forked from mirrors/linux
		
	 471511d6ef
			
		
	
	
		471511d6ef
		
	
	
	
	
		
			
			The t_magic field is only ever assigned to, but never read. Remove it. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Carlos Maiolino <cem@kernel.org>
		
			
				
	
	
		
			1439 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1439 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
 | |
|  * Copyright (C) 2010 Red Hat, Inc.
 | |
|  * All Rights Reserved.
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_fs.h"
 | |
| #include "xfs_shared.h"
 | |
| #include "xfs_format.h"
 | |
| #include "xfs_log_format.h"
 | |
| #include "xfs_trans_resv.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_extent_busy.h"
 | |
| #include "xfs_quota.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_trans_priv.h"
 | |
| #include "xfs_log.h"
 | |
| #include "xfs_log_priv.h"
 | |
| #include "xfs_trace.h"
 | |
| #include "xfs_error.h"
 | |
| #include "xfs_defer.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_dquot_item.h"
 | |
| #include "xfs_dquot.h"
 | |
| #include "xfs_icache.h"
 | |
| #include "xfs_rtbitmap.h"
 | |
| #include "xfs_rtgroup.h"
 | |
| #include "xfs_sb.h"
 | |
| 
 | |
| struct kmem_cache	*xfs_trans_cache;
 | |
| 
 | |
| #if defined(CONFIG_TRACEPOINTS)
 | |
| static void
 | |
| xfs_trans_trace_reservations(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	struct xfs_trans_res	*res;
 | |
| 	struct xfs_trans_res	*end_res;
 | |
| 	int			i;
 | |
| 
 | |
| 	res = (struct xfs_trans_res *)M_RES(mp);
 | |
| 	end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
 | |
| 	for (i = 0; res < end_res; i++, res++)
 | |
| 		trace_xfs_trans_resv_calc(mp, i, res);
 | |
| }
 | |
| #else
 | |
| # define xfs_trans_trace_reservations(mp)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Initialize the precomputed transaction reservation values
 | |
|  * in the mount structure.
 | |
|  */
 | |
| void
 | |
| xfs_trans_init(
 | |
| 	struct xfs_mount	*mp)
 | |
| {
 | |
| 	xfs_trans_resv_calc(mp, M_RES(mp));
 | |
| 	xfs_trans_trace_reservations(mp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free the transaction structure.  If there is more clean up
 | |
|  * to do when the structure is freed, add it here.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_trans_free(
 | |
| 	struct xfs_trans	*tp)
 | |
| {
 | |
| 	xfs_extent_busy_sort(&tp->t_busy);
 | |
| 	xfs_extent_busy_clear(&tp->t_busy, false);
 | |
| 
 | |
| 	trace_xfs_trans_free(tp, _RET_IP_);
 | |
| 	xfs_trans_clear_context(tp);
 | |
| 	if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
 | |
| 		sb_end_intwrite(tp->t_mountp->m_super);
 | |
| 	xfs_trans_free_dqinfo(tp);
 | |
| 	kmem_cache_free(xfs_trans_cache, tp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called to create a new transaction which will share the
 | |
|  * permanent log reservation of the given transaction.  The remaining
 | |
|  * unused block and rt extent reservations are also inherited.  This
 | |
|  * implies that the original transaction is no longer allowed to allocate
 | |
|  * blocks.  Locks and log items, however, are no inherited.  They must
 | |
|  * be added to the new transaction explicitly.
 | |
|  */
 | |
| STATIC struct xfs_trans *
 | |
| xfs_trans_dup(
 | |
| 	struct xfs_trans	*tp)
 | |
| {
 | |
| 	struct xfs_trans	*ntp;
 | |
| 
 | |
| 	trace_xfs_trans_dup(tp, _RET_IP_);
 | |
| 
 | |
| 	ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the new transaction structure.
 | |
| 	 */
 | |
| 	ntp->t_mountp = tp->t_mountp;
 | |
| 	INIT_LIST_HEAD(&ntp->t_items);
 | |
| 	INIT_LIST_HEAD(&ntp->t_busy);
 | |
| 	INIT_LIST_HEAD(&ntp->t_dfops);
 | |
| 	ntp->t_highest_agno = NULLAGNUMBER;
 | |
| 
 | |
| 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 | |
| 	ASSERT(tp->t_ticket != NULL);
 | |
| 
 | |
| 	ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
 | |
| 		       (tp->t_flags & XFS_TRANS_RESERVE) |
 | |
| 		       (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
 | |
| 		       (tp->t_flags & XFS_TRANS_RES_FDBLKS);
 | |
| 	/* We gave our writer reference to the new transaction */
 | |
| 	tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
 | |
| 	ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
 | |
| 
 | |
| 	ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
 | |
| 	ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
 | |
| 	tp->t_blk_res = tp->t_blk_res_used;
 | |
| 
 | |
| 	ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
 | |
| 	tp->t_rtx_res = tp->t_rtx_res_used;
 | |
| 
 | |
| 	xfs_trans_switch_context(tp, ntp);
 | |
| 
 | |
| 	/* move deferred ops over to the new tp */
 | |
| 	xfs_defer_move(ntp, tp);
 | |
| 
 | |
| 	xfs_trans_dup_dqinfo(tp, ntp);
 | |
| 	return ntp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called to reserve free disk blocks and log space for the
 | |
|  * given transaction.  This must be done before allocating any resources
 | |
|  * within the transaction.
 | |
|  *
 | |
|  * This will return ENOSPC if there are not enough blocks available.
 | |
|  * It will sleep waiting for available log space.
 | |
|  * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
 | |
|  * is used by long running transactions.  If any one of the reservations
 | |
|  * fails then they will all be backed out.
 | |
|  *
 | |
|  * This does not do quota reservations. That typically is done by the
 | |
|  * caller afterwards.
 | |
|  */
 | |
| static int
 | |
| xfs_trans_reserve(
 | |
| 	struct xfs_trans	*tp,
 | |
| 	struct xfs_trans_res	*resp,
 | |
| 	uint			blocks,
 | |
| 	uint			rtextents)
 | |
| {
 | |
| 	struct xfs_mount	*mp = tp->t_mountp;
 | |
| 	int			error = 0;
 | |
| 	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Attempt to reserve the needed disk blocks by decrementing
 | |
| 	 * the number needed from the number available.  This will
 | |
| 	 * fail if the count would go below zero.
 | |
| 	 */
 | |
| 	if (blocks > 0) {
 | |
| 		error = xfs_dec_fdblocks(mp, blocks, rsvd);
 | |
| 		if (error != 0)
 | |
| 			return -ENOSPC;
 | |
| 		tp->t_blk_res += blocks;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Reserve the log space needed for this transaction.
 | |
| 	 */
 | |
| 	if (resp->tr_logres > 0) {
 | |
| 		bool	permanent = false;
 | |
| 
 | |
| 		ASSERT(tp->t_log_res == 0 ||
 | |
| 		       tp->t_log_res == resp->tr_logres);
 | |
| 		ASSERT(tp->t_log_count == 0 ||
 | |
| 		       tp->t_log_count == resp->tr_logcount);
 | |
| 
 | |
| 		if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
 | |
| 			tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
 | |
| 			permanent = true;
 | |
| 		} else {
 | |
| 			ASSERT(tp->t_ticket == NULL);
 | |
| 			ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
 | |
| 		}
 | |
| 
 | |
| 		if (tp->t_ticket != NULL) {
 | |
| 			ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
 | |
| 			error = xfs_log_regrant(mp, tp->t_ticket);
 | |
| 		} else {
 | |
| 			error = xfs_log_reserve(mp, resp->tr_logres,
 | |
| 						resp->tr_logcount,
 | |
| 						&tp->t_ticket, permanent);
 | |
| 		}
 | |
| 
 | |
| 		if (error)
 | |
| 			goto undo_blocks;
 | |
| 
 | |
| 		tp->t_log_res = resp->tr_logres;
 | |
| 		tp->t_log_count = resp->tr_logcount;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Attempt to reserve the needed realtime extents by decrementing
 | |
| 	 * the number needed from the number available.  This will
 | |
| 	 * fail if the count would go below zero.
 | |
| 	 */
 | |
| 	if (rtextents > 0) {
 | |
| 		error = xfs_dec_frextents(mp, rtextents);
 | |
| 		if (error) {
 | |
| 			error = -ENOSPC;
 | |
| 			goto undo_log;
 | |
| 		}
 | |
| 		tp->t_rtx_res += rtextents;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Error cases jump to one of these labels to undo any
 | |
| 	 * reservations which have already been performed.
 | |
| 	 */
 | |
| undo_log:
 | |
| 	if (resp->tr_logres > 0) {
 | |
| 		xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
 | |
| 		tp->t_ticket = NULL;
 | |
| 		tp->t_log_res = 0;
 | |
| 		tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
 | |
| 	}
 | |
| 
 | |
| undo_blocks:
 | |
| 	if (blocks > 0) {
 | |
| 		xfs_add_fdblocks(mp, blocks);
 | |
| 		tp->t_blk_res = 0;
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_trans_alloc(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_trans_res	*resp,
 | |
| 	uint			blocks,
 | |
| 	uint			rtextents,
 | |
| 	uint			flags,
 | |
| 	struct xfs_trans	**tpp)
 | |
| {
 | |
| 	struct xfs_trans	*tp;
 | |
| 	bool			want_retry = true;
 | |
| 	int			error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate the handle before we do our freeze accounting and setting up
 | |
| 	 * GFP_NOFS allocation context so that we avoid lockdep false positives
 | |
| 	 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
 | |
| 	 */
 | |
| retry:
 | |
| 	tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
 | |
| 	if (!(flags & XFS_TRANS_NO_WRITECOUNT))
 | |
| 		sb_start_intwrite(mp->m_super);
 | |
| 	xfs_trans_set_context(tp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Zero-reservation ("empty") transactions can't modify anything, so
 | |
| 	 * they're allowed to run while we're frozen.
 | |
| 	 */
 | |
| 	WARN_ON(resp->tr_logres > 0 &&
 | |
| 		mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
 | |
| 	ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
 | |
| 	       xfs_has_lazysbcount(mp));
 | |
| 
 | |
| 	tp->t_flags = flags;
 | |
| 	tp->t_mountp = mp;
 | |
| 	INIT_LIST_HEAD(&tp->t_items);
 | |
| 	INIT_LIST_HEAD(&tp->t_busy);
 | |
| 	INIT_LIST_HEAD(&tp->t_dfops);
 | |
| 	tp->t_highest_agno = NULLAGNUMBER;
 | |
| 
 | |
| 	error = xfs_trans_reserve(tp, resp, blocks, rtextents);
 | |
| 	if (error == -ENOSPC && want_retry) {
 | |
| 		xfs_trans_cancel(tp);
 | |
| 
 | |
| 		/*
 | |
| 		 * We weren't able to reserve enough space for the transaction.
 | |
| 		 * Flush the other speculative space allocations to free space.
 | |
| 		 * Do not perform a synchronous scan because callers can hold
 | |
| 		 * other locks.
 | |
| 		 */
 | |
| 		error = xfs_blockgc_flush_all(mp);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 		want_retry = false;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	if (error) {
 | |
| 		xfs_trans_cancel(tp);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	trace_xfs_trans_alloc(tp, _RET_IP_);
 | |
| 
 | |
| 	*tpp = tp;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create an empty transaction with no reservation.  This is a defensive
 | |
|  * mechanism for routines that query metadata without actually modifying them --
 | |
|  * if the metadata being queried is somehow cross-linked (think a btree block
 | |
|  * pointer that points higher in the tree), we risk deadlock.  However, blocks
 | |
|  * grabbed as part of a transaction can be re-grabbed.  The verifiers will
 | |
|  * notice the corrupt block and the operation will fail back to userspace
 | |
|  * without deadlocking.
 | |
|  *
 | |
|  * Note the zero-length reservation; this transaction MUST be cancelled without
 | |
|  * any dirty data.
 | |
|  *
 | |
|  * Callers should obtain freeze protection to avoid a conflict with fs freezing
 | |
|  * where we can be grabbing buffers at the same time that freeze is trying to
 | |
|  * drain the buffer LRU list.
 | |
|  */
 | |
| int
 | |
| xfs_trans_alloc_empty(
 | |
| 	struct xfs_mount		*mp,
 | |
| 	struct xfs_trans		**tpp)
 | |
| {
 | |
| 	struct xfs_trans_res		resv = {0};
 | |
| 
 | |
| 	return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Record the indicated change to the given field for application
 | |
|  * to the file system's superblock when the transaction commits.
 | |
|  * For now, just store the change in the transaction structure.
 | |
|  *
 | |
|  * Mark the transaction structure to indicate that the superblock
 | |
|  * needs to be updated before committing.
 | |
|  *
 | |
|  * Because we may not be keeping track of allocated/free inodes and
 | |
|  * used filesystem blocks in the superblock, we do not mark the
 | |
|  * superblock dirty in this transaction if we modify these fields.
 | |
|  * We still need to update the transaction deltas so that they get
 | |
|  * applied to the incore superblock, but we don't want them to
 | |
|  * cause the superblock to get locked and logged if these are the
 | |
|  * only fields in the superblock that the transaction modifies.
 | |
|  */
 | |
| void
 | |
| xfs_trans_mod_sb(
 | |
| 	xfs_trans_t	*tp,
 | |
| 	uint		field,
 | |
| 	int64_t		delta)
 | |
| {
 | |
| 	uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
 | |
| 	xfs_mount_t	*mp = tp->t_mountp;
 | |
| 
 | |
| 	switch (field) {
 | |
| 	case XFS_TRANS_SB_ICOUNT:
 | |
| 		tp->t_icount_delta += delta;
 | |
| 		if (xfs_has_lazysbcount(mp))
 | |
| 			flags &= ~XFS_TRANS_SB_DIRTY;
 | |
| 		break;
 | |
| 	case XFS_TRANS_SB_IFREE:
 | |
| 		tp->t_ifree_delta += delta;
 | |
| 		if (xfs_has_lazysbcount(mp))
 | |
| 			flags &= ~XFS_TRANS_SB_DIRTY;
 | |
| 		break;
 | |
| 	case XFS_TRANS_SB_FDBLOCKS:
 | |
| 		/*
 | |
| 		 * Track the number of blocks allocated in the transaction.
 | |
| 		 * Make sure it does not exceed the number reserved. If so,
 | |
| 		 * shutdown as this can lead to accounting inconsistency.
 | |
| 		 */
 | |
| 		if (delta < 0) {
 | |
| 			tp->t_blk_res_used += (uint)-delta;
 | |
| 			if (tp->t_blk_res_used > tp->t_blk_res)
 | |
| 				xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 | |
| 		} else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
 | |
| 			int64_t	blkres_delta;
 | |
| 
 | |
| 			/*
 | |
| 			 * Return freed blocks directly to the reservation
 | |
| 			 * instead of the global pool, being careful not to
 | |
| 			 * overflow the trans counter. This is used to preserve
 | |
| 			 * reservation across chains of transaction rolls that
 | |
| 			 * repeatedly free and allocate blocks.
 | |
| 			 */
 | |
| 			blkres_delta = min_t(int64_t, delta,
 | |
| 					     UINT_MAX - tp->t_blk_res);
 | |
| 			tp->t_blk_res += blkres_delta;
 | |
| 			delta -= blkres_delta;
 | |
| 		}
 | |
| 		tp->t_fdblocks_delta += delta;
 | |
| 		if (xfs_has_lazysbcount(mp))
 | |
| 			flags &= ~XFS_TRANS_SB_DIRTY;
 | |
| 		break;
 | |
| 	case XFS_TRANS_SB_RES_FDBLOCKS:
 | |
| 		/*
 | |
| 		 * The allocation has already been applied to the
 | |
| 		 * in-core superblock's counter.  This should only
 | |
| 		 * be applied to the on-disk superblock.
 | |
| 		 */
 | |
| 		tp->t_res_fdblocks_delta += delta;
 | |
| 		if (xfs_has_lazysbcount(mp))
 | |
| 			flags &= ~XFS_TRANS_SB_DIRTY;
 | |
| 		break;
 | |
| 	case XFS_TRANS_SB_FREXTENTS:
 | |
| 		/*
 | |
| 		 * Track the number of blocks allocated in the
 | |
| 		 * transaction.  Make sure it does not exceed the
 | |
| 		 * number reserved.
 | |
| 		 */
 | |
| 		if (delta < 0) {
 | |
| 			tp->t_rtx_res_used += (uint)-delta;
 | |
| 			ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
 | |
| 		}
 | |
| 		tp->t_frextents_delta += delta;
 | |
| 		if (xfs_has_rtgroups(mp))
 | |
| 			flags &= ~XFS_TRANS_SB_DIRTY;
 | |
| 		break;
 | |
| 	case XFS_TRANS_SB_RES_FREXTENTS:
 | |
| 		/*
 | |
| 		 * The allocation has already been applied to the
 | |
| 		 * in-core superblock's counter.  This should only
 | |
| 		 * be applied to the on-disk superblock.
 | |
| 		 */
 | |
| 		ASSERT(delta < 0);
 | |
| 		tp->t_res_frextents_delta += delta;
 | |
| 		if (xfs_has_rtgroups(mp))
 | |
| 			flags &= ~XFS_TRANS_SB_DIRTY;
 | |
| 		break;
 | |
| 	case XFS_TRANS_SB_DBLOCKS:
 | |
| 		tp->t_dblocks_delta += delta;
 | |
| 		break;
 | |
| 	case XFS_TRANS_SB_AGCOUNT:
 | |
| 		ASSERT(delta > 0);
 | |
| 		tp->t_agcount_delta += delta;
 | |
| 		break;
 | |
| 	case XFS_TRANS_SB_IMAXPCT:
 | |
| 		tp->t_imaxpct_delta += delta;
 | |
| 		break;
 | |
| 	case XFS_TRANS_SB_REXTSIZE:
 | |
| 		tp->t_rextsize_delta += delta;
 | |
| 		break;
 | |
| 	case XFS_TRANS_SB_RBMBLOCKS:
 | |
| 		tp->t_rbmblocks_delta += delta;
 | |
| 		break;
 | |
| 	case XFS_TRANS_SB_RBLOCKS:
 | |
| 		tp->t_rblocks_delta += delta;
 | |
| 		break;
 | |
| 	case XFS_TRANS_SB_REXTENTS:
 | |
| 		tp->t_rextents_delta += delta;
 | |
| 		break;
 | |
| 	case XFS_TRANS_SB_REXTSLOG:
 | |
| 		tp->t_rextslog_delta += delta;
 | |
| 		break;
 | |
| 	case XFS_TRANS_SB_RGCOUNT:
 | |
| 		ASSERT(delta > 0);
 | |
| 		tp->t_rgcount_delta += delta;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ASSERT(0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	tp->t_flags |= flags;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_trans_apply_sb_deltas() is called from the commit code
 | |
|  * to bring the superblock buffer into the current transaction
 | |
|  * and modify it as requested by earlier calls to xfs_trans_mod_sb().
 | |
|  *
 | |
|  * For now we just look at each field allowed to change and change
 | |
|  * it if necessary.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_trans_apply_sb_deltas(
 | |
| 	xfs_trans_t	*tp)
 | |
| {
 | |
| 	struct xfs_dsb	*sbp;
 | |
| 	struct xfs_buf	*bp;
 | |
| 	int		whole = 0;
 | |
| 
 | |
| 	bp = xfs_trans_getsb(tp);
 | |
| 	sbp = bp->b_addr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only update the superblock counters if we are logging them
 | |
| 	 */
 | |
| 	if (!xfs_has_lazysbcount((tp->t_mountp))) {
 | |
| 		if (tp->t_icount_delta)
 | |
| 			be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
 | |
| 		if (tp->t_ifree_delta)
 | |
| 			be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
 | |
| 		if (tp->t_fdblocks_delta)
 | |
| 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
 | |
| 		if (tp->t_res_fdblocks_delta)
 | |
| 			be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * sb_frextents was added to the lazy sb counters when the rt groups
 | |
| 	 * feature was introduced.  This is possible because we know that all
 | |
| 	 * kernels supporting rtgroups will also recompute frextents from the
 | |
| 	 * realtime bitmap.
 | |
| 	 *
 | |
| 	 * For older file systems, updating frextents requires careful handling
 | |
| 	 * because we cannot rely on log recovery in older kernels to recompute
 | |
| 	 * the value from the rtbitmap.  This means that the ondisk frextents
 | |
| 	 * must be consistent with the rtbitmap.
 | |
| 	 *
 | |
| 	 * Therefore, log the frextents change to the ondisk superblock and
 | |
| 	 * update the incore superblock so that future calls to xfs_log_sb
 | |
| 	 * write the correct value ondisk.
 | |
| 	 */
 | |
| 	if ((tp->t_frextents_delta || tp->t_res_frextents_delta) &&
 | |
| 	    !xfs_has_rtgroups(tp->t_mountp)) {
 | |
| 		struct xfs_mount	*mp = tp->t_mountp;
 | |
| 		int64_t			rtxdelta;
 | |
| 
 | |
| 		rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
 | |
| 
 | |
| 		spin_lock(&mp->m_sb_lock);
 | |
| 		be64_add_cpu(&sbp->sb_frextents, rtxdelta);
 | |
| 		mp->m_sb.sb_frextents += rtxdelta;
 | |
| 		spin_unlock(&mp->m_sb_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (tp->t_dblocks_delta) {
 | |
| 		be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
 | |
| 		whole = 1;
 | |
| 	}
 | |
| 	if (tp->t_agcount_delta) {
 | |
| 		be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
 | |
| 		whole = 1;
 | |
| 	}
 | |
| 	if (tp->t_imaxpct_delta) {
 | |
| 		sbp->sb_imax_pct += tp->t_imaxpct_delta;
 | |
| 		whole = 1;
 | |
| 	}
 | |
| 	if (tp->t_rextsize_delta) {
 | |
| 		be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
 | |
| 
 | |
| 		/*
 | |
| 		 * Because the ondisk sb records rtgroup size in units of rt
 | |
| 		 * extents, any time we update the rt extent size we have to
 | |
| 		 * recompute the ondisk rtgroup block log.  The incore values
 | |
| 		 * will be recomputed in xfs_trans_unreserve_and_mod_sb.
 | |
| 		 */
 | |
| 		if (xfs_has_rtgroups(tp->t_mountp)) {
 | |
| 			sbp->sb_rgblklog = xfs_compute_rgblklog(
 | |
| 						be32_to_cpu(sbp->sb_rgextents),
 | |
| 						be32_to_cpu(sbp->sb_rextsize));
 | |
| 		}
 | |
| 		whole = 1;
 | |
| 	}
 | |
| 	if (tp->t_rbmblocks_delta) {
 | |
| 		be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
 | |
| 		whole = 1;
 | |
| 	}
 | |
| 	if (tp->t_rblocks_delta) {
 | |
| 		be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
 | |
| 		whole = 1;
 | |
| 	}
 | |
| 	if (tp->t_rextents_delta) {
 | |
| 		be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
 | |
| 		whole = 1;
 | |
| 	}
 | |
| 	if (tp->t_rextslog_delta) {
 | |
| 		sbp->sb_rextslog += tp->t_rextslog_delta;
 | |
| 		whole = 1;
 | |
| 	}
 | |
| 	if (tp->t_rgcount_delta) {
 | |
| 		be32_add_cpu(&sbp->sb_rgcount, tp->t_rgcount_delta);
 | |
| 		whole = 1;
 | |
| 	}
 | |
| 
 | |
| 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
 | |
| 	if (whole)
 | |
| 		/*
 | |
| 		 * Log the whole thing, the fields are noncontiguous.
 | |
| 		 */
 | |
| 		xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
 | |
| 	else
 | |
| 		/*
 | |
| 		 * Since all the modifiable fields are contiguous, we
 | |
| 		 * can get away with this.
 | |
| 		 */
 | |
| 		xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
 | |
| 				  offsetof(struct xfs_dsb, sb_frextents) +
 | |
| 				  sizeof(sbp->sb_frextents) - 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
 | |
|  * apply superblock counter changes to the in-core superblock.  The
 | |
|  * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
 | |
|  * applied to the in-core superblock.  The idea is that that has already been
 | |
|  * done.
 | |
|  *
 | |
|  * If we are not logging superblock counters, then the inode allocated/free and
 | |
|  * used block counts are not updated in the on disk superblock. In this case,
 | |
|  * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
 | |
|  * still need to update the incore superblock with the changes.
 | |
|  *
 | |
|  * Deltas for the inode count are +/-64, hence we use a large batch size of 128
 | |
|  * so we don't need to take the counter lock on every update.
 | |
|  */
 | |
| #define XFS_ICOUNT_BATCH	128
 | |
| 
 | |
| void
 | |
| xfs_trans_unreserve_and_mod_sb(
 | |
| 	struct xfs_trans	*tp)
 | |
| {
 | |
| 	struct xfs_mount	*mp = tp->t_mountp;
 | |
| 	int64_t			blkdelta = tp->t_blk_res;
 | |
| 	int64_t			rtxdelta = tp->t_rtx_res;
 | |
| 	int64_t			idelta = 0;
 | |
| 	int64_t			ifreedelta = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the deltas.
 | |
| 	 *
 | |
| 	 * t_fdblocks_delta and t_frextents_delta can be positive or negative:
 | |
| 	 *
 | |
| 	 *  - positive values indicate blocks freed in the transaction.
 | |
| 	 *  - negative values indicate blocks allocated in the transaction
 | |
| 	 *
 | |
| 	 * Negative values can only happen if the transaction has a block
 | |
| 	 * reservation that covers the allocated block.  The end result is
 | |
| 	 * that the calculated delta values must always be positive and we
 | |
| 	 * can only put back previous allocated or reserved blocks here.
 | |
| 	 */
 | |
| 	ASSERT(tp->t_blk_res || tp->t_fdblocks_delta >= 0);
 | |
| 	if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
 | |
| 	        blkdelta += tp->t_fdblocks_delta;
 | |
| 		ASSERT(blkdelta >= 0);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(tp->t_rtx_res || tp->t_frextents_delta >= 0);
 | |
| 	if (xfs_has_rtgroups(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
 | |
| 		rtxdelta += tp->t_frextents_delta;
 | |
| 		ASSERT(rtxdelta >= 0);
 | |
| 	}
 | |
| 
 | |
| 	if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
 | |
| 		idelta = tp->t_icount_delta;
 | |
| 		ifreedelta = tp->t_ifree_delta;
 | |
| 	}
 | |
| 
 | |
| 	/* apply the per-cpu counters */
 | |
| 	if (blkdelta)
 | |
| 		xfs_add_fdblocks(mp, blkdelta);
 | |
| 
 | |
| 	if (idelta)
 | |
| 		percpu_counter_add_batch(&mp->m_icount, idelta,
 | |
| 					 XFS_ICOUNT_BATCH);
 | |
| 
 | |
| 	if (ifreedelta)
 | |
| 		percpu_counter_add(&mp->m_ifree, ifreedelta);
 | |
| 
 | |
| 	if (rtxdelta)
 | |
| 		xfs_add_frextents(mp, rtxdelta);
 | |
| 
 | |
| 	if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
 | |
| 		return;
 | |
| 
 | |
| 	/* apply remaining deltas */
 | |
| 	spin_lock(&mp->m_sb_lock);
 | |
| 	mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
 | |
| 	mp->m_sb.sb_icount += idelta;
 | |
| 	mp->m_sb.sb_ifree += ifreedelta;
 | |
| 	/*
 | |
| 	 * Do not touch sb_frextents here because it is handled in
 | |
| 	 * xfs_trans_apply_sb_deltas for file systems where it isn't a lazy
 | |
| 	 * counter anyway.
 | |
| 	 */
 | |
| 	mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
 | |
| 	mp->m_sb.sb_agcount += tp->t_agcount_delta;
 | |
| 	mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
 | |
| 	if (tp->t_rextsize_delta)
 | |
| 		xfs_mount_sb_set_rextsize(mp, &mp->m_sb,
 | |
| 				mp->m_sb.sb_rextsize + tp->t_rextsize_delta);
 | |
| 	mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
 | |
| 	mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
 | |
| 	mp->m_sb.sb_rextents += tp->t_rextents_delta;
 | |
| 	mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
 | |
| 	mp->m_sb.sb_rgcount += tp->t_rgcount_delta;
 | |
| 	spin_unlock(&mp->m_sb_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Debug checks outside of the spinlock so they don't lock up the
 | |
| 	 * machine if they fail.
 | |
| 	 */
 | |
| 	ASSERT(mp->m_sb.sb_imax_pct >= 0);
 | |
| 	ASSERT(mp->m_sb.sb_rextslog >= 0);
 | |
| }
 | |
| 
 | |
| /* Add the given log item to the transaction's list of log items. */
 | |
| void
 | |
| xfs_trans_add_item(
 | |
| 	struct xfs_trans	*tp,
 | |
| 	struct xfs_log_item	*lip)
 | |
| {
 | |
| 	ASSERT(lip->li_log == tp->t_mountp->m_log);
 | |
| 	ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
 | |
| 	ASSERT(list_empty(&lip->li_trans));
 | |
| 	ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
 | |
| 
 | |
| 	list_add_tail(&lip->li_trans, &tp->t_items);
 | |
| 	trace_xfs_trans_add_item(tp, _RET_IP_);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unlink the log item from the transaction. the log item is no longer
 | |
|  * considered dirty in this transaction, as the linked transaction has
 | |
|  * finished, either by abort or commit completion.
 | |
|  */
 | |
| void
 | |
| xfs_trans_del_item(
 | |
| 	struct xfs_log_item	*lip)
 | |
| {
 | |
| 	clear_bit(XFS_LI_DIRTY, &lip->li_flags);
 | |
| 	list_del_init(&lip->li_trans);
 | |
| }
 | |
| 
 | |
| /* Detach and unlock all of the items in a transaction */
 | |
| static void
 | |
| xfs_trans_free_items(
 | |
| 	struct xfs_trans	*tp,
 | |
| 	bool			abort)
 | |
| {
 | |
| 	struct xfs_log_item	*lip, *next;
 | |
| 
 | |
| 	trace_xfs_trans_free_items(tp, _RET_IP_);
 | |
| 
 | |
| 	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
 | |
| 		xfs_trans_del_item(lip);
 | |
| 		if (abort)
 | |
| 			set_bit(XFS_LI_ABORTED, &lip->li_flags);
 | |
| 		if (lip->li_ops->iop_release)
 | |
| 			lip->li_ops->iop_release(lip);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sort transaction items prior to running precommit operations. This will
 | |
|  * attempt to order the items such that they will always be locked in the same
 | |
|  * order. Items that have no sort function are moved to the end of the list
 | |
|  * and so are locked last.
 | |
|  *
 | |
|  * This may need refinement as different types of objects add sort functions.
 | |
|  *
 | |
|  * Function is more complex than it needs to be because we are comparing 64 bit
 | |
|  * values and the function only returns 32 bit values.
 | |
|  */
 | |
| static int
 | |
| xfs_trans_precommit_sort(
 | |
| 	void			*unused_arg,
 | |
| 	const struct list_head	*a,
 | |
| 	const struct list_head	*b)
 | |
| {
 | |
| 	struct xfs_log_item	*lia = container_of(a,
 | |
| 					struct xfs_log_item, li_trans);
 | |
| 	struct xfs_log_item	*lib = container_of(b,
 | |
| 					struct xfs_log_item, li_trans);
 | |
| 	int64_t			diff;
 | |
| 
 | |
| 	/*
 | |
| 	 * If both items are non-sortable, leave them alone. If only one is
 | |
| 	 * sortable, move the non-sortable item towards the end of the list.
 | |
| 	 */
 | |
| 	if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
 | |
| 		return 0;
 | |
| 	if (!lia->li_ops->iop_sort)
 | |
| 		return 1;
 | |
| 	if (!lib->li_ops->iop_sort)
 | |
| 		return -1;
 | |
| 
 | |
| 	diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
 | |
| 	if (diff < 0)
 | |
| 		return -1;
 | |
| 	if (diff > 0)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Run transaction precommit functions.
 | |
|  *
 | |
|  * If there is an error in any of the callouts, then stop immediately and
 | |
|  * trigger a shutdown to abort the transaction. There is no recovery possible
 | |
|  * from errors at this point as the transaction is dirty....
 | |
|  */
 | |
| static int
 | |
| xfs_trans_run_precommits(
 | |
| 	struct xfs_trans	*tp)
 | |
| {
 | |
| 	struct xfs_mount	*mp = tp->t_mountp;
 | |
| 	struct xfs_log_item	*lip, *n;
 | |
| 	int			error = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sort the item list to avoid ABBA deadlocks with other transactions
 | |
| 	 * running precommit operations that lock multiple shared items such as
 | |
| 	 * inode cluster buffers.
 | |
| 	 */
 | |
| 	list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
 | |
| 
 | |
| 	/*
 | |
| 	 * Precommit operations can remove the log item from the transaction
 | |
| 	 * if the log item exists purely to delay modifications until they
 | |
| 	 * can be ordered against other operations. Hence we have to use
 | |
| 	 * list_for_each_entry_safe() here.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
 | |
| 		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
 | |
| 			continue;
 | |
| 		if (lip->li_ops->iop_precommit) {
 | |
| 			error = lip->li_ops->iop_precommit(tp, lip);
 | |
| 			if (error)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (error)
 | |
| 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Commit the given transaction to the log.
 | |
|  *
 | |
|  * XFS disk error handling mechanism is not based on a typical
 | |
|  * transaction abort mechanism. Logically after the filesystem
 | |
|  * gets marked 'SHUTDOWN', we can't let any new transactions
 | |
|  * be durable - ie. committed to disk - because some metadata might
 | |
|  * be inconsistent. In such cases, this returns an error, and the
 | |
|  * caller may assume that all locked objects joined to the transaction
 | |
|  * have already been unlocked as if the commit had succeeded.
 | |
|  * Do not reference the transaction structure after this call.
 | |
|  */
 | |
| static int
 | |
| __xfs_trans_commit(
 | |
| 	struct xfs_trans	*tp,
 | |
| 	bool			regrant)
 | |
| {
 | |
| 	struct xfs_mount	*mp = tp->t_mountp;
 | |
| 	struct xlog		*log = mp->m_log;
 | |
| 	xfs_csn_t		commit_seq = 0;
 | |
| 	int			error = 0;
 | |
| 	int			sync = tp->t_flags & XFS_TRANS_SYNC;
 | |
| 
 | |
| 	trace_xfs_trans_commit(tp, _RET_IP_);
 | |
| 
 | |
| 	/*
 | |
| 	 * Commit per-transaction changes that are not already tracked through
 | |
| 	 * log items.  This can add dirty log items to the transaction.
 | |
| 	 */
 | |
| 	if (tp->t_flags & XFS_TRANS_SB_DIRTY)
 | |
| 		xfs_trans_apply_sb_deltas(tp);
 | |
| 	xfs_trans_apply_dquot_deltas(tp);
 | |
| 
 | |
| 	error = xfs_trans_run_precommits(tp);
 | |
| 	if (error)
 | |
| 		goto out_unreserve;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is nothing to be logged by the transaction,
 | |
| 	 * then unlock all of the items associated with the
 | |
| 	 * transaction and free the transaction structure.
 | |
| 	 * Also make sure to return any reserved blocks to
 | |
| 	 * the free pool.
 | |
| 	 */
 | |
| 	if (!(tp->t_flags & XFS_TRANS_DIRTY))
 | |
| 		goto out_unreserve;
 | |
| 
 | |
| 	/*
 | |
| 	 * We must check against log shutdown here because we cannot abort log
 | |
| 	 * items and leave them dirty, inconsistent and unpinned in memory while
 | |
| 	 * the log is active. This leaves them open to being written back to
 | |
| 	 * disk, and that will lead to on-disk corruption.
 | |
| 	 */
 | |
| 	if (xlog_is_shutdown(log)) {
 | |
| 		error = -EIO;
 | |
| 		goto out_unreserve;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(tp->t_ticket != NULL);
 | |
| 
 | |
| 	xlog_cil_commit(log, tp, &commit_seq, regrant);
 | |
| 
 | |
| 	xfs_trans_free(tp);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the transaction needs to be synchronous, then force the
 | |
| 	 * log out now and wait for it.
 | |
| 	 */
 | |
| 	if (sync) {
 | |
| 		error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
 | |
| 		XFS_STATS_INC(mp, xs_trans_sync);
 | |
| 	} else {
 | |
| 		XFS_STATS_INC(mp, xs_trans_async);
 | |
| 	}
 | |
| 
 | |
| 	return error;
 | |
| 
 | |
| out_unreserve:
 | |
| 	xfs_trans_unreserve_and_mod_sb(tp);
 | |
| 
 | |
| 	/*
 | |
| 	 * It is indeed possible for the transaction to be not dirty but
 | |
| 	 * the dqinfo portion to be.  All that means is that we have some
 | |
| 	 * (non-persistent) quota reservations that need to be unreserved.
 | |
| 	 */
 | |
| 	xfs_trans_unreserve_and_mod_dquots(tp, true);
 | |
| 	if (tp->t_ticket) {
 | |
| 		if (regrant && !xlog_is_shutdown(log))
 | |
| 			xfs_log_ticket_regrant(log, tp->t_ticket);
 | |
| 		else
 | |
| 			xfs_log_ticket_ungrant(log, tp->t_ticket);
 | |
| 		tp->t_ticket = NULL;
 | |
| 	}
 | |
| 	xfs_trans_free_items(tp, !!error);
 | |
| 	xfs_trans_free(tp);
 | |
| 
 | |
| 	XFS_STATS_INC(mp, xs_trans_empty);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_trans_commit(
 | |
| 	struct xfs_trans	*tp)
 | |
| {
 | |
| 	/*
 | |
| 	 * Finish deferred items on final commit. Only permanent transactions
 | |
| 	 * should ever have deferred ops.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
 | |
| 		     !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
 | |
| 	if (tp->t_flags & XFS_TRANS_PERM_LOG_RES) {
 | |
| 		int error = xfs_defer_finish_noroll(&tp);
 | |
| 		if (error) {
 | |
| 			xfs_trans_cancel(tp);
 | |
| 			return error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return __xfs_trans_commit(tp, false);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unlock all of the transaction's items and free the transaction.  If the
 | |
|  * transaction is dirty, we must shut down the filesystem because there is no
 | |
|  * way to restore them to their previous state.
 | |
|  *
 | |
|  * If the transaction has made a log reservation, make sure to release it as
 | |
|  * well.
 | |
|  *
 | |
|  * This is a high level function (equivalent to xfs_trans_commit()) and so can
 | |
|  * be called after the transaction has effectively been aborted due to the mount
 | |
|  * being shut down. However, if the mount has not been shut down and the
 | |
|  * transaction is dirty we will shut the mount down and, in doing so, that
 | |
|  * guarantees that the log is shut down, too. Hence we don't need to be as
 | |
|  * careful with shutdown state and dirty items here as we need to be in
 | |
|  * xfs_trans_commit().
 | |
|  */
 | |
| void
 | |
| xfs_trans_cancel(
 | |
| 	struct xfs_trans	*tp)
 | |
| {
 | |
| 	struct xfs_mount	*mp = tp->t_mountp;
 | |
| 	struct xlog		*log = mp->m_log;
 | |
| 	bool			dirty = (tp->t_flags & XFS_TRANS_DIRTY);
 | |
| 
 | |
| 	trace_xfs_trans_cancel(tp, _RET_IP_);
 | |
| 
 | |
| 	/*
 | |
| 	 * It's never valid to cancel a transaction with deferred ops attached,
 | |
| 	 * because the transaction is effectively dirty.  Complain about this
 | |
| 	 * loudly before freeing the in-memory defer items and shutting down the
 | |
| 	 * filesystem.
 | |
| 	 */
 | |
| 	if (!list_empty(&tp->t_dfops)) {
 | |
| 		ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 | |
| 		dirty = true;
 | |
| 		xfs_defer_cancel(tp);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * See if the caller is relying on us to shut down the filesystem. We
 | |
| 	 * only want an error report if there isn't already a shutdown in
 | |
| 	 * progress, so we only need to check against the mount shutdown state
 | |
| 	 * here.
 | |
| 	 */
 | |
| 	if (dirty && !xfs_is_shutdown(mp)) {
 | |
| 		XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
 | |
| 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 | |
| 	}
 | |
| #ifdef DEBUG
 | |
| 	/* Log items need to be consistent until the log is shut down. */
 | |
| 	if (!dirty && !xlog_is_shutdown(log)) {
 | |
| 		struct xfs_log_item *lip;
 | |
| 
 | |
| 		list_for_each_entry(lip, &tp->t_items, li_trans)
 | |
| 			ASSERT(!xlog_item_is_intent_done(lip));
 | |
| 	}
 | |
| #endif
 | |
| 	xfs_trans_unreserve_and_mod_sb(tp);
 | |
| 	xfs_trans_unreserve_and_mod_dquots(tp, false);
 | |
| 
 | |
| 	if (tp->t_ticket) {
 | |
| 		xfs_log_ticket_ungrant(log, tp->t_ticket);
 | |
| 		tp->t_ticket = NULL;
 | |
| 	}
 | |
| 
 | |
| 	xfs_trans_free_items(tp, dirty);
 | |
| 	xfs_trans_free(tp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Roll from one trans in the sequence of PERMANENT transactions to
 | |
|  * the next: permanent transactions are only flushed out when
 | |
|  * committed with xfs_trans_commit(), but we still want as soon
 | |
|  * as possible to let chunks of it go to the log. So we commit the
 | |
|  * chunk we've been working on and get a new transaction to continue.
 | |
|  */
 | |
| int
 | |
| xfs_trans_roll(
 | |
| 	struct xfs_trans	**tpp)
 | |
| {
 | |
| 	struct xfs_trans	*trans = *tpp;
 | |
| 	struct xfs_trans_res	tres;
 | |
| 	int			error;
 | |
| 
 | |
| 	trace_xfs_trans_roll(trans, _RET_IP_);
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy the critical parameters from one trans to the next.
 | |
| 	 */
 | |
| 	tres.tr_logres = trans->t_log_res;
 | |
| 	tres.tr_logcount = trans->t_log_count;
 | |
| 
 | |
| 	*tpp = xfs_trans_dup(trans);
 | |
| 
 | |
| 	/*
 | |
| 	 * Commit the current transaction.
 | |
| 	 * If this commit failed, then it'd just unlock those items that
 | |
| 	 * are not marked ihold. That also means that a filesystem shutdown
 | |
| 	 * is in progress. The caller takes the responsibility to cancel
 | |
| 	 * the duplicate transaction that gets returned.
 | |
| 	 */
 | |
| 	error = __xfs_trans_commit(trans, true);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reserve space in the log for the next transaction.
 | |
| 	 * This also pushes items in the "AIL", the list of logged items,
 | |
| 	 * out to disk if they are taking up space at the tail of the log
 | |
| 	 * that we want to use.  This requires that either nothing be locked
 | |
| 	 * across this call, or that anything that is locked be logged in
 | |
| 	 * the prior and the next transactions.
 | |
| 	 */
 | |
| 	tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
 | |
| 	return xfs_trans_reserve(*tpp, &tres, 0, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate an transaction, lock and join the inode to it, and reserve quota.
 | |
|  *
 | |
|  * The caller must ensure that the on-disk dquots attached to this inode have
 | |
|  * already been allocated and initialized.  The caller is responsible for
 | |
|  * releasing ILOCK_EXCL if a new transaction is returned.
 | |
|  */
 | |
| int
 | |
| xfs_trans_alloc_inode(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_trans_res	*resv,
 | |
| 	unsigned int		dblocks,
 | |
| 	unsigned int		rblocks,
 | |
| 	bool			force,
 | |
| 	struct xfs_trans	**tpp)
 | |
| {
 | |
| 	struct xfs_trans	*tp;
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	bool			retried = false;
 | |
| 	int			error;
 | |
| 
 | |
| retry:
 | |
| 	error = xfs_trans_alloc(mp, resv, dblocks,
 | |
| 			xfs_extlen_to_rtxlen(mp, rblocks),
 | |
| 			force ? XFS_TRANS_RESERVE : 0, &tp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	xfs_ilock(ip, XFS_ILOCK_EXCL);
 | |
| 	xfs_trans_ijoin(tp, ip, 0);
 | |
| 
 | |
| 	error = xfs_qm_dqattach_locked(ip, false);
 | |
| 	if (error) {
 | |
| 		/* Caller should have allocated the dquots! */
 | |
| 		ASSERT(error != -ENOENT);
 | |
| 		goto out_cancel;
 | |
| 	}
 | |
| 
 | |
| 	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
 | |
| 	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
 | |
| 		xfs_trans_cancel(tp);
 | |
| 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 		xfs_blockgc_free_quota(ip, 0);
 | |
| 		retried = true;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	if (error)
 | |
| 		goto out_cancel;
 | |
| 
 | |
| 	*tpp = tp;
 | |
| 	return 0;
 | |
| 
 | |
| out_cancel:
 | |
| 	xfs_trans_cancel(tp);
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to reserve more blocks for a transaction.
 | |
|  *
 | |
|  * This is for callers that need to attach resources to a transaction, scan
 | |
|  * those resources to determine the space reservation requirements, and then
 | |
|  * modify the attached resources.  In other words, online repair.  This can
 | |
|  * fail due to ENOSPC, so the caller must be able to cancel the transaction
 | |
|  * without shutting down the fs.
 | |
|  */
 | |
| int
 | |
| xfs_trans_reserve_more(
 | |
| 	struct xfs_trans	*tp,
 | |
| 	unsigned int		blocks,
 | |
| 	unsigned int		rtextents)
 | |
| {
 | |
| 	struct xfs_trans_res	resv = { };
 | |
| 
 | |
| 	return xfs_trans_reserve(tp, &resv, blocks, rtextents);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to reserve more blocks and file quota for a transaction.  Same
 | |
|  * conditions of usage as xfs_trans_reserve_more.
 | |
|  */
 | |
| int
 | |
| xfs_trans_reserve_more_inode(
 | |
| 	struct xfs_trans	*tp,
 | |
| 	struct xfs_inode	*ip,
 | |
| 	unsigned int		dblocks,
 | |
| 	unsigned int		rblocks,
 | |
| 	bool			force_quota)
 | |
| {
 | |
| 	struct xfs_trans_res	resv = { };
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	unsigned int		rtx = xfs_extlen_to_rtxlen(mp, rblocks);
 | |
| 	int			error;
 | |
| 
 | |
| 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
 | |
| 
 | |
| 	error = xfs_trans_reserve(tp, &resv, dblocks, rtx);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	if (!XFS_IS_QUOTA_ON(mp) || xfs_is_quota_inode(&mp->m_sb, ip->i_ino))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (tp->t_flags & XFS_TRANS_RESERVE)
 | |
| 		force_quota = true;
 | |
| 
 | |
| 	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks,
 | |
| 			force_quota);
 | |
| 	if (!error)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Quota failed, give back the new reservation. */
 | |
| 	xfs_add_fdblocks(mp, dblocks);
 | |
| 	tp->t_blk_res -= dblocks;
 | |
| 	xfs_add_frextents(mp, rtx);
 | |
| 	tp->t_rtx_res -= rtx;
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate an transaction in preparation for inode creation by reserving quota
 | |
|  * against the given dquots.  Callers are not required to hold any inode locks.
 | |
|  */
 | |
| int
 | |
| xfs_trans_alloc_icreate(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_trans_res	*resv,
 | |
| 	struct xfs_dquot	*udqp,
 | |
| 	struct xfs_dquot	*gdqp,
 | |
| 	struct xfs_dquot	*pdqp,
 | |
| 	unsigned int		dblocks,
 | |
| 	struct xfs_trans	**tpp)
 | |
| {
 | |
| 	struct xfs_trans	*tp;
 | |
| 	bool			retried = false;
 | |
| 	int			error;
 | |
| 
 | |
| retry:
 | |
| 	error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
 | |
| 	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
 | |
| 		xfs_trans_cancel(tp);
 | |
| 		xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
 | |
| 		retried = true;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	if (error) {
 | |
| 		xfs_trans_cancel(tp);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	*tpp = tp;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate an transaction, lock and join the inode to it, and reserve quota
 | |
|  * in preparation for inode attribute changes that include uid, gid, or prid
 | |
|  * changes.
 | |
|  *
 | |
|  * The caller must ensure that the on-disk dquots attached to this inode have
 | |
|  * already been allocated and initialized.  The ILOCK will be dropped when the
 | |
|  * transaction is committed or cancelled.
 | |
|  */
 | |
| int
 | |
| xfs_trans_alloc_ichange(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct xfs_dquot	*new_udqp,
 | |
| 	struct xfs_dquot	*new_gdqp,
 | |
| 	struct xfs_dquot	*new_pdqp,
 | |
| 	bool			force,
 | |
| 	struct xfs_trans	**tpp)
 | |
| {
 | |
| 	struct xfs_trans	*tp;
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	struct xfs_dquot	*udqp;
 | |
| 	struct xfs_dquot	*gdqp;
 | |
| 	struct xfs_dquot	*pdqp;
 | |
| 	bool			retried = false;
 | |
| 	int			error;
 | |
| 
 | |
| retry:
 | |
| 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	xfs_ilock(ip, XFS_ILOCK_EXCL);
 | |
| 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 | |
| 
 | |
| 	if (xfs_is_metadir_inode(ip))
 | |
| 		goto out;
 | |
| 
 | |
| 	error = xfs_qm_dqattach_locked(ip, false);
 | |
| 	if (error) {
 | |
| 		/* Caller should have allocated the dquots! */
 | |
| 		ASSERT(error != -ENOENT);
 | |
| 		goto out_cancel;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For each quota type, skip quota reservations if the inode's dquots
 | |
| 	 * now match the ones that came from the caller, or the caller didn't
 | |
| 	 * pass one in.  The inode's dquots can change if we drop the ILOCK to
 | |
| 	 * perform a blockgc scan, so we must preserve the caller's arguments.
 | |
| 	 */
 | |
| 	udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
 | |
| 	gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
 | |
| 	pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
 | |
| 	if (udqp || gdqp || pdqp) {
 | |
| 		xfs_filblks_t	dblocks, rblocks;
 | |
| 		unsigned int	qflags = XFS_QMOPT_RES_REGBLKS;
 | |
| 		bool		isrt = XFS_IS_REALTIME_INODE(ip);
 | |
| 
 | |
| 		if (force)
 | |
| 			qflags |= XFS_QMOPT_FORCE_RES;
 | |
| 
 | |
| 		if (isrt) {
 | |
| 			error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
 | |
| 			if (error)
 | |
| 				goto out_cancel;
 | |
| 		}
 | |
| 
 | |
| 		xfs_inode_count_blocks(tp, ip, &dblocks, &rblocks);
 | |
| 
 | |
| 		if (isrt)
 | |
| 			rblocks += ip->i_delayed_blks;
 | |
| 		else
 | |
| 			dblocks += ip->i_delayed_blks;
 | |
| 
 | |
| 		/*
 | |
| 		 * Reserve enough quota to handle blocks on disk and reserved
 | |
| 		 * for a delayed allocation.  We'll actually transfer the
 | |
| 		 * delalloc reservation between dquots at chown time, even
 | |
| 		 * though that part is only semi-transactional.
 | |
| 		 */
 | |
| 		error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
 | |
| 				pdqp, dblocks, 1, qflags);
 | |
| 		if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
 | |
| 			xfs_trans_cancel(tp);
 | |
| 			xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
 | |
| 			retried = true;
 | |
| 			goto retry;
 | |
| 		}
 | |
| 		if (error)
 | |
| 			goto out_cancel;
 | |
| 
 | |
| 		/* Do the same for realtime. */
 | |
| 		qflags = XFS_QMOPT_RES_RTBLKS | (qflags & XFS_QMOPT_FORCE_RES);
 | |
| 		error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
 | |
| 				pdqp, rblocks, 0, qflags);
 | |
| 		if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
 | |
| 			xfs_trans_cancel(tp);
 | |
| 			xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
 | |
| 			retried = true;
 | |
| 			goto retry;
 | |
| 		}
 | |
| 		if (error)
 | |
| 			goto out_cancel;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	*tpp = tp;
 | |
| 	return 0;
 | |
| 
 | |
| out_cancel:
 | |
| 	xfs_trans_cancel(tp);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate an transaction, lock and join the directory and child inodes to it,
 | |
|  * and reserve quota for a directory update.  If there isn't sufficient space,
 | |
|  * @dblocks will be set to zero for a reservationless directory update and
 | |
|  * @nospace_error will be set to a negative errno describing the space
 | |
|  * constraint we hit.
 | |
|  *
 | |
|  * The caller must ensure that the on-disk dquots attached to this inode have
 | |
|  * already been allocated and initialized.  The ILOCKs will be dropped when the
 | |
|  * transaction is committed or cancelled.
 | |
|  *
 | |
|  * Caller is responsible for unlocking the inodes manually upon return
 | |
|  */
 | |
| int
 | |
| xfs_trans_alloc_dir(
 | |
| 	struct xfs_inode	*dp,
 | |
| 	struct xfs_trans_res	*resv,
 | |
| 	struct xfs_inode	*ip,
 | |
| 	unsigned int		*dblocks,
 | |
| 	struct xfs_trans	**tpp,
 | |
| 	int			*nospace_error)
 | |
| {
 | |
| 	struct xfs_trans	*tp;
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	unsigned int		resblks;
 | |
| 	bool			retried = false;
 | |
| 	int			error;
 | |
| 
 | |
| retry:
 | |
| 	*nospace_error = 0;
 | |
| 	resblks = *dblocks;
 | |
| 	error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
 | |
| 	if (error == -ENOSPC) {
 | |
| 		*nospace_error = error;
 | |
| 		resblks = 0;
 | |
| 		error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
 | |
| 	}
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
 | |
| 
 | |
| 	xfs_trans_ijoin(tp, dp, 0);
 | |
| 	xfs_trans_ijoin(tp, ip, 0);
 | |
| 
 | |
| 	error = xfs_qm_dqattach_locked(dp, false);
 | |
| 	if (error) {
 | |
| 		/* Caller should have allocated the dquots! */
 | |
| 		ASSERT(error != -ENOENT);
 | |
| 		goto out_cancel;
 | |
| 	}
 | |
| 
 | |
| 	error = xfs_qm_dqattach_locked(ip, false);
 | |
| 	if (error) {
 | |
| 		/* Caller should have allocated the dquots! */
 | |
| 		ASSERT(error != -ENOENT);
 | |
| 		goto out_cancel;
 | |
| 	}
 | |
| 
 | |
| 	if (resblks == 0)
 | |
| 		goto done;
 | |
| 
 | |
| 	error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
 | |
| 	if (error == -EDQUOT || error == -ENOSPC) {
 | |
| 		if (!retried) {
 | |
| 			xfs_trans_cancel(tp);
 | |
| 			xfs_iunlock(dp, XFS_ILOCK_EXCL);
 | |
| 			if (dp != ip)
 | |
| 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 			xfs_blockgc_free_quota(dp, 0);
 | |
| 			retried = true;
 | |
| 			goto retry;
 | |
| 		}
 | |
| 
 | |
| 		*nospace_error = error;
 | |
| 		resblks = 0;
 | |
| 		error = 0;
 | |
| 	}
 | |
| 	if (error)
 | |
| 		goto out_cancel;
 | |
| 
 | |
| done:
 | |
| 	*tpp = tp;
 | |
| 	*dblocks = resblks;
 | |
| 	return 0;
 | |
| 
 | |
| out_cancel:
 | |
| 	xfs_trans_cancel(tp);
 | |
| 	xfs_iunlock(dp, XFS_ILOCK_EXCL);
 | |
| 	if (dp != ip)
 | |
| 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 	return error;
 | |
| }
 |