forked from mirrors/linux
		
	 f4b78260fc
			
		
	
	
		f4b78260fc
		
	
	
	
	
		
			
			import_iovec() says that it should always be fine to kfree the iovec
returned in @iovp regardless of the error code.  __import_iovec_ubuf()
never reallocates it and thus should clear the pointer even in cases when
copy_iovec_*() fail.
Link: https://lkml.kernel.org/r/378ae26923ffc20fd5e41b4360d673bf47b1775b.1738332461.git.asml.silence@gmail.com
Fixes: 3b2deb0e46 ("iov_iter: import single vector iovecs as ITER_UBUF")
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			1929 lines
		
	
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1929 lines
		
	
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| #include <linux/export.h>
 | |
| #include <linux/bvec.h>
 | |
| #include <linux/fault-inject-usercopy.h>
 | |
| #include <linux/uio.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/splice.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/instrumented.h>
 | |
| #include <linux/iov_iter.h>
 | |
| 
 | |
| static __always_inline
 | |
| size_t copy_to_user_iter(void __user *iter_to, size_t progress,
 | |
| 			 size_t len, void *from, void *priv2)
 | |
| {
 | |
| 	if (should_fail_usercopy())
 | |
| 		return len;
 | |
| 	if (access_ok(iter_to, len)) {
 | |
| 		from += progress;
 | |
| 		instrument_copy_to_user(iter_to, from, len);
 | |
| 		len = raw_copy_to_user(iter_to, from, len);
 | |
| 	}
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress,
 | |
| 				 size_t len, void *from, void *priv2)
 | |
| {
 | |
| 	ssize_t res;
 | |
| 
 | |
| 	if (should_fail_usercopy())
 | |
| 		return len;
 | |
| 
 | |
| 	from += progress;
 | |
| 	res = copy_to_user_nofault(iter_to, from, len);
 | |
| 	return res < 0 ? len : res;
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| size_t copy_from_user_iter(void __user *iter_from, size_t progress,
 | |
| 			   size_t len, void *to, void *priv2)
 | |
| {
 | |
| 	size_t res = len;
 | |
| 
 | |
| 	if (should_fail_usercopy())
 | |
| 		return len;
 | |
| 	if (access_ok(iter_from, len)) {
 | |
| 		to += progress;
 | |
| 		instrument_copy_from_user_before(to, iter_from, len);
 | |
| 		res = raw_copy_from_user(to, iter_from, len);
 | |
| 		instrument_copy_from_user_after(to, iter_from, len, res);
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| size_t memcpy_to_iter(void *iter_to, size_t progress,
 | |
| 		      size_t len, void *from, void *priv2)
 | |
| {
 | |
| 	memcpy(iter_to, from + progress, len);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| size_t memcpy_from_iter(void *iter_from, size_t progress,
 | |
| 			size_t len, void *to, void *priv2)
 | |
| {
 | |
| 	memcpy(to + progress, iter_from, len);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fault_in_iov_iter_readable - fault in iov iterator for reading
 | |
|  * @i: iterator
 | |
|  * @size: maximum length
 | |
|  *
 | |
|  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
 | |
|  * @size.  For each iovec, fault in each page that constitutes the iovec.
 | |
|  *
 | |
|  * Returns the number of bytes not faulted in (like copy_to_user() and
 | |
|  * copy_from_user()).
 | |
|  *
 | |
|  * Always returns 0 for non-userspace iterators.
 | |
|  */
 | |
| size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
 | |
| {
 | |
| 	if (iter_is_ubuf(i)) {
 | |
| 		size_t n = min(size, iov_iter_count(i));
 | |
| 		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
 | |
| 		return size - n;
 | |
| 	} else if (iter_is_iovec(i)) {
 | |
| 		size_t count = min(size, iov_iter_count(i));
 | |
| 		const struct iovec *p;
 | |
| 		size_t skip;
 | |
| 
 | |
| 		size -= count;
 | |
| 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
 | |
| 			size_t len = min(count, p->iov_len - skip);
 | |
| 			size_t ret;
 | |
| 
 | |
| 			if (unlikely(!len))
 | |
| 				continue;
 | |
| 			ret = fault_in_readable(p->iov_base + skip, len);
 | |
| 			count -= len - ret;
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 		return count + size;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(fault_in_iov_iter_readable);
 | |
| 
 | |
| /*
 | |
|  * fault_in_iov_iter_writeable - fault in iov iterator for writing
 | |
|  * @i: iterator
 | |
|  * @size: maximum length
 | |
|  *
 | |
|  * Faults in the iterator using get_user_pages(), i.e., without triggering
 | |
|  * hardware page faults.  This is primarily useful when we already know that
 | |
|  * some or all of the pages in @i aren't in memory.
 | |
|  *
 | |
|  * Returns the number of bytes not faulted in, like copy_to_user() and
 | |
|  * copy_from_user().
 | |
|  *
 | |
|  * Always returns 0 for non-user-space iterators.
 | |
|  */
 | |
| size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
 | |
| {
 | |
| 	if (iter_is_ubuf(i)) {
 | |
| 		size_t n = min(size, iov_iter_count(i));
 | |
| 		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
 | |
| 		return size - n;
 | |
| 	} else if (iter_is_iovec(i)) {
 | |
| 		size_t count = min(size, iov_iter_count(i));
 | |
| 		const struct iovec *p;
 | |
| 		size_t skip;
 | |
| 
 | |
| 		size -= count;
 | |
| 		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
 | |
| 			size_t len = min(count, p->iov_len - skip);
 | |
| 			size_t ret;
 | |
| 
 | |
| 			if (unlikely(!len))
 | |
| 				continue;
 | |
| 			ret = fault_in_safe_writeable(p->iov_base + skip, len);
 | |
| 			count -= len - ret;
 | |
| 			if (ret)
 | |
| 				break;
 | |
| 		}
 | |
| 		return count + size;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(fault_in_iov_iter_writeable);
 | |
| 
 | |
| void iov_iter_init(struct iov_iter *i, unsigned int direction,
 | |
| 			const struct iovec *iov, unsigned long nr_segs,
 | |
| 			size_t count)
 | |
| {
 | |
| 	WARN_ON(direction & ~(READ | WRITE));
 | |
| 	*i = (struct iov_iter) {
 | |
| 		.iter_type = ITER_IOVEC,
 | |
| 		.nofault = false,
 | |
| 		.data_source = direction,
 | |
| 		.__iov = iov,
 | |
| 		.nr_segs = nr_segs,
 | |
| 		.iov_offset = 0,
 | |
| 		.count = count
 | |
| 	};
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_init);
 | |
| 
 | |
| size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(i->data_source))
 | |
| 		return 0;
 | |
| 	if (user_backed_iter(i))
 | |
| 		might_fault();
 | |
| 	return iterate_and_advance(i, bytes, (void *)addr,
 | |
| 				   copy_to_user_iter, memcpy_to_iter);
 | |
| }
 | |
| EXPORT_SYMBOL(_copy_to_iter);
 | |
| 
 | |
| #ifdef CONFIG_ARCH_HAS_COPY_MC
 | |
| static __always_inline
 | |
| size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress,
 | |
| 			    size_t len, void *from, void *priv2)
 | |
| {
 | |
| 	if (access_ok(iter_to, len)) {
 | |
| 		from += progress;
 | |
| 		instrument_copy_to_user(iter_to, from, len);
 | |
| 		len = copy_mc_to_user(iter_to, from, len);
 | |
| 	}
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| size_t memcpy_to_iter_mc(void *iter_to, size_t progress,
 | |
| 			 size_t len, void *from, void *priv2)
 | |
| {
 | |
| 	return copy_mc_to_kernel(iter_to, from + progress, len);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * _copy_mc_to_iter - copy to iter with source memory error exception handling
 | |
|  * @addr: source kernel address
 | |
|  * @bytes: total transfer length
 | |
|  * @i: destination iterator
 | |
|  *
 | |
|  * The pmem driver deploys this for the dax operation
 | |
|  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
 | |
|  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
 | |
|  * successfully copied.
 | |
|  *
 | |
|  * The main differences between this and typical _copy_to_iter().
 | |
|  *
 | |
|  * * Typical tail/residue handling after a fault retries the copy
 | |
|  *   byte-by-byte until the fault happens again. Re-triggering machine
 | |
|  *   checks is potentially fatal so the implementation uses source
 | |
|  *   alignment and poison alignment assumptions to avoid re-triggering
 | |
|  *   hardware exceptions.
 | |
|  *
 | |
|  * * ITER_KVEC and ITER_BVEC can return short copies.  Compare to
 | |
|  *   copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
 | |
|  *
 | |
|  * Return: number of bytes copied (may be %0)
 | |
|  */
 | |
| size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(i->data_source))
 | |
| 		return 0;
 | |
| 	if (user_backed_iter(i))
 | |
| 		might_fault();
 | |
| 	return iterate_and_advance(i, bytes, (void *)addr,
 | |
| 				   copy_to_user_iter_mc, memcpy_to_iter_mc);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
 | |
| #endif /* CONFIG_ARCH_HAS_COPY_MC */
 | |
| 
 | |
| static __always_inline
 | |
| size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
 | |
| {
 | |
| 	return iterate_and_advance(i, bytes, addr,
 | |
| 				   copy_from_user_iter, memcpy_from_iter);
 | |
| }
 | |
| 
 | |
| size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(!i->data_source))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (user_backed_iter(i))
 | |
| 		might_fault();
 | |
| 	return __copy_from_iter(addr, bytes, i);
 | |
| }
 | |
| EXPORT_SYMBOL(_copy_from_iter);
 | |
| 
 | |
| static __always_inline
 | |
| size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress,
 | |
| 				   size_t len, void *to, void *priv2)
 | |
| {
 | |
| 	return __copy_from_user_inatomic_nocache(to + progress, iter_from, len);
 | |
| }
 | |
| 
 | |
| size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(!i->data_source))
 | |
| 		return 0;
 | |
| 
 | |
| 	return iterate_and_advance(i, bytes, addr,
 | |
| 				   copy_from_user_iter_nocache,
 | |
| 				   memcpy_from_iter);
 | |
| }
 | |
| EXPORT_SYMBOL(_copy_from_iter_nocache);
 | |
| 
 | |
| #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
 | |
| static __always_inline
 | |
| size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress,
 | |
| 				      size_t len, void *to, void *priv2)
 | |
| {
 | |
| 	return __copy_from_user_flushcache(to + progress, iter_from, len);
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress,
 | |
| 				   size_t len, void *to, void *priv2)
 | |
| {
 | |
| 	memcpy_flushcache(to + progress, iter_from, len);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * _copy_from_iter_flushcache - write destination through cpu cache
 | |
|  * @addr: destination kernel address
 | |
|  * @bytes: total transfer length
 | |
|  * @i: source iterator
 | |
|  *
 | |
|  * The pmem driver arranges for filesystem-dax to use this facility via
 | |
|  * dax_copy_from_iter() for ensuring that writes to persistent memory
 | |
|  * are flushed through the CPU cache. It is differentiated from
 | |
|  * _copy_from_iter_nocache() in that guarantees all data is flushed for
 | |
|  * all iterator types. The _copy_from_iter_nocache() only attempts to
 | |
|  * bypass the cache for the ITER_IOVEC case, and on some archs may use
 | |
|  * instructions that strand dirty-data in the cache.
 | |
|  *
 | |
|  * Return: number of bytes copied (may be %0)
 | |
|  */
 | |
| size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(!i->data_source))
 | |
| 		return 0;
 | |
| 
 | |
| 	return iterate_and_advance(i, bytes, addr,
 | |
| 				   copy_from_user_iter_flushcache,
 | |
| 				   memcpy_from_iter_flushcache);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
 | |
| #endif
 | |
| 
 | |
| static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
 | |
| {
 | |
| 	struct page *head;
 | |
| 	size_t v = n + offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * The general case needs to access the page order in order
 | |
| 	 * to compute the page size.
 | |
| 	 * However, we mostly deal with order-0 pages and thus can
 | |
| 	 * avoid a possible cache line miss for requests that fit all
 | |
| 	 * page orders.
 | |
| 	 */
 | |
| 	if (n <= v && v <= PAGE_SIZE)
 | |
| 		return true;
 | |
| 
 | |
| 	head = compound_head(page);
 | |
| 	v += (page - head) << PAGE_SHIFT;
 | |
| 
 | |
| 	if (WARN_ON(n > v || v > page_size(head)))
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
 | |
| 			 struct iov_iter *i)
 | |
| {
 | |
| 	size_t res = 0;
 | |
| 	if (!page_copy_sane(page, offset, bytes))
 | |
| 		return 0;
 | |
| 	if (WARN_ON_ONCE(i->data_source))
 | |
| 		return 0;
 | |
| 	page += offset / PAGE_SIZE; // first subpage
 | |
| 	offset %= PAGE_SIZE;
 | |
| 	while (1) {
 | |
| 		void *kaddr = kmap_local_page(page);
 | |
| 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
 | |
| 		n = _copy_to_iter(kaddr + offset, n, i);
 | |
| 		kunmap_local(kaddr);
 | |
| 		res += n;
 | |
| 		bytes -= n;
 | |
| 		if (!bytes || !n)
 | |
| 			break;
 | |
| 		offset += n;
 | |
| 		if (offset == PAGE_SIZE) {
 | |
| 			page++;
 | |
| 			offset = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(copy_page_to_iter);
 | |
| 
 | |
| size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
 | |
| 				 struct iov_iter *i)
 | |
| {
 | |
| 	size_t res = 0;
 | |
| 
 | |
| 	if (!page_copy_sane(page, offset, bytes))
 | |
| 		return 0;
 | |
| 	if (WARN_ON_ONCE(i->data_source))
 | |
| 		return 0;
 | |
| 	page += offset / PAGE_SIZE; // first subpage
 | |
| 	offset %= PAGE_SIZE;
 | |
| 	while (1) {
 | |
| 		void *kaddr = kmap_local_page(page);
 | |
| 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
 | |
| 
 | |
| 		n = iterate_and_advance(i, n, kaddr + offset,
 | |
| 					copy_to_user_iter_nofault,
 | |
| 					memcpy_to_iter);
 | |
| 		kunmap_local(kaddr);
 | |
| 		res += n;
 | |
| 		bytes -= n;
 | |
| 		if (!bytes || !n)
 | |
| 			break;
 | |
| 		offset += n;
 | |
| 		if (offset == PAGE_SIZE) {
 | |
| 			page++;
 | |
| 			offset = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(copy_page_to_iter_nofault);
 | |
| 
 | |
| size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
 | |
| 			 struct iov_iter *i)
 | |
| {
 | |
| 	size_t res = 0;
 | |
| 	if (!page_copy_sane(page, offset, bytes))
 | |
| 		return 0;
 | |
| 	page += offset / PAGE_SIZE; // first subpage
 | |
| 	offset %= PAGE_SIZE;
 | |
| 	while (1) {
 | |
| 		void *kaddr = kmap_local_page(page);
 | |
| 		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
 | |
| 		n = _copy_from_iter(kaddr + offset, n, i);
 | |
| 		kunmap_local(kaddr);
 | |
| 		res += n;
 | |
| 		bytes -= n;
 | |
| 		if (!bytes || !n)
 | |
| 			break;
 | |
| 		offset += n;
 | |
| 		if (offset == PAGE_SIZE) {
 | |
| 			page++;
 | |
| 			offset = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(copy_page_from_iter);
 | |
| 
 | |
| static __always_inline
 | |
| size_t zero_to_user_iter(void __user *iter_to, size_t progress,
 | |
| 			 size_t len, void *priv, void *priv2)
 | |
| {
 | |
| 	return clear_user(iter_to, len);
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| size_t zero_to_iter(void *iter_to, size_t progress,
 | |
| 		    size_t len, void *priv, void *priv2)
 | |
| {
 | |
| 	memset(iter_to, 0, len);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
 | |
| {
 | |
| 	return iterate_and_advance(i, bytes, NULL,
 | |
| 				   zero_to_user_iter, zero_to_iter);
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_zero);
 | |
| 
 | |
| size_t copy_page_from_iter_atomic(struct page *page, size_t offset,
 | |
| 		size_t bytes, struct iov_iter *i)
 | |
| {
 | |
| 	size_t n, copied = 0;
 | |
| 	bool uses_kmap = IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) ||
 | |
| 			 PageHighMem(page);
 | |
| 
 | |
| 	if (!page_copy_sane(page, offset, bytes))
 | |
| 		return 0;
 | |
| 	if (WARN_ON_ONCE(!i->data_source))
 | |
| 		return 0;
 | |
| 
 | |
| 	do {
 | |
| 		char *p;
 | |
| 
 | |
| 		n = bytes - copied;
 | |
| 		if (uses_kmap) {
 | |
| 			page += offset / PAGE_SIZE;
 | |
| 			offset %= PAGE_SIZE;
 | |
| 			n = min_t(size_t, n, PAGE_SIZE - offset);
 | |
| 		}
 | |
| 
 | |
| 		p = kmap_atomic(page) + offset;
 | |
| 		n = __copy_from_iter(p, n, i);
 | |
| 		kunmap_atomic(p);
 | |
| 		copied += n;
 | |
| 		offset += n;
 | |
| 	} while (uses_kmap && copied != bytes && n > 0);
 | |
| 
 | |
| 	return copied;
 | |
| }
 | |
| EXPORT_SYMBOL(copy_page_from_iter_atomic);
 | |
| 
 | |
| static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
 | |
| {
 | |
| 	const struct bio_vec *bvec, *end;
 | |
| 
 | |
| 	if (!i->count)
 | |
| 		return;
 | |
| 	i->count -= size;
 | |
| 
 | |
| 	size += i->iov_offset;
 | |
| 
 | |
| 	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
 | |
| 		if (likely(size < bvec->bv_len))
 | |
| 			break;
 | |
| 		size -= bvec->bv_len;
 | |
| 	}
 | |
| 	i->iov_offset = size;
 | |
| 	i->nr_segs -= bvec - i->bvec;
 | |
| 	i->bvec = bvec;
 | |
| }
 | |
| 
 | |
| static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
 | |
| {
 | |
| 	const struct iovec *iov, *end;
 | |
| 
 | |
| 	if (!i->count)
 | |
| 		return;
 | |
| 	i->count -= size;
 | |
| 
 | |
| 	size += i->iov_offset; // from beginning of current segment
 | |
| 	for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
 | |
| 		if (likely(size < iov->iov_len))
 | |
| 			break;
 | |
| 		size -= iov->iov_len;
 | |
| 	}
 | |
| 	i->iov_offset = size;
 | |
| 	i->nr_segs -= iov - iter_iov(i);
 | |
| 	i->__iov = iov;
 | |
| }
 | |
| 
 | |
| static void iov_iter_folioq_advance(struct iov_iter *i, size_t size)
 | |
| {
 | |
| 	const struct folio_queue *folioq = i->folioq;
 | |
| 	unsigned int slot = i->folioq_slot;
 | |
| 
 | |
| 	if (!i->count)
 | |
| 		return;
 | |
| 	i->count -= size;
 | |
| 
 | |
| 	if (slot >= folioq_nr_slots(folioq)) {
 | |
| 		folioq = folioq->next;
 | |
| 		slot = 0;
 | |
| 	}
 | |
| 
 | |
| 	size += i->iov_offset; /* From beginning of current segment. */
 | |
| 	do {
 | |
| 		size_t fsize = folioq_folio_size(folioq, slot);
 | |
| 
 | |
| 		if (likely(size < fsize))
 | |
| 			break;
 | |
| 		size -= fsize;
 | |
| 		slot++;
 | |
| 		if (slot >= folioq_nr_slots(folioq) && folioq->next) {
 | |
| 			folioq = folioq->next;
 | |
| 			slot = 0;
 | |
| 		}
 | |
| 	} while (size);
 | |
| 
 | |
| 	i->iov_offset = size;
 | |
| 	i->folioq_slot = slot;
 | |
| 	i->folioq = folioq;
 | |
| }
 | |
| 
 | |
| void iov_iter_advance(struct iov_iter *i, size_t size)
 | |
| {
 | |
| 	if (unlikely(i->count < size))
 | |
| 		size = i->count;
 | |
| 	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
 | |
| 		i->iov_offset += size;
 | |
| 		i->count -= size;
 | |
| 	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
 | |
| 		/* iovec and kvec have identical layouts */
 | |
| 		iov_iter_iovec_advance(i, size);
 | |
| 	} else if (iov_iter_is_bvec(i)) {
 | |
| 		iov_iter_bvec_advance(i, size);
 | |
| 	} else if (iov_iter_is_folioq(i)) {
 | |
| 		iov_iter_folioq_advance(i, size);
 | |
| 	} else if (iov_iter_is_discard(i)) {
 | |
| 		i->count -= size;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_advance);
 | |
| 
 | |
| static void iov_iter_folioq_revert(struct iov_iter *i, size_t unroll)
 | |
| {
 | |
| 	const struct folio_queue *folioq = i->folioq;
 | |
| 	unsigned int slot = i->folioq_slot;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		size_t fsize;
 | |
| 
 | |
| 		if (slot == 0) {
 | |
| 			folioq = folioq->prev;
 | |
| 			slot = folioq_nr_slots(folioq);
 | |
| 		}
 | |
| 		slot--;
 | |
| 
 | |
| 		fsize = folioq_folio_size(folioq, slot);
 | |
| 		if (unroll <= fsize) {
 | |
| 			i->iov_offset = fsize - unroll;
 | |
| 			break;
 | |
| 		}
 | |
| 		unroll -= fsize;
 | |
| 	}
 | |
| 
 | |
| 	i->folioq_slot = slot;
 | |
| 	i->folioq = folioq;
 | |
| }
 | |
| 
 | |
| void iov_iter_revert(struct iov_iter *i, size_t unroll)
 | |
| {
 | |
| 	if (!unroll)
 | |
| 		return;
 | |
| 	if (WARN_ON(unroll > MAX_RW_COUNT))
 | |
| 		return;
 | |
| 	i->count += unroll;
 | |
| 	if (unlikely(iov_iter_is_discard(i)))
 | |
| 		return;
 | |
| 	if (unroll <= i->iov_offset) {
 | |
| 		i->iov_offset -= unroll;
 | |
| 		return;
 | |
| 	}
 | |
| 	unroll -= i->iov_offset;
 | |
| 	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
 | |
| 		BUG(); /* We should never go beyond the start of the specified
 | |
| 			* range since we might then be straying into pages that
 | |
| 			* aren't pinned.
 | |
| 			*/
 | |
| 	} else if (iov_iter_is_bvec(i)) {
 | |
| 		const struct bio_vec *bvec = i->bvec;
 | |
| 		while (1) {
 | |
| 			size_t n = (--bvec)->bv_len;
 | |
| 			i->nr_segs++;
 | |
| 			if (unroll <= n) {
 | |
| 				i->bvec = bvec;
 | |
| 				i->iov_offset = n - unroll;
 | |
| 				return;
 | |
| 			}
 | |
| 			unroll -= n;
 | |
| 		}
 | |
| 	} else if (iov_iter_is_folioq(i)) {
 | |
| 		i->iov_offset = 0;
 | |
| 		iov_iter_folioq_revert(i, unroll);
 | |
| 	} else { /* same logics for iovec and kvec */
 | |
| 		const struct iovec *iov = iter_iov(i);
 | |
| 		while (1) {
 | |
| 			size_t n = (--iov)->iov_len;
 | |
| 			i->nr_segs++;
 | |
| 			if (unroll <= n) {
 | |
| 				i->__iov = iov;
 | |
| 				i->iov_offset = n - unroll;
 | |
| 				return;
 | |
| 			}
 | |
| 			unroll -= n;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_revert);
 | |
| 
 | |
| /*
 | |
|  * Return the count of just the current iov_iter segment.
 | |
|  */
 | |
| size_t iov_iter_single_seg_count(const struct iov_iter *i)
 | |
| {
 | |
| 	if (i->nr_segs > 1) {
 | |
| 		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
 | |
| 			return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
 | |
| 		if (iov_iter_is_bvec(i))
 | |
| 			return min(i->count, i->bvec->bv_len - i->iov_offset);
 | |
| 	}
 | |
| 	if (unlikely(iov_iter_is_folioq(i)))
 | |
| 		return !i->count ? 0 :
 | |
| 			umin(folioq_folio_size(i->folioq, i->folioq_slot), i->count);
 | |
| 	return i->count;
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_single_seg_count);
 | |
| 
 | |
| void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
 | |
| 			const struct kvec *kvec, unsigned long nr_segs,
 | |
| 			size_t count)
 | |
| {
 | |
| 	WARN_ON(direction & ~(READ | WRITE));
 | |
| 	*i = (struct iov_iter){
 | |
| 		.iter_type = ITER_KVEC,
 | |
| 		.data_source = direction,
 | |
| 		.kvec = kvec,
 | |
| 		.nr_segs = nr_segs,
 | |
| 		.iov_offset = 0,
 | |
| 		.count = count
 | |
| 	};
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_kvec);
 | |
| 
 | |
| void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
 | |
| 			const struct bio_vec *bvec, unsigned long nr_segs,
 | |
| 			size_t count)
 | |
| {
 | |
| 	WARN_ON(direction & ~(READ | WRITE));
 | |
| 	*i = (struct iov_iter){
 | |
| 		.iter_type = ITER_BVEC,
 | |
| 		.data_source = direction,
 | |
| 		.bvec = bvec,
 | |
| 		.nr_segs = nr_segs,
 | |
| 		.iov_offset = 0,
 | |
| 		.count = count
 | |
| 	};
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_bvec);
 | |
| 
 | |
| /**
 | |
|  * iov_iter_folio_queue - Initialise an I/O iterator to use the folios in a folio queue
 | |
|  * @i: The iterator to initialise.
 | |
|  * @direction: The direction of the transfer.
 | |
|  * @folioq: The starting point in the folio queue.
 | |
|  * @first_slot: The first slot in the folio queue to use
 | |
|  * @offset: The offset into the folio in the first slot to start at
 | |
|  * @count: The size of the I/O buffer in bytes.
 | |
|  *
 | |
|  * Set up an I/O iterator to either draw data out of the pages attached to an
 | |
|  * inode or to inject data into those pages.  The pages *must* be prevented
 | |
|  * from evaporation, either by taking a ref on them or locking them by the
 | |
|  * caller.
 | |
|  */
 | |
| void iov_iter_folio_queue(struct iov_iter *i, unsigned int direction,
 | |
| 			  const struct folio_queue *folioq, unsigned int first_slot,
 | |
| 			  unsigned int offset, size_t count)
 | |
| {
 | |
| 	BUG_ON(direction & ~1);
 | |
| 	*i = (struct iov_iter) {
 | |
| 		.iter_type = ITER_FOLIOQ,
 | |
| 		.data_source = direction,
 | |
| 		.folioq = folioq,
 | |
| 		.folioq_slot = first_slot,
 | |
| 		.count = count,
 | |
| 		.iov_offset = offset,
 | |
| 	};
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_folio_queue);
 | |
| 
 | |
| /**
 | |
|  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
 | |
|  * @i: The iterator to initialise.
 | |
|  * @direction: The direction of the transfer.
 | |
|  * @xarray: The xarray to access.
 | |
|  * @start: The start file position.
 | |
|  * @count: The size of the I/O buffer in bytes.
 | |
|  *
 | |
|  * Set up an I/O iterator to either draw data out of the pages attached to an
 | |
|  * inode or to inject data into those pages.  The pages *must* be prevented
 | |
|  * from evaporation, either by taking a ref on them or locking them by the
 | |
|  * caller.
 | |
|  */
 | |
| void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
 | |
| 		     struct xarray *xarray, loff_t start, size_t count)
 | |
| {
 | |
| 	BUG_ON(direction & ~1);
 | |
| 	*i = (struct iov_iter) {
 | |
| 		.iter_type = ITER_XARRAY,
 | |
| 		.data_source = direction,
 | |
| 		.xarray = xarray,
 | |
| 		.xarray_start = start,
 | |
| 		.count = count,
 | |
| 		.iov_offset = 0
 | |
| 	};
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_xarray);
 | |
| 
 | |
| /**
 | |
|  * iov_iter_discard - Initialise an I/O iterator that discards data
 | |
|  * @i: The iterator to initialise.
 | |
|  * @direction: The direction of the transfer.
 | |
|  * @count: The size of the I/O buffer in bytes.
 | |
|  *
 | |
|  * Set up an I/O iterator that just discards everything that's written to it.
 | |
|  * It's only available as a READ iterator.
 | |
|  */
 | |
| void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
 | |
| {
 | |
| 	BUG_ON(direction != READ);
 | |
| 	*i = (struct iov_iter){
 | |
| 		.iter_type = ITER_DISCARD,
 | |
| 		.data_source = false,
 | |
| 		.count = count,
 | |
| 		.iov_offset = 0
 | |
| 	};
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_discard);
 | |
| 
 | |
| static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
 | |
| 				   unsigned len_mask)
 | |
| {
 | |
| 	const struct iovec *iov = iter_iov(i);
 | |
| 	size_t size = i->count;
 | |
| 	size_t skip = i->iov_offset;
 | |
| 
 | |
| 	do {
 | |
| 		size_t len = iov->iov_len - skip;
 | |
| 
 | |
| 		if (len > size)
 | |
| 			len = size;
 | |
| 		if (len & len_mask)
 | |
| 			return false;
 | |
| 		if ((unsigned long)(iov->iov_base + skip) & addr_mask)
 | |
| 			return false;
 | |
| 
 | |
| 		iov++;
 | |
| 		size -= len;
 | |
| 		skip = 0;
 | |
| 	} while (size);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
 | |
| 				  unsigned len_mask)
 | |
| {
 | |
| 	const struct bio_vec *bvec = i->bvec;
 | |
| 	unsigned skip = i->iov_offset;
 | |
| 	size_t size = i->count;
 | |
| 
 | |
| 	do {
 | |
| 		size_t len = bvec->bv_len;
 | |
| 
 | |
| 		if (len > size)
 | |
| 			len = size;
 | |
| 		if (len & len_mask)
 | |
| 			return false;
 | |
| 		if ((unsigned long)(bvec->bv_offset + skip) & addr_mask)
 | |
| 			return false;
 | |
| 
 | |
| 		bvec++;
 | |
| 		size -= len;
 | |
| 		skip = 0;
 | |
| 	} while (size);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
 | |
|  * 	are aligned to the parameters.
 | |
|  *
 | |
|  * @i: &struct iov_iter to restore
 | |
|  * @addr_mask: bit mask to check against the iov element's addresses
 | |
|  * @len_mask: bit mask to check against the iov element's lengths
 | |
|  *
 | |
|  * Return: false if any addresses or lengths intersect with the provided masks
 | |
|  */
 | |
| bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
 | |
| 			 unsigned len_mask)
 | |
| {
 | |
| 	if (likely(iter_is_ubuf(i))) {
 | |
| 		if (i->count & len_mask)
 | |
| 			return false;
 | |
| 		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
 | |
| 			return false;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
 | |
| 		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
 | |
| 
 | |
| 	if (iov_iter_is_bvec(i))
 | |
| 		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
 | |
| 
 | |
| 	/* With both xarray and folioq types, we're dealing with whole folios. */
 | |
| 	if (iov_iter_is_xarray(i)) {
 | |
| 		if (i->count & len_mask)
 | |
| 			return false;
 | |
| 		if ((i->xarray_start + i->iov_offset) & addr_mask)
 | |
| 			return false;
 | |
| 	}
 | |
| 	if (iov_iter_is_folioq(i)) {
 | |
| 		if (i->count & len_mask)
 | |
| 			return false;
 | |
| 		if (i->iov_offset & addr_mask)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
 | |
| 
 | |
| static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
 | |
| {
 | |
| 	const struct iovec *iov = iter_iov(i);
 | |
| 	unsigned long res = 0;
 | |
| 	size_t size = i->count;
 | |
| 	size_t skip = i->iov_offset;
 | |
| 
 | |
| 	do {
 | |
| 		size_t len = iov->iov_len - skip;
 | |
| 		if (len) {
 | |
| 			res |= (unsigned long)iov->iov_base + skip;
 | |
| 			if (len > size)
 | |
| 				len = size;
 | |
| 			res |= len;
 | |
| 			size -= len;
 | |
| 		}
 | |
| 		iov++;
 | |
| 		skip = 0;
 | |
| 	} while (size);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
 | |
| {
 | |
| 	const struct bio_vec *bvec = i->bvec;
 | |
| 	unsigned res = 0;
 | |
| 	size_t size = i->count;
 | |
| 	unsigned skip = i->iov_offset;
 | |
| 
 | |
| 	do {
 | |
| 		size_t len = bvec->bv_len - skip;
 | |
| 		res |= (unsigned long)bvec->bv_offset + skip;
 | |
| 		if (len > size)
 | |
| 			len = size;
 | |
| 		res |= len;
 | |
| 		bvec++;
 | |
| 		size -= len;
 | |
| 		skip = 0;
 | |
| 	} while (size);
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| unsigned long iov_iter_alignment(const struct iov_iter *i)
 | |
| {
 | |
| 	if (likely(iter_is_ubuf(i))) {
 | |
| 		size_t size = i->count;
 | |
| 		if (size)
 | |
| 			return ((unsigned long)i->ubuf + i->iov_offset) | size;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* iovec and kvec have identical layouts */
 | |
| 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
 | |
| 		return iov_iter_alignment_iovec(i);
 | |
| 
 | |
| 	if (iov_iter_is_bvec(i))
 | |
| 		return iov_iter_alignment_bvec(i);
 | |
| 
 | |
| 	/* With both xarray and folioq types, we're dealing with whole folios. */
 | |
| 	if (iov_iter_is_folioq(i))
 | |
| 		return i->iov_offset | i->count;
 | |
| 	if (iov_iter_is_xarray(i))
 | |
| 		return (i->xarray_start + i->iov_offset) | i->count;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_alignment);
 | |
| 
 | |
| unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
 | |
| {
 | |
| 	unsigned long res = 0;
 | |
| 	unsigned long v = 0;
 | |
| 	size_t size = i->count;
 | |
| 	unsigned k;
 | |
| 
 | |
| 	if (iter_is_ubuf(i))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (WARN_ON(!iter_is_iovec(i)))
 | |
| 		return ~0U;
 | |
| 
 | |
| 	for (k = 0; k < i->nr_segs; k++) {
 | |
| 		const struct iovec *iov = iter_iov(i) + k;
 | |
| 		if (iov->iov_len) {
 | |
| 			unsigned long base = (unsigned long)iov->iov_base;
 | |
| 			if (v) // if not the first one
 | |
| 				res |= base | v; // this start | previous end
 | |
| 			v = base + iov->iov_len;
 | |
| 			if (size <= iov->iov_len)
 | |
| 				break;
 | |
| 			size -= iov->iov_len;
 | |
| 		}
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_gap_alignment);
 | |
| 
 | |
| static int want_pages_array(struct page ***res, size_t size,
 | |
| 			    size_t start, unsigned int maxpages)
 | |
| {
 | |
| 	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
 | |
| 
 | |
| 	if (count > maxpages)
 | |
| 		count = maxpages;
 | |
| 	WARN_ON(!count);	// caller should've prevented that
 | |
| 	if (!*res) {
 | |
| 		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
 | |
| 		if (!*res)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t iter_folioq_get_pages(struct iov_iter *iter,
 | |
| 				     struct page ***ppages, size_t maxsize,
 | |
| 				     unsigned maxpages, size_t *_start_offset)
 | |
| {
 | |
| 	const struct folio_queue *folioq = iter->folioq;
 | |
| 	struct page **pages;
 | |
| 	unsigned int slot = iter->folioq_slot;
 | |
| 	size_t extracted = 0, count = iter->count, iov_offset = iter->iov_offset;
 | |
| 
 | |
| 	if (slot >= folioq_nr_slots(folioq)) {
 | |
| 		folioq = folioq->next;
 | |
| 		slot = 0;
 | |
| 		if (WARN_ON(iov_offset != 0))
 | |
| 			return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	maxpages = want_pages_array(ppages, maxsize, iov_offset & ~PAGE_MASK, maxpages);
 | |
| 	if (!maxpages)
 | |
| 		return -ENOMEM;
 | |
| 	*_start_offset = iov_offset & ~PAGE_MASK;
 | |
| 	pages = *ppages;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		struct folio *folio = folioq_folio(folioq, slot);
 | |
| 		size_t offset = iov_offset, fsize = folioq_folio_size(folioq, slot);
 | |
| 		size_t part = PAGE_SIZE - offset % PAGE_SIZE;
 | |
| 
 | |
| 		if (offset < fsize) {
 | |
| 			part = umin(part, umin(maxsize - extracted, fsize - offset));
 | |
| 			count -= part;
 | |
| 			iov_offset += part;
 | |
| 			extracted += part;
 | |
| 
 | |
| 			*pages = folio_page(folio, offset / PAGE_SIZE);
 | |
| 			get_page(*pages);
 | |
| 			pages++;
 | |
| 			maxpages--;
 | |
| 		}
 | |
| 
 | |
| 		if (maxpages == 0 || extracted >= maxsize)
 | |
| 			break;
 | |
| 
 | |
| 		if (iov_offset >= fsize) {
 | |
| 			iov_offset = 0;
 | |
| 			slot++;
 | |
| 			if (slot == folioq_nr_slots(folioq) && folioq->next) {
 | |
| 				folioq = folioq->next;
 | |
| 				slot = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	iter->count = count;
 | |
| 	iter->iov_offset = iov_offset;
 | |
| 	iter->folioq = folioq;
 | |
| 	iter->folioq_slot = slot;
 | |
| 	return extracted;
 | |
| }
 | |
| 
 | |
| static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
 | |
| 					  pgoff_t index, unsigned int nr_pages)
 | |
| {
 | |
| 	XA_STATE(xas, xa, index);
 | |
| 	struct page *page;
 | |
| 	unsigned int ret = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
 | |
| 		if (xas_retry(&xas, page))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Has the page moved or been split? */
 | |
| 		if (unlikely(page != xas_reload(&xas))) {
 | |
| 			xas_reset(&xas);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pages[ret] = find_subpage(page, xas.xa_index);
 | |
| 		get_page(pages[ret]);
 | |
| 		if (++ret == nr_pages)
 | |
| 			break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static ssize_t iter_xarray_get_pages(struct iov_iter *i,
 | |
| 				     struct page ***pages, size_t maxsize,
 | |
| 				     unsigned maxpages, size_t *_start_offset)
 | |
| {
 | |
| 	unsigned nr, offset, count;
 | |
| 	pgoff_t index;
 | |
| 	loff_t pos;
 | |
| 
 | |
| 	pos = i->xarray_start + i->iov_offset;
 | |
| 	index = pos >> PAGE_SHIFT;
 | |
| 	offset = pos & ~PAGE_MASK;
 | |
| 	*_start_offset = offset;
 | |
| 
 | |
| 	count = want_pages_array(pages, maxsize, offset, maxpages);
 | |
| 	if (!count)
 | |
| 		return -ENOMEM;
 | |
| 	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
 | |
| 	if (nr == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
 | |
| 	i->iov_offset += maxsize;
 | |
| 	i->count -= maxsize;
 | |
| 	return maxsize;
 | |
| }
 | |
| 
 | |
| /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
 | |
| static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
 | |
| {
 | |
| 	size_t skip;
 | |
| 	long k;
 | |
| 
 | |
| 	if (iter_is_ubuf(i))
 | |
| 		return (unsigned long)i->ubuf + i->iov_offset;
 | |
| 
 | |
| 	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
 | |
| 		const struct iovec *iov = iter_iov(i) + k;
 | |
| 		size_t len = iov->iov_len - skip;
 | |
| 
 | |
| 		if (unlikely(!len))
 | |
| 			continue;
 | |
| 		if (*size > len)
 | |
| 			*size = len;
 | |
| 		return (unsigned long)iov->iov_base + skip;
 | |
| 	}
 | |
| 	BUG(); // if it had been empty, we wouldn't get called
 | |
| }
 | |
| 
 | |
| /* must be done on non-empty ITER_BVEC one */
 | |
| static struct page *first_bvec_segment(const struct iov_iter *i,
 | |
| 				       size_t *size, size_t *start)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	size_t skip = i->iov_offset, len;
 | |
| 
 | |
| 	len = i->bvec->bv_len - skip;
 | |
| 	if (*size > len)
 | |
| 		*size = len;
 | |
| 	skip += i->bvec->bv_offset;
 | |
| 	page = i->bvec->bv_page + skip / PAGE_SIZE;
 | |
| 	*start = skip % PAGE_SIZE;
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
 | |
| 		   struct page ***pages, size_t maxsize,
 | |
| 		   unsigned int maxpages, size_t *start)
 | |
| {
 | |
| 	unsigned int n, gup_flags = 0;
 | |
| 
 | |
| 	if (maxsize > i->count)
 | |
| 		maxsize = i->count;
 | |
| 	if (!maxsize)
 | |
| 		return 0;
 | |
| 	if (maxsize > MAX_RW_COUNT)
 | |
| 		maxsize = MAX_RW_COUNT;
 | |
| 
 | |
| 	if (likely(user_backed_iter(i))) {
 | |
| 		unsigned long addr;
 | |
| 		int res;
 | |
| 
 | |
| 		if (iov_iter_rw(i) != WRITE)
 | |
| 			gup_flags |= FOLL_WRITE;
 | |
| 		if (i->nofault)
 | |
| 			gup_flags |= FOLL_NOFAULT;
 | |
| 
 | |
| 		addr = first_iovec_segment(i, &maxsize);
 | |
| 		*start = addr % PAGE_SIZE;
 | |
| 		addr &= PAGE_MASK;
 | |
| 		n = want_pages_array(pages, maxsize, *start, maxpages);
 | |
| 		if (!n)
 | |
| 			return -ENOMEM;
 | |
| 		res = get_user_pages_fast(addr, n, gup_flags, *pages);
 | |
| 		if (unlikely(res <= 0))
 | |
| 			return res;
 | |
| 		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
 | |
| 		iov_iter_advance(i, maxsize);
 | |
| 		return maxsize;
 | |
| 	}
 | |
| 	if (iov_iter_is_bvec(i)) {
 | |
| 		struct page **p;
 | |
| 		struct page *page;
 | |
| 
 | |
| 		page = first_bvec_segment(i, &maxsize, start);
 | |
| 		n = want_pages_array(pages, maxsize, *start, maxpages);
 | |
| 		if (!n)
 | |
| 			return -ENOMEM;
 | |
| 		p = *pages;
 | |
| 		for (int k = 0; k < n; k++)
 | |
| 			get_page(p[k] = page + k);
 | |
| 		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
 | |
| 		i->count -= maxsize;
 | |
| 		i->iov_offset += maxsize;
 | |
| 		if (i->iov_offset == i->bvec->bv_len) {
 | |
| 			i->iov_offset = 0;
 | |
| 			i->bvec++;
 | |
| 			i->nr_segs--;
 | |
| 		}
 | |
| 		return maxsize;
 | |
| 	}
 | |
| 	if (iov_iter_is_folioq(i))
 | |
| 		return iter_folioq_get_pages(i, pages, maxsize, maxpages, start);
 | |
| 	if (iov_iter_is_xarray(i))
 | |
| 		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
 | |
| 	return -EFAULT;
 | |
| }
 | |
| 
 | |
| ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
 | |
| 		size_t maxsize, unsigned maxpages, size_t *start)
 | |
| {
 | |
| 	if (!maxpages)
 | |
| 		return 0;
 | |
| 	BUG_ON(!pages);
 | |
| 
 | |
| 	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_get_pages2);
 | |
| 
 | |
| ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
 | |
| 		struct page ***pages, size_t maxsize, size_t *start)
 | |
| {
 | |
| 	ssize_t len;
 | |
| 
 | |
| 	*pages = NULL;
 | |
| 
 | |
| 	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
 | |
| 	if (len <= 0) {
 | |
| 		kvfree(*pages);
 | |
| 		*pages = NULL;
 | |
| 	}
 | |
| 	return len;
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
 | |
| 
 | |
| static int iov_npages(const struct iov_iter *i, int maxpages)
 | |
| {
 | |
| 	size_t skip = i->iov_offset, size = i->count;
 | |
| 	const struct iovec *p;
 | |
| 	int npages = 0;
 | |
| 
 | |
| 	for (p = iter_iov(i); size; skip = 0, p++) {
 | |
| 		unsigned offs = offset_in_page(p->iov_base + skip);
 | |
| 		size_t len = min(p->iov_len - skip, size);
 | |
| 
 | |
| 		if (len) {
 | |
| 			size -= len;
 | |
| 			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
 | |
| 			if (unlikely(npages > maxpages))
 | |
| 				return maxpages;
 | |
| 		}
 | |
| 	}
 | |
| 	return npages;
 | |
| }
 | |
| 
 | |
| static int bvec_npages(const struct iov_iter *i, int maxpages)
 | |
| {
 | |
| 	size_t skip = i->iov_offset, size = i->count;
 | |
| 	const struct bio_vec *p;
 | |
| 	int npages = 0;
 | |
| 
 | |
| 	for (p = i->bvec; size; skip = 0, p++) {
 | |
| 		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
 | |
| 		size_t len = min(p->bv_len - skip, size);
 | |
| 
 | |
| 		size -= len;
 | |
| 		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
 | |
| 		if (unlikely(npages > maxpages))
 | |
| 			return maxpages;
 | |
| 	}
 | |
| 	return npages;
 | |
| }
 | |
| 
 | |
| int iov_iter_npages(const struct iov_iter *i, int maxpages)
 | |
| {
 | |
| 	if (unlikely(!i->count))
 | |
| 		return 0;
 | |
| 	if (likely(iter_is_ubuf(i))) {
 | |
| 		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
 | |
| 		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
 | |
| 		return min(npages, maxpages);
 | |
| 	}
 | |
| 	/* iovec and kvec have identical layouts */
 | |
| 	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
 | |
| 		return iov_npages(i, maxpages);
 | |
| 	if (iov_iter_is_bvec(i))
 | |
| 		return bvec_npages(i, maxpages);
 | |
| 	if (iov_iter_is_folioq(i)) {
 | |
| 		unsigned offset = i->iov_offset % PAGE_SIZE;
 | |
| 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
 | |
| 		return min(npages, maxpages);
 | |
| 	}
 | |
| 	if (iov_iter_is_xarray(i)) {
 | |
| 		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
 | |
| 		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
 | |
| 		return min(npages, maxpages);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(iov_iter_npages);
 | |
| 
 | |
| const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
 | |
| {
 | |
| 	*new = *old;
 | |
| 	if (iov_iter_is_bvec(new))
 | |
| 		return new->bvec = kmemdup(new->bvec,
 | |
| 				    new->nr_segs * sizeof(struct bio_vec),
 | |
| 				    flags);
 | |
| 	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
 | |
| 		/* iovec and kvec have identical layout */
 | |
| 		return new->__iov = kmemdup(new->__iov,
 | |
| 				   new->nr_segs * sizeof(struct iovec),
 | |
| 				   flags);
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(dup_iter);
 | |
| 
 | |
| static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
 | |
| 		const struct iovec __user *uvec, u32 nr_segs)
 | |
| {
 | |
| 	const struct compat_iovec __user *uiov =
 | |
| 		(const struct compat_iovec __user *)uvec;
 | |
| 	int ret = -EFAULT;
 | |
| 	u32 i;
 | |
| 
 | |
| 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	for (i = 0; i < nr_segs; i++) {
 | |
| 		compat_uptr_t buf;
 | |
| 		compat_ssize_t len;
 | |
| 
 | |
| 		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
 | |
| 		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
 | |
| 
 | |
| 		/* check for compat_size_t not fitting in compat_ssize_t .. */
 | |
| 		if (len < 0) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto uaccess_end;
 | |
| 		}
 | |
| 		iov[i].iov_base = compat_ptr(buf);
 | |
| 		iov[i].iov_len = len;
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| uaccess_end:
 | |
| 	user_access_end();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static __noclone int copy_iovec_from_user(struct iovec *iov,
 | |
| 		const struct iovec __user *uiov, unsigned long nr_segs)
 | |
| {
 | |
| 	int ret = -EFAULT;
 | |
| 
 | |
| 	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	do {
 | |
| 		void __user *buf;
 | |
| 		ssize_t len;
 | |
| 
 | |
| 		unsafe_get_user(len, &uiov->iov_len, uaccess_end);
 | |
| 		unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
 | |
| 
 | |
| 		/* check for size_t not fitting in ssize_t .. */
 | |
| 		if (unlikely(len < 0)) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto uaccess_end;
 | |
| 		}
 | |
| 		iov->iov_base = buf;
 | |
| 		iov->iov_len = len;
 | |
| 
 | |
| 		uiov++; iov++;
 | |
| 	} while (--nr_segs);
 | |
| 
 | |
| 	ret = 0;
 | |
| uaccess_end:
 | |
| 	user_access_end();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct iovec *iovec_from_user(const struct iovec __user *uvec,
 | |
| 		unsigned long nr_segs, unsigned long fast_segs,
 | |
| 		struct iovec *fast_iov, bool compat)
 | |
| {
 | |
| 	struct iovec *iov = fast_iov;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * SuS says "The readv() function *may* fail if the iovcnt argument was
 | |
| 	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
 | |
| 	 * traditionally returned zero for zero segments, so...
 | |
| 	 */
 | |
| 	if (nr_segs == 0)
 | |
| 		return iov;
 | |
| 	if (nr_segs > UIO_MAXIOV)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	if (nr_segs > fast_segs) {
 | |
| 		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
 | |
| 		if (!iov)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(compat))
 | |
| 		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
 | |
| 	else
 | |
| 		ret = copy_iovec_from_user(iov, uvec, nr_segs);
 | |
| 	if (ret) {
 | |
| 		if (iov != fast_iov)
 | |
| 			kfree(iov);
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 
 | |
| 	return iov;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Single segment iovec supplied by the user, import it as ITER_UBUF.
 | |
|  */
 | |
| static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
 | |
| 				   struct iovec **iovp, struct iov_iter *i,
 | |
| 				   bool compat)
 | |
| {
 | |
| 	struct iovec *iov = *iovp;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	*iovp = NULL;
 | |
| 
 | |
| 	if (compat)
 | |
| 		ret = copy_compat_iovec_from_user(iov, uvec, 1);
 | |
| 	else
 | |
| 		ret = copy_iovec_from_user(iov, uvec, 1);
 | |
| 	if (unlikely(ret))
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
 | |
| 	if (unlikely(ret))
 | |
| 		return ret;
 | |
| 	return i->count;
 | |
| }
 | |
| 
 | |
| ssize_t __import_iovec(int type, const struct iovec __user *uvec,
 | |
| 		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
 | |
| 		 struct iov_iter *i, bool compat)
 | |
| {
 | |
| 	ssize_t total_len = 0;
 | |
| 	unsigned long seg;
 | |
| 	struct iovec *iov;
 | |
| 
 | |
| 	if (nr_segs == 1)
 | |
| 		return __import_iovec_ubuf(type, uvec, iovp, i, compat);
 | |
| 
 | |
| 	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
 | |
| 	if (IS_ERR(iov)) {
 | |
| 		*iovp = NULL;
 | |
| 		return PTR_ERR(iov);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * According to the Single Unix Specification we should return EINVAL if
 | |
| 	 * an element length is < 0 when cast to ssize_t or if the total length
 | |
| 	 * would overflow the ssize_t return value of the system call.
 | |
| 	 *
 | |
| 	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
 | |
| 	 * overflow case.
 | |
| 	 */
 | |
| 	for (seg = 0; seg < nr_segs; seg++) {
 | |
| 		ssize_t len = (ssize_t)iov[seg].iov_len;
 | |
| 
 | |
| 		if (!access_ok(iov[seg].iov_base, len)) {
 | |
| 			if (iov != *iovp)
 | |
| 				kfree(iov);
 | |
| 			*iovp = NULL;
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 
 | |
| 		if (len > MAX_RW_COUNT - total_len) {
 | |
| 			len = MAX_RW_COUNT - total_len;
 | |
| 			iov[seg].iov_len = len;
 | |
| 		}
 | |
| 		total_len += len;
 | |
| 	}
 | |
| 
 | |
| 	iov_iter_init(i, type, iov, nr_segs, total_len);
 | |
| 	if (iov == *iovp)
 | |
| 		*iovp = NULL;
 | |
| 	else
 | |
| 		*iovp = iov;
 | |
| 	return total_len;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * import_iovec() - Copy an array of &struct iovec from userspace
 | |
|  *     into the kernel, check that it is valid, and initialize a new
 | |
|  *     &struct iov_iter iterator to access it.
 | |
|  *
 | |
|  * @type: One of %READ or %WRITE.
 | |
|  * @uvec: Pointer to the userspace array.
 | |
|  * @nr_segs: Number of elements in userspace array.
 | |
|  * @fast_segs: Number of elements in @iov.
 | |
|  * @iovp: (input and output parameter) Pointer to pointer to (usually small
 | |
|  *     on-stack) kernel array.
 | |
|  * @i: Pointer to iterator that will be initialized on success.
 | |
|  *
 | |
|  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
 | |
|  * then this function places %NULL in *@iov on return. Otherwise, a new
 | |
|  * array will be allocated and the result placed in *@iov. This means that
 | |
|  * the caller may call kfree() on *@iov regardless of whether the small
 | |
|  * on-stack array was used or not (and regardless of whether this function
 | |
|  * returns an error or not).
 | |
|  *
 | |
|  * Return: Negative error code on error, bytes imported on success
 | |
|  */
 | |
| ssize_t import_iovec(int type, const struct iovec __user *uvec,
 | |
| 		 unsigned nr_segs, unsigned fast_segs,
 | |
| 		 struct iovec **iovp, struct iov_iter *i)
 | |
| {
 | |
| 	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
 | |
| 			      in_compat_syscall());
 | |
| }
 | |
| EXPORT_SYMBOL(import_iovec);
 | |
| 
 | |
| int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
 | |
| {
 | |
| 	if (len > MAX_RW_COUNT)
 | |
| 		len = MAX_RW_COUNT;
 | |
| 	if (unlikely(!access_ok(buf, len)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	iov_iter_ubuf(i, rw, buf, len);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(import_ubuf);
 | |
| 
 | |
| /**
 | |
|  * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
 | |
|  *     iov_iter_save_state() was called.
 | |
|  *
 | |
|  * @i: &struct iov_iter to restore
 | |
|  * @state: state to restore from
 | |
|  *
 | |
|  * Used after iov_iter_save_state() to bring restore @i, if operations may
 | |
|  * have advanced it.
 | |
|  *
 | |
|  * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
 | |
|  */
 | |
| void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
 | |
| 			 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
 | |
| 		return;
 | |
| 	i->iov_offset = state->iov_offset;
 | |
| 	i->count = state->count;
 | |
| 	if (iter_is_ubuf(i))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * For the *vec iters, nr_segs + iov is constant - if we increment
 | |
| 	 * the vec, then we also decrement the nr_segs count. Hence we don't
 | |
| 	 * need to track both of these, just one is enough and we can deduct
 | |
| 	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
 | |
| 	 * size, so we can just increment the iov pointer as they are unionzed.
 | |
| 	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
 | |
| 	 * not. Be safe and handle it separately.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
 | |
| 	if (iov_iter_is_bvec(i))
 | |
| 		i->bvec -= state->nr_segs - i->nr_segs;
 | |
| 	else
 | |
| 		i->__iov -= state->nr_segs - i->nr_segs;
 | |
| 	i->nr_segs = state->nr_segs;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Extract a list of contiguous pages from an ITER_FOLIOQ iterator.  This does
 | |
|  * not get references on the pages, nor does it get a pin on them.
 | |
|  */
 | |
| static ssize_t iov_iter_extract_folioq_pages(struct iov_iter *i,
 | |
| 					     struct page ***pages, size_t maxsize,
 | |
| 					     unsigned int maxpages,
 | |
| 					     iov_iter_extraction_t extraction_flags,
 | |
| 					     size_t *offset0)
 | |
| {
 | |
| 	const struct folio_queue *folioq = i->folioq;
 | |
| 	struct page **p;
 | |
| 	unsigned int nr = 0;
 | |
| 	size_t extracted = 0, offset, slot = i->folioq_slot;
 | |
| 
 | |
| 	if (slot >= folioq_nr_slots(folioq)) {
 | |
| 		folioq = folioq->next;
 | |
| 		slot = 0;
 | |
| 		if (WARN_ON(i->iov_offset != 0))
 | |
| 			return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	offset = i->iov_offset & ~PAGE_MASK;
 | |
| 	*offset0 = offset;
 | |
| 
 | |
| 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
 | |
| 	if (!maxpages)
 | |
| 		return -ENOMEM;
 | |
| 	p = *pages;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		struct folio *folio = folioq_folio(folioq, slot);
 | |
| 		size_t offset = i->iov_offset, fsize = folioq_folio_size(folioq, slot);
 | |
| 		size_t part = PAGE_SIZE - offset % PAGE_SIZE;
 | |
| 
 | |
| 		if (offset < fsize) {
 | |
| 			part = umin(part, umin(maxsize - extracted, fsize - offset));
 | |
| 			i->count -= part;
 | |
| 			i->iov_offset += part;
 | |
| 			extracted += part;
 | |
| 
 | |
| 			p[nr++] = folio_page(folio, offset / PAGE_SIZE);
 | |
| 		}
 | |
| 
 | |
| 		if (nr >= maxpages || extracted >= maxsize)
 | |
| 			break;
 | |
| 
 | |
| 		if (i->iov_offset >= fsize) {
 | |
| 			i->iov_offset = 0;
 | |
| 			slot++;
 | |
| 			if (slot == folioq_nr_slots(folioq) && folioq->next) {
 | |
| 				folioq = folioq->next;
 | |
| 				slot = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	i->folioq = folioq;
 | |
| 	i->folioq_slot = slot;
 | |
| 	return extracted;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not
 | |
|  * get references on the pages, nor does it get a pin on them.
 | |
|  */
 | |
| static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
 | |
| 					     struct page ***pages, size_t maxsize,
 | |
| 					     unsigned int maxpages,
 | |
| 					     iov_iter_extraction_t extraction_flags,
 | |
| 					     size_t *offset0)
 | |
| {
 | |
| 	struct page *page, **p;
 | |
| 	unsigned int nr = 0, offset;
 | |
| 	loff_t pos = i->xarray_start + i->iov_offset;
 | |
| 	pgoff_t index = pos >> PAGE_SHIFT;
 | |
| 	XA_STATE(xas, i->xarray, index);
 | |
| 
 | |
| 	offset = pos & ~PAGE_MASK;
 | |
| 	*offset0 = offset;
 | |
| 
 | |
| 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
 | |
| 	if (!maxpages)
 | |
| 		return -ENOMEM;
 | |
| 	p = *pages;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
 | |
| 		if (xas_retry(&xas, page))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Has the page moved or been split? */
 | |
| 		if (unlikely(page != xas_reload(&xas))) {
 | |
| 			xas_reset(&xas);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		p[nr++] = find_subpage(page, xas.xa_index);
 | |
| 		if (nr == maxpages)
 | |
| 			break;
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
 | |
| 	iov_iter_advance(i, maxsize);
 | |
| 	return maxsize;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Extract a list of virtually contiguous pages from an ITER_BVEC iterator.
 | |
|  * This does not get references on the pages, nor does it get a pin on them.
 | |
|  */
 | |
| static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
 | |
| 					   struct page ***pages, size_t maxsize,
 | |
| 					   unsigned int maxpages,
 | |
| 					   iov_iter_extraction_t extraction_flags,
 | |
| 					   size_t *offset0)
 | |
| {
 | |
| 	size_t skip = i->iov_offset, size = 0;
 | |
| 	struct bvec_iter bi;
 | |
| 	int k = 0;
 | |
| 
 | |
| 	if (i->nr_segs == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (i->iov_offset == i->bvec->bv_len) {
 | |
| 		i->iov_offset = 0;
 | |
| 		i->nr_segs--;
 | |
| 		i->bvec++;
 | |
| 		skip = 0;
 | |
| 	}
 | |
| 	bi.bi_idx = 0;
 | |
| 	bi.bi_size = maxsize;
 | |
| 	bi.bi_bvec_done = skip;
 | |
| 
 | |
| 	maxpages = want_pages_array(pages, maxsize, skip, maxpages);
 | |
| 
 | |
| 	while (bi.bi_size && bi.bi_idx < i->nr_segs) {
 | |
| 		struct bio_vec bv = bvec_iter_bvec(i->bvec, bi);
 | |
| 
 | |
| 		/*
 | |
| 		 * The iov_iter_extract_pages interface only allows an offset
 | |
| 		 * into the first page.  Break out of the loop if we see an
 | |
| 		 * offset into subsequent pages, the caller will have to call
 | |
| 		 * iov_iter_extract_pages again for the reminder.
 | |
| 		 */
 | |
| 		if (k) {
 | |
| 			if (bv.bv_offset)
 | |
| 				break;
 | |
| 		} else {
 | |
| 			*offset0 = bv.bv_offset;
 | |
| 		}
 | |
| 
 | |
| 		(*pages)[k++] = bv.bv_page;
 | |
| 		size += bv.bv_len;
 | |
| 
 | |
| 		if (k >= maxpages)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * We are done when the end of the bvec doesn't align to a page
 | |
| 		 * boundary as that would create a hole in the returned space.
 | |
| 		 * The caller will handle this with another call to
 | |
| 		 * iov_iter_extract_pages.
 | |
| 		 */
 | |
| 		if (bv.bv_offset + bv.bv_len != PAGE_SIZE)
 | |
| 			break;
 | |
| 
 | |
| 		bvec_iter_advance_single(i->bvec, &bi, bv.bv_len);
 | |
| 	}
 | |
| 
 | |
| 	iov_iter_advance(i, size);
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
 | |
|  * This does not get references on the pages, nor does it get a pin on them.
 | |
|  */
 | |
| static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
 | |
| 					   struct page ***pages, size_t maxsize,
 | |
| 					   unsigned int maxpages,
 | |
| 					   iov_iter_extraction_t extraction_flags,
 | |
| 					   size_t *offset0)
 | |
| {
 | |
| 	struct page **p, *page;
 | |
| 	const void *kaddr;
 | |
| 	size_t skip = i->iov_offset, offset, len, size;
 | |
| 	int k;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		if (i->nr_segs == 0)
 | |
| 			return 0;
 | |
| 		size = min(maxsize, i->kvec->iov_len - skip);
 | |
| 		if (size)
 | |
| 			break;
 | |
| 		i->iov_offset = 0;
 | |
| 		i->nr_segs--;
 | |
| 		i->kvec++;
 | |
| 		skip = 0;
 | |
| 	}
 | |
| 
 | |
| 	kaddr = i->kvec->iov_base + skip;
 | |
| 	offset = (unsigned long)kaddr & ~PAGE_MASK;
 | |
| 	*offset0 = offset;
 | |
| 
 | |
| 	maxpages = want_pages_array(pages, size, offset, maxpages);
 | |
| 	if (!maxpages)
 | |
| 		return -ENOMEM;
 | |
| 	p = *pages;
 | |
| 
 | |
| 	kaddr -= offset;
 | |
| 	len = offset + size;
 | |
| 	for (k = 0; k < maxpages; k++) {
 | |
| 		size_t seg = min_t(size_t, len, PAGE_SIZE);
 | |
| 
 | |
| 		if (is_vmalloc_or_module_addr(kaddr))
 | |
| 			page = vmalloc_to_page(kaddr);
 | |
| 		else
 | |
| 			page = virt_to_page(kaddr);
 | |
| 
 | |
| 		p[k] = page;
 | |
| 		len -= seg;
 | |
| 		kaddr += PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
 | |
| 	iov_iter_advance(i, size);
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Extract a list of contiguous pages from a user iterator and get a pin on
 | |
|  * each of them.  This should only be used if the iterator is user-backed
 | |
|  * (IOBUF/UBUF).
 | |
|  *
 | |
|  * It does not get refs on the pages, but the pages must be unpinned by the
 | |
|  * caller once the transfer is complete.
 | |
|  *
 | |
|  * This is safe to be used where background IO/DMA *is* going to be modifying
 | |
|  * the buffer; using a pin rather than a ref makes forces fork() to give the
 | |
|  * child a copy of the page.
 | |
|  */
 | |
| static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
 | |
| 					   struct page ***pages,
 | |
| 					   size_t maxsize,
 | |
| 					   unsigned int maxpages,
 | |
| 					   iov_iter_extraction_t extraction_flags,
 | |
| 					   size_t *offset0)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 	unsigned int gup_flags = 0;
 | |
| 	size_t offset;
 | |
| 	int res;
 | |
| 
 | |
| 	if (i->data_source == ITER_DEST)
 | |
| 		gup_flags |= FOLL_WRITE;
 | |
| 	if (extraction_flags & ITER_ALLOW_P2PDMA)
 | |
| 		gup_flags |= FOLL_PCI_P2PDMA;
 | |
| 	if (i->nofault)
 | |
| 		gup_flags |= FOLL_NOFAULT;
 | |
| 
 | |
| 	addr = first_iovec_segment(i, &maxsize);
 | |
| 	*offset0 = offset = addr % PAGE_SIZE;
 | |
| 	addr &= PAGE_MASK;
 | |
| 	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
 | |
| 	if (!maxpages)
 | |
| 		return -ENOMEM;
 | |
| 	res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
 | |
| 	if (unlikely(res <= 0))
 | |
| 		return res;
 | |
| 	maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
 | |
| 	iov_iter_advance(i, maxsize);
 | |
| 	return maxsize;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
 | |
|  * @i: The iterator to extract from
 | |
|  * @pages: Where to return the list of pages
 | |
|  * @maxsize: The maximum amount of iterator to extract
 | |
|  * @maxpages: The maximum size of the list of pages
 | |
|  * @extraction_flags: Flags to qualify request
 | |
|  * @offset0: Where to return the starting offset into (*@pages)[0]
 | |
|  *
 | |
|  * Extract a list of contiguous pages from the current point of the iterator,
 | |
|  * advancing the iterator.  The maximum number of pages and the maximum amount
 | |
|  * of page contents can be set.
 | |
|  *
 | |
|  * If *@pages is NULL, a page list will be allocated to the required size and
 | |
|  * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed
 | |
|  * that the caller allocated a page list at least @maxpages in size and this
 | |
|  * will be filled in.
 | |
|  *
 | |
|  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
 | |
|  * be allowed on the pages extracted.
 | |
|  *
 | |
|  * The iov_iter_extract_will_pin() function can be used to query how cleanup
 | |
|  * should be performed.
 | |
|  *
 | |
|  * Extra refs or pins on the pages may be obtained as follows:
 | |
|  *
 | |
|  *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
 | |
|  *      added to the pages, but refs will not be taken.
 | |
|  *      iov_iter_extract_will_pin() will return true.
 | |
|  *
 | |
|  *  (*) If the iterator is ITER_KVEC, ITER_BVEC, ITER_FOLIOQ or ITER_XARRAY, the
 | |
|  *      pages are merely listed; no extra refs or pins are obtained.
 | |
|  *      iov_iter_extract_will_pin() will return 0.
 | |
|  *
 | |
|  * Note also:
 | |
|  *
 | |
|  *  (*) Use with ITER_DISCARD is not supported as that has no content.
 | |
|  *
 | |
|  * On success, the function sets *@pages to the new pagelist, if allocated, and
 | |
|  * sets *offset0 to the offset into the first page.
 | |
|  *
 | |
|  * It may also return -ENOMEM and -EFAULT.
 | |
|  */
 | |
| ssize_t iov_iter_extract_pages(struct iov_iter *i,
 | |
| 			       struct page ***pages,
 | |
| 			       size_t maxsize,
 | |
| 			       unsigned int maxpages,
 | |
| 			       iov_iter_extraction_t extraction_flags,
 | |
| 			       size_t *offset0)
 | |
| {
 | |
| 	maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
 | |
| 	if (!maxsize)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (likely(user_backed_iter(i)))
 | |
| 		return iov_iter_extract_user_pages(i, pages, maxsize,
 | |
| 						   maxpages, extraction_flags,
 | |
| 						   offset0);
 | |
| 	if (iov_iter_is_kvec(i))
 | |
| 		return iov_iter_extract_kvec_pages(i, pages, maxsize,
 | |
| 						   maxpages, extraction_flags,
 | |
| 						   offset0);
 | |
| 	if (iov_iter_is_bvec(i))
 | |
| 		return iov_iter_extract_bvec_pages(i, pages, maxsize,
 | |
| 						   maxpages, extraction_flags,
 | |
| 						   offset0);
 | |
| 	if (iov_iter_is_folioq(i))
 | |
| 		return iov_iter_extract_folioq_pages(i, pages, maxsize,
 | |
| 						     maxpages, extraction_flags,
 | |
| 						     offset0);
 | |
| 	if (iov_iter_is_xarray(i))
 | |
| 		return iov_iter_extract_xarray_pages(i, pages, maxsize,
 | |
| 						     maxpages, extraction_flags,
 | |
| 						     offset0);
 | |
| 	return -EFAULT;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(iov_iter_extract_pages);
 |