_flush_all(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	struct xfs_perag	*pag = NULL;
 | |
| 
 | |
| 	trace_xfs_blockgc_flush_all(mp, __return_address);
 | |
| 
 | |
| 	/*
 | |
| 	 * For each blockgc worker, move its queue time up to now.  If it wasn't
 | |
| 	 * queued, it will not be requeued.  Then flush whatever is left.
 | |
| 	 */
 | |
| 	while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
 | |
| 		mod_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work, 0);
 | |
| 
 | |
| 	while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
 | |
| 		flush_delayed_work(&pag->pag_blockgc_work);
 | |
| 
 | |
| 	return xfs_inodegc_flush(mp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
 | |
|  * quota caused an allocation failure, so we make a best effort by including
 | |
|  * each quota under low free space conditions (less than 1% free space) in the
 | |
|  * scan.
 | |
|  *
 | |
|  * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
 | |
|  * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
 | |
|  * MMAPLOCK.
 | |
|  */
 | |
| int
 | |
| xfs_blockgc_free_dquots(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_dquot	*udqp,
 | |
| 	struct xfs_dquot	*gdqp,
 | |
| 	struct xfs_dquot	*pdqp,
 | |
| 	unsigned int		iwalk_flags)
 | |
| {
 | |
| 	struct xfs_icwalk	icw = {0};
 | |
| 	bool			do_work = false;
 | |
| 
 | |
| 	if (!udqp && !gdqp && !pdqp)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Run a scan to free blocks using the union filter to cover all
 | |
| 	 * applicable quotas in a single scan.
 | |
| 	 */
 | |
| 	icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
 | |
| 
 | |
| 	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
 | |
| 		icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
 | |
| 		icw.icw_flags |= XFS_ICWALK_FLAG_UID;
 | |
| 		do_work = true;
 | |
| 	}
 | |
| 
 | |
| 	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
 | |
| 		icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
 | |
| 		icw.icw_flags |= XFS_ICWALK_FLAG_GID;
 | |
| 		do_work = true;
 | |
| 	}
 | |
| 
 | |
| 	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
 | |
| 		icw.icw_prid = pdqp->q_id;
 | |
| 		icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
 | |
| 		do_work = true;
 | |
| 	}
 | |
| 
 | |
| 	if (!do_work)
 | |
| 		return 0;
 | |
| 
 | |
| 	return xfs_blockgc_free_space(mp, &icw);
 | |
| }
 | |
| 
 | |
| /* Run cow/eofblocks scans on the quotas attached to the inode. */
 | |
| int
 | |
| xfs_blockgc_free_quota(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	unsigned int		iwalk_flags)
 | |
| {
 | |
| 	return xfs_blockgc_free_dquots(ip->i_mount,
 | |
| 			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
 | |
| 			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
 | |
| 			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
 | |
| }
 | |
| 
 | |
| /* XFS Inode Cache Walking Code */
 | |
| 
 | |
| /*
 | |
|  * The inode lookup is done in batches to keep the amount of lock traffic and
 | |
|  * radix tree lookups to a minimum. The batch size is a trade off between
 | |
|  * lookup reduction and stack usage. This is in the reclaim path, so we can't
 | |
|  * be too greedy.
 | |
|  */
 | |
| #define XFS_LOOKUP_BATCH	32
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Decide if we want to grab this inode in anticipation of doing work towards
 | |
|  * the goal.
 | |
|  */
 | |
| static inline bool
 | |
| xfs_icwalk_igrab(
 | |
| 	enum xfs_icwalk_goal	goal,
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_icwalk	*icw)
 | |
| {
 | |
| 	switch (goal) {
 | |
| 	case XFS_ICWALK_BLOCKGC:
 | |
| 		return xfs_blockgc_igrab(ip);
 | |
| 	case XFS_ICWALK_RECLAIM:
 | |
| 		return xfs_reclaim_igrab(ip, icw);
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process an inode.  Each processing function must handle any state changes
 | |
|  * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
 | |
|  */
 | |
| static inline int
 | |
| xfs_icwalk_process_inode(
 | |
| 	enum xfs_icwalk_goal	goal,
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_perag	*pag,
 | |
| 	struct xfs_icwalk	*icw)
 | |
| {
 | |
| 	int			error = 0;
 | |
| 
 | |
| 	switch (goal) {
 | |
| 	case XFS_ICWALK_BLOCKGC:
 | |
| 		error = xfs_blockgc_scan_inode(ip, icw);
 | |
| 		break;
 | |
| 	case XFS_ICWALK_RECLAIM:
 | |
| 		xfs_reclaim_inode(ip, pag);
 | |
| 		break;
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For a given per-AG structure @pag and a goal, grab qualifying inodes and
 | |
|  * process them in some manner.
 | |
|  */
 | |
| static int
 | |
| xfs_icwalk_ag(
 | |
| 	struct xfs_perag	*pag,
 | |
| 	enum xfs_icwalk_goal	goal,
 | |
| 	struct xfs_icwalk	*icw)
 | |
| {
 | |
| 	struct xfs_mount	*mp = pag_mount(pag);
 | |
| 	uint32_t		first_index;
 | |
| 	int			last_error = 0;
 | |
| 	int			skipped;
 | |
| 	bool			done;
 | |
| 	int			nr_found;
 | |
| 
 | |
| restart:
 | |
| 	done = false;
 | |
| 	skipped = 0;
 | |
| 	if (goal == XFS_ICWALK_RECLAIM)
 | |
| 		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
 | |
| 	else
 | |
| 		first_index = 0;
 | |
| 	nr_found = 0;
 | |
| 	do {
 | |
| 		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
 | |
| 		int		error = 0;
 | |
| 		int		i;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 
 | |
| 		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
 | |
| 				(void **) batch, first_index,
 | |
| 				XFS_LOOKUP_BATCH, goal);
 | |
| 		if (!nr_found) {
 | |
| 			done = true;
 | |
| 			rcu_read_unlock();
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Grab the inodes before we drop the lock. if we found
 | |
| 		 * nothing, nr == 0 and the loop will be skipped.
 | |
| 		 */
 | |
| 		for (i = 0; i < nr_found; i++) {
 | |
| 			struct xfs_inode *ip = batch[i];
 | |
| 
 | |
| 			if (done || !xfs_icwalk_igrab(goal, ip, icw))
 | |
| 				batch[i] = NULL;
 | |
| 
 | |
| 			/*
 | |
| 			 * Update the index for the next lookup. Catch
 | |
| 			 * overflows into the next AG range which can occur if
 | |
| 			 * we have inodes in the last block of the AG and we
 | |
| 			 * are currently pointing to the last inode.
 | |
| 			 *
 | |
| 			 * Because we may see inodes that are from the wrong AG
 | |
| 			 * due to RCU freeing and reallocation, only update the
 | |
| 			 * index if it lies in this AG. It was a race that lead
 | |
| 			 * us to see this inode, so another lookup from the
 | |
| 			 * same index will not find it again.
 | |
| 			 */
 | |
| 			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag_agno(pag))
 | |
| 				continue;
 | |
| 			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
 | |
| 			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
 | |
| 				done = true;
 | |
| 		}
 | |
| 
 | |
| 		/* unlock now we've grabbed the inodes. */
 | |
| 		rcu_read_unlock();
 | |
| 
 | |
| 		for (i = 0; i < nr_found; i++) {
 | |
| 			if (!batch[i])
 | |
| 				continue;
 | |
| 			error = xfs_icwalk_process_inode(goal, batch[i], pag,
 | |
| 					icw);
 | |
| 			if (error == -EAGAIN) {
 | |
| 				skipped++;
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (error && last_error != -EFSCORRUPTED)
 | |
| 				last_error = error;
 | |
| 		}
 | |
| 
 | |
| 		/* bail out if the filesystem is corrupted.  */
 | |
| 		if (error == -EFSCORRUPTED)
 | |
| 			break;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
 | |
| 			icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
 | |
| 			if (icw->icw_scan_limit <= 0)
 | |
| 				break;
 | |
| 		}
 | |
| 	} while (nr_found && !done);
 | |
| 
 | |
| 	if (goal == XFS_ICWALK_RECLAIM) {
 | |
| 		if (done)
 | |
| 			first_index = 0;
 | |
| 		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
 | |
| 	}
 | |
| 
 | |
| 	if (skipped) {
 | |
| 		delay(1);
 | |
| 		goto restart;
 | |
| 	}
 | |
| 	return last_error;
 | |
| }
 | |
| 
 | |
| /* Walk all incore inodes to achieve a given goal. */
 | |
| static int
 | |
| xfs_icwalk(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	enum xfs_icwalk_goal	goal,
 | |
| 	struct xfs_icwalk	*icw)
 | |
| {
 | |
| 	struct xfs_perag	*pag = NULL;
 | |
| 	int			error = 0;
 | |
| 	int			last_error = 0;
 | |
| 
 | |
| 	while ((pag = xfs_perag_grab_next_tag(mp, pag, goal))) {
 | |
| 		error = xfs_icwalk_ag(pag, goal, icw);
 | |
| 		if (error) {
 | |
| 			last_error = error;
 | |
| 			if (error == -EFSCORRUPTED) {
 | |
| 				xfs_perag_rele(pag);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return last_error;
 | |
| 	BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
 | |
| }
 | |
| 
 | |
| #ifdef DEBUG
 | |
| static void
 | |
| xfs_check_delalloc(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	int			whichfork)
 | |
| {
 | |
| 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
 | |
| 	struct xfs_bmbt_irec	got;
 | |
| 	struct xfs_iext_cursor	icur;
 | |
| 
 | |
| 	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
 | |
| 		return;
 | |
| 	do {
 | |
| 		if (isnullstartblock(got.br_startblock)) {
 | |
| 			xfs_warn(ip->i_mount,
 | |
| 	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
 | |
| 				ip->i_ino,
 | |
| 				whichfork == XFS_DATA_FORK ? "data" : "cow",
 | |
| 				got.br_startoff, got.br_blockcount);
 | |
| 		}
 | |
| 	} while (xfs_iext_next_extent(ifp, &icur, &got));
 | |
| }
 | |
| #else
 | |
| #define xfs_check_delalloc(ip, whichfork)	do { } while (0)
 | |
| #endif
 | |
| 
 | |
| /* Schedule the inode for reclaim. */
 | |
| static void
 | |
| xfs_inodegc_set_reclaimable(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	struct xfs_perag	*pag;
 | |
| 
 | |
| 	if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
 | |
| 		xfs_check_delalloc(ip, XFS_DATA_FORK);
 | |
| 		xfs_check_delalloc(ip, XFS_COW_FORK);
 | |
| 		ASSERT(0);
 | |
| 	}
 | |
| 
 | |
| 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 | |
| 	spin_lock(&pag->pag_ici_lock);
 | |
| 	spin_lock(&ip->i_flags_lock);
 | |
| 
 | |
| 	trace_xfs_inode_set_reclaimable(ip);
 | |
| 	ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
 | |
| 	ip->i_flags |= XFS_IRECLAIMABLE;
 | |
| 	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
 | |
| 			XFS_ICI_RECLAIM_TAG);
 | |
| 
 | |
| 	spin_unlock(&ip->i_flags_lock);
 | |
| 	spin_unlock(&pag->pag_ici_lock);
 | |
| 	xfs_perag_put(pag);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free all speculative preallocations and possibly even the inode itself.
 | |
|  * This is the last chance to make changes to an otherwise unreferenced file
 | |
|  * before incore reclamation happens.
 | |
|  */
 | |
| static int
 | |
| xfs_inodegc_inactivate(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	int			error;
 | |
| 
 | |
| 	trace_xfs_inode_inactivating(ip);
 | |
| 	error = xfs_inactive(ip);
 | |
| 	xfs_inodegc_set_reclaimable(ip);
 | |
| 	return error;
 | |
| 
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_inodegc_worker(
 | |
| 	struct work_struct	*work)
 | |
| {
 | |
| 	struct xfs_inodegc	*gc = container_of(to_delayed_work(work),
 | |
| 						struct xfs_inodegc, work);
 | |
| 	struct llist_node	*node = llist_del_all(&gc->list);
 | |
| 	struct xfs_inode	*ip, *n;
 | |
| 	struct xfs_mount	*mp = gc->mp;
 | |
| 	unsigned int		nofs_flag;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear the cpu mask bit and ensure that we have seen the latest
 | |
| 	 * update of the gc structure associated with this CPU. This matches
 | |
| 	 * with the release semantics used when setting the cpumask bit in
 | |
| 	 * xfs_inodegc_queue.
 | |
| 	 */
 | |
| 	cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask);
 | |
| 	smp_mb__after_atomic();
 | |
| 
 | |
| 	WRITE_ONCE(gc->items, 0);
 | |
| 
 | |
| 	if (!node)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can allocate memory here while doing writeback on behalf of
 | |
| 	 * memory reclaim.  To avoid memory allocation deadlocks set the
 | |
| 	 * task-wide nofs context for the following operations.
 | |
| 	 */
 | |
| 	nofs_flag = memalloc_nofs_save();
 | |
| 
 | |
| 	ip = llist_entry(node, struct xfs_inode, i_gclist);
 | |
| 	trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits));
 | |
| 
 | |
| 	WRITE_ONCE(gc->shrinker_hits, 0);
 | |
| 	llist_for_each_entry_safe(ip, n, node, i_gclist) {
 | |
| 		int	error;
 | |
| 
 | |
| 		xfs_iflags_set(ip, XFS_INACTIVATING);
 | |
| 		error = xfs_inodegc_inactivate(ip);
 | |
| 		if (error && !gc->error)
 | |
| 			gc->error = error;
 | |
| 	}
 | |
| 
 | |
| 	memalloc_nofs_restore(nofs_flag);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Expedite all pending inodegc work to run immediately. This does not wait for
 | |
|  * completion of the work.
 | |
|  */
 | |
| void
 | |
| xfs_inodegc_push(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	if (!xfs_is_inodegc_enabled(mp))
 | |
| 		return;
 | |
| 	trace_xfs_inodegc_push(mp, __return_address);
 | |
| 	xfs_inodegc_queue_all(mp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Force all currently queued inode inactivation work to run immediately and
 | |
|  * wait for the work to finish.
 | |
|  */
 | |
| int
 | |
| xfs_inodegc_flush(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	xfs_inodegc_push(mp);
 | |
| 	trace_xfs_inodegc_flush(mp, __return_address);
 | |
| 	return xfs_inodegc_wait_all(mp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush all the pending work and then disable the inode inactivation background
 | |
|  * workers and wait for them to stop.  Caller must hold sb->s_umount to
 | |
|  * coordinate changes in the inodegc_enabled state.
 | |
|  */
 | |
| void
 | |
| xfs_inodegc_stop(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	bool			rerun;
 | |
| 
 | |
| 	if (!xfs_clear_inodegc_enabled(mp))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Drain all pending inodegc work, including inodes that could be
 | |
| 	 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
 | |
| 	 * threads that sample the inodegc state just prior to us clearing it.
 | |
| 	 * The inodegc flag state prevents new threads from queuing more
 | |
| 	 * inodes, so we queue pending work items and flush the workqueue until
 | |
| 	 * all inodegc lists are empty.  IOWs, we cannot use drain_workqueue
 | |
| 	 * here because it does not allow other unserialized mechanisms to
 | |
| 	 * reschedule inodegc work while this draining is in progress.
 | |
| 	 */
 | |
| 	xfs_inodegc_queue_all(mp);
 | |
| 	do {
 | |
| 		flush_workqueue(mp->m_inodegc_wq);
 | |
| 		rerun = xfs_inodegc_queue_all(mp);
 | |
| 	} while (rerun);
 | |
| 
 | |
| 	trace_xfs_inodegc_stop(mp, __return_address);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable the inode inactivation background workers and schedule deferred inode
 | |
|  * inactivation work if there is any.  Caller must hold sb->s_umount to
 | |
|  * coordinate changes in the inodegc_enabled state.
 | |
|  */
 | |
| void
 | |
| xfs_inodegc_start(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	if (xfs_set_inodegc_enabled(mp))
 | |
| 		return;
 | |
| 
 | |
| 	trace_xfs_inodegc_start(mp, __return_address);
 | |
| 	xfs_inodegc_queue_all(mp);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_XFS_RT
 | |
| static inline bool
 | |
| xfs_inodegc_want_queue_rt_file(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 
 | |
| 	if (!XFS_IS_REALTIME_INODE(ip))
 | |
| 		return false;
 | |
| 
 | |
| 	if (__percpu_counter_compare(&mp->m_frextents,
 | |
| 				mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
 | |
| 				XFS_FDBLOCKS_BATCH) < 0)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| #else
 | |
| # define xfs_inodegc_want_queue_rt_file(ip)	(false)
 | |
| #endif /* CONFIG_XFS_RT */
 | |
| 
 | |
| /*
 | |
|  * Schedule the inactivation worker when:
 | |
|  *
 | |
|  *  - We've accumulated more than one inode cluster buffer's worth of inodes.
 | |
|  *  - There is less than 5% free space left.
 | |
|  *  - Any of the quotas for this inode are near an enforcement limit.
 | |
|  */
 | |
| static inline bool
 | |
| xfs_inodegc_want_queue_work(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	unsigned int		items)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 
 | |
| 	if (items > mp->m_ino_geo.inodes_per_cluster)
 | |
| 		return true;
 | |
| 
 | |
| 	if (__percpu_counter_compare(&mp->m_fdblocks,
 | |
| 				mp->m_low_space[XFS_LOWSP_5_PCNT],
 | |
| 				XFS_FDBLOCKS_BATCH) < 0)
 | |
| 		return true;
 | |
| 
 | |
| 	if (xfs_inodegc_want_queue_rt_file(ip))
 | |
| 		return true;
 | |
| 
 | |
| 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
 | |
| 		return true;
 | |
| 
 | |
| 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
 | |
| 		return true;
 | |
| 
 | |
| 	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Upper bound on the number of inodes in each AG that can be queued for
 | |
|  * inactivation at any given time, to avoid monopolizing the workqueue.
 | |
|  */
 | |
| #define XFS_INODEGC_MAX_BACKLOG		(4 * XFS_INODES_PER_CHUNK)
 | |
| 
 | |
| /*
 | |
|  * Make the frontend wait for inactivations when:
 | |
|  *
 | |
|  *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
 | |
|  *  - The queue depth exceeds the maximum allowable percpu backlog.
 | |
|  *
 | |
|  * Note: If we are in a NOFS context here (e.g. current thread is running a
 | |
|  * transaction) the we don't want to block here as inodegc progress may require
 | |
|  * filesystem resources we hold to make progress and that could result in a
 | |
|  * deadlock. Hence we skip out of here if we are in a scoped NOFS context.
 | |
|  */
 | |
| static inline bool
 | |
| xfs_inodegc_want_flush_work(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	unsigned int		items,
 | |
| 	unsigned int		shrinker_hits)
 | |
| {
 | |
| 	if (current->flags & PF_MEMALLOC_NOFS)
 | |
| 		return false;
 | |
| 
 | |
| 	if (shrinker_hits > 0)
 | |
| 		return true;
 | |
| 
 | |
| 	if (items > XFS_INODEGC_MAX_BACKLOG)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Queue a background inactivation worker if there are inodes that need to be
 | |
|  * inactivated and higher level xfs code hasn't disabled the background
 | |
|  * workers.
 | |
|  */
 | |
| static void
 | |
| xfs_inodegc_queue(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	struct xfs_inodegc	*gc;
 | |
| 	int			items;
 | |
| 	unsigned int		shrinker_hits;
 | |
| 	unsigned int		cpu_nr;
 | |
| 	unsigned long		queue_delay = 1;
 | |
| 
 | |
| 	trace_xfs_inode_set_need_inactive(ip);
 | |
| 	spin_lock(&ip->i_flags_lock);
 | |
| 	ip->i_flags |= XFS_NEED_INACTIVE;
 | |
| 	spin_unlock(&ip->i_flags_lock);
 | |
| 
 | |
| 	cpu_nr = get_cpu();
 | |
| 	gc = this_cpu_ptr(mp->m_inodegc);
 | |
| 	llist_add(&ip->i_gclist, &gc->list);
 | |
| 	items = READ_ONCE(gc->items);
 | |
| 	WRITE_ONCE(gc->items, items + 1);
 | |
| 	shrinker_hits = READ_ONCE(gc->shrinker_hits);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure the list add is always seen by anyone who finds the cpumask
 | |
| 	 * bit set. This effectively gives the cpumask bit set operation
 | |
| 	 * release ordering semantics.
 | |
| 	 */
 | |
| 	smp_mb__before_atomic();
 | |
| 	if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask))
 | |
| 		cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask);
 | |
| 
 | |
| 	/*
 | |
| 	 * We queue the work while holding the current CPU so that the work
 | |
| 	 * is scheduled to run on this CPU.
 | |
| 	 */
 | |
| 	if (!xfs_is_inodegc_enabled(mp)) {
 | |
| 		put_cpu();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (xfs_inodegc_want_queue_work(ip, items))
 | |
| 		queue_delay = 0;
 | |
| 
 | |
| 	trace_xfs_inodegc_queue(mp, __return_address);
 | |
| 	mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
 | |
| 			queue_delay);
 | |
| 	put_cpu();
 | |
| 
 | |
| 	if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
 | |
| 		trace_xfs_inodegc_throttle(mp, __return_address);
 | |
| 		flush_delayed_work(&gc->work);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We set the inode flag atomically with the radix tree tag.  Once we get tag
 | |
|  * lookups on the radix tree, this inode flag can go away.
 | |
|  *
 | |
|  * We always use background reclaim here because even if the inode is clean, it
 | |
|  * still may be under IO and hence we have wait for IO completion to occur
 | |
|  * before we can reclaim the inode. The background reclaim path handles this
 | |
|  * more efficiently than we can here, so simply let background reclaim tear down
 | |
|  * all inodes.
 | |
|  */
 | |
| void
 | |
| xfs_inode_mark_reclaimable(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	bool			need_inactive;
 | |
| 
 | |
| 	XFS_STATS_INC(mp, vn_reclaim);
 | |
| 
 | |
| 	/*
 | |
| 	 * We should never get here with any of the reclaim flags already set.
 | |
| 	 */
 | |
| 	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
 | |
| 
 | |
| 	need_inactive = xfs_inode_needs_inactive(ip);
 | |
| 	if (need_inactive) {
 | |
| 		xfs_inodegc_queue(ip);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Going straight to reclaim, so drop the dquots. */
 | |
| 	xfs_qm_dqdetach(ip);
 | |
| 	xfs_inodegc_set_reclaimable(ip);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Register a phony shrinker so that we can run background inodegc sooner when
 | |
|  * there's memory pressure.  Inactivation does not itself free any memory but
 | |
|  * it does make inodes reclaimable, which eventually frees memory.
 | |
|  *
 | |
|  * The count function, seek value, and batch value are crafted to trigger the
 | |
|  * scan function during the second round of scanning.  Hopefully this means
 | |
|  * that we reclaimed enough memory that initiating metadata transactions won't
 | |
|  * make things worse.
 | |
|  */
 | |
| #define XFS_INODEGC_SHRINKER_COUNT	(1UL << DEF_PRIORITY)
 | |
| #define XFS_INODEGC_SHRINKER_BATCH	((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
 | |
| 
 | |
| static unsigned long
 | |
| xfs_inodegc_shrinker_count(
 | |
| 	struct shrinker		*shrink,
 | |
| 	struct shrink_control	*sc)
 | |
| {
 | |
| 	struct xfs_mount	*mp = shrink->private_data;
 | |
| 	struct xfs_inodegc	*gc;
 | |
| 	int			cpu;
 | |
| 
 | |
| 	if (!xfs_is_inodegc_enabled(mp))
 | |
| 		return 0;
 | |
| 
 | |
| 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
 | |
| 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
 | |
| 		if (!llist_empty(&gc->list))
 | |
| 			return XFS_INODEGC_SHRINKER_COUNT;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| xfs_inodegc_shrinker_scan(
 | |
| 	struct shrinker		*shrink,
 | |
| 	struct shrink_control	*sc)
 | |
| {
 | |
| 	struct xfs_mount	*mp = shrink->private_data;
 | |
| 	struct xfs_inodegc	*gc;
 | |
| 	int			cpu;
 | |
| 	bool			no_items = true;
 | |
| 
 | |
| 	if (!xfs_is_inodegc_enabled(mp))
 | |
| 		return SHRINK_STOP;
 | |
| 
 | |
| 	trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
 | |
| 
 | |
| 	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
 | |
| 		gc = per_cpu_ptr(mp->m_inodegc, cpu);
 | |
| 		if (!llist_empty(&gc->list)) {
 | |
| 			unsigned int	h = READ_ONCE(gc->shrinker_hits);
 | |
| 
 | |
| 			WRITE_ONCE(gc->shrinker_hits, h + 1);
 | |
| 			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
 | |
| 			no_items = false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are no inodes to inactivate, we don't want the shrinker
 | |
| 	 * to think there's deferred work to call us back about.
 | |
| 	 */
 | |
| 	if (no_items)
 | |
| 		return LONG_MAX;
 | |
| 
 | |
| 	return SHRINK_STOP;
 | |
| }
 | |
| 
 | |
| /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
 | |
| int
 | |
| xfs_inodegc_register_shrinker(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB,
 | |
| 						"xfs-inodegc:%s",
 | |
| 						mp->m_super->s_id);
 | |
| 	if (!mp->m_inodegc_shrinker)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count;
 | |
| 	mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan;
 | |
| 	mp->m_inodegc_shrinker->seeks = 0;
 | |
| 	mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH;
 | |
| 	mp->m_inodegc_shrinker->private_data = mp;
 | |
| 
 | |
| 	shrinker_register(mp->m_inodegc_shrinker);
 | |
| 
 | |
| 	return 0;
 | |
| }
 |