forked from mirrors/linux
		
	 1635e62e75
			
		
	
	
		1635e62e75
		
	
	
	
	
		
			
			Verify that edge cases produce proper results, and some more. [npitre@baylibre.com: avoid undefined shift value] Link: https://lkml.kernel.org/r/7rrs9pn1-n266-3013-9q6n-1osp8r8s0rrn@syhkavp.arg Link: https://lkml.kernel.org/r/20240707190648.1982714-3-nico@fluxnic.net Signed-off-by: Nicolas Pitre <npitre@baylibre.com> Reviewed-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com> Cc: Biju Das <biju.das.jz@bp.renesas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			269 lines
		
	
	
	
		
			5.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			269 lines
		
	
	
	
		
			5.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
 | |
|  *
 | |
|  * Based on former do_div() implementation from asm-parisc/div64.h:
 | |
|  *	Copyright (C) 1999 Hewlett-Packard Co
 | |
|  *	Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
 | |
|  *
 | |
|  *
 | |
|  * Generic C version of 64bit/32bit division and modulo, with
 | |
|  * 64bit result and 32bit remainder.
 | |
|  *
 | |
|  * The fast case for (n>>32 == 0) is handled inline by do_div().
 | |
|  *
 | |
|  * Code generated for this function might be very inefficient
 | |
|  * for some CPUs. __div64_32() can be overridden by linking arch-specific
 | |
|  * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
 | |
|  * or by defining a preprocessor macro in arch/include/asm/div64.h.
 | |
|  */
 | |
| 
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/math.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/minmax.h>
 | |
| #include <linux/log2.h>
 | |
| 
 | |
| /* Not needed on 64bit architectures */
 | |
| #if BITS_PER_LONG == 32
 | |
| 
 | |
| #ifndef __div64_32
 | |
| uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
 | |
| {
 | |
| 	uint64_t rem = *n;
 | |
| 	uint64_t b = base;
 | |
| 	uint64_t res, d = 1;
 | |
| 	uint32_t high = rem >> 32;
 | |
| 
 | |
| 	/* Reduce the thing a bit first */
 | |
| 	res = 0;
 | |
| 	if (high >= base) {
 | |
| 		high /= base;
 | |
| 		res = (uint64_t) high << 32;
 | |
| 		rem -= (uint64_t) (high*base) << 32;
 | |
| 	}
 | |
| 
 | |
| 	while ((int64_t)b > 0 && b < rem) {
 | |
| 		b = b+b;
 | |
| 		d = d+d;
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		if (rem >= b) {
 | |
| 			rem -= b;
 | |
| 			res += d;
 | |
| 		}
 | |
| 		b >>= 1;
 | |
| 		d >>= 1;
 | |
| 	} while (d);
 | |
| 
 | |
| 	*n = res;
 | |
| 	return rem;
 | |
| }
 | |
| EXPORT_SYMBOL(__div64_32);
 | |
| #endif
 | |
| 
 | |
| #ifndef div_s64_rem
 | |
| s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
 | |
| {
 | |
| 	u64 quotient;
 | |
| 
 | |
| 	if (dividend < 0) {
 | |
| 		quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
 | |
| 		*remainder = -*remainder;
 | |
| 		if (divisor > 0)
 | |
| 			quotient = -quotient;
 | |
| 	} else {
 | |
| 		quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
 | |
| 		if (divisor < 0)
 | |
| 			quotient = -quotient;
 | |
| 	}
 | |
| 	return quotient;
 | |
| }
 | |
| EXPORT_SYMBOL(div_s64_rem);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
 | |
|  * @dividend:	64bit dividend
 | |
|  * @divisor:	64bit divisor
 | |
|  * @remainder:  64bit remainder
 | |
|  *
 | |
|  * This implementation is a comparable to algorithm used by div64_u64.
 | |
|  * But this operation, which includes math for calculating the remainder,
 | |
|  * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
 | |
|  * systems.
 | |
|  */
 | |
| #ifndef div64_u64_rem
 | |
| u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
 | |
| {
 | |
| 	u32 high = divisor >> 32;
 | |
| 	u64 quot;
 | |
| 
 | |
| 	if (high == 0) {
 | |
| 		u32 rem32;
 | |
| 		quot = div_u64_rem(dividend, divisor, &rem32);
 | |
| 		*remainder = rem32;
 | |
| 	} else {
 | |
| 		int n = fls(high);
 | |
| 		quot = div_u64(dividend >> n, divisor >> n);
 | |
| 
 | |
| 		if (quot != 0)
 | |
| 			quot--;
 | |
| 
 | |
| 		*remainder = dividend - quot * divisor;
 | |
| 		if (*remainder >= divisor) {
 | |
| 			quot++;
 | |
| 			*remainder -= divisor;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return quot;
 | |
| }
 | |
| EXPORT_SYMBOL(div64_u64_rem);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * div64_u64 - unsigned 64bit divide with 64bit divisor
 | |
|  * @dividend:	64bit dividend
 | |
|  * @divisor:	64bit divisor
 | |
|  *
 | |
|  * This implementation is a modified version of the algorithm proposed
 | |
|  * by the book 'Hacker's Delight'.  The original source and full proof
 | |
|  * can be found here and is available for use without restriction.
 | |
|  *
 | |
|  * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
 | |
|  */
 | |
| #ifndef div64_u64
 | |
| u64 div64_u64(u64 dividend, u64 divisor)
 | |
| {
 | |
| 	u32 high = divisor >> 32;
 | |
| 	u64 quot;
 | |
| 
 | |
| 	if (high == 0) {
 | |
| 		quot = div_u64(dividend, divisor);
 | |
| 	} else {
 | |
| 		int n = fls(high);
 | |
| 		quot = div_u64(dividend >> n, divisor >> n);
 | |
| 
 | |
| 		if (quot != 0)
 | |
| 			quot--;
 | |
| 		if ((dividend - quot * divisor) >= divisor)
 | |
| 			quot++;
 | |
| 	}
 | |
| 
 | |
| 	return quot;
 | |
| }
 | |
| EXPORT_SYMBOL(div64_u64);
 | |
| #endif
 | |
| 
 | |
| #ifndef div64_s64
 | |
| s64 div64_s64(s64 dividend, s64 divisor)
 | |
| {
 | |
| 	s64 quot, t;
 | |
| 
 | |
| 	quot = div64_u64(abs(dividend), abs(divisor));
 | |
| 	t = (dividend ^ divisor) >> 63;
 | |
| 
 | |
| 	return (quot ^ t) - t;
 | |
| }
 | |
| EXPORT_SYMBOL(div64_s64);
 | |
| #endif
 | |
| 
 | |
| #endif /* BITS_PER_LONG == 32 */
 | |
| 
 | |
| /*
 | |
|  * Iterative div/mod for use when dividend is not expected to be much
 | |
|  * bigger than divisor.
 | |
|  */
 | |
| u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
 | |
| {
 | |
| 	return __iter_div_u64_rem(dividend, divisor, remainder);
 | |
| }
 | |
| EXPORT_SYMBOL(iter_div_u64_rem);
 | |
| 
 | |
| #ifndef mul_u64_u64_div_u64
 | |
| u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c)
 | |
| {
 | |
| 	if (ilog2(a) + ilog2(b) <= 62)
 | |
| 		return div64_u64(a * b, c);
 | |
| 
 | |
| #if defined(__SIZEOF_INT128__)
 | |
| 
 | |
| 	/* native 64x64=128 bits multiplication */
 | |
| 	u128 prod = (u128)a * b;
 | |
| 	u64 n_lo = prod, n_hi = prod >> 64;
 | |
| 
 | |
| #else
 | |
| 
 | |
| 	/* perform a 64x64=128 bits multiplication manually */
 | |
| 	u32 a_lo = a, a_hi = a >> 32, b_lo = b, b_hi = b >> 32;
 | |
| 	u64 x, y, z;
 | |
| 
 | |
| 	x = (u64)a_lo * b_lo;
 | |
| 	y = (u64)a_lo * b_hi + (u32)(x >> 32);
 | |
| 	z = (u64)a_hi * b_hi + (u32)(y >> 32);
 | |
| 	y = (u64)a_hi * b_lo + (u32)y;
 | |
| 	z += (u32)(y >> 32);
 | |
| 	x = (y << 32) + (u32)x;
 | |
| 
 | |
| 	u64 n_lo = x, n_hi = z;
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 	/* make sure c is not zero, trigger exception otherwise */
 | |
| #pragma GCC diagnostic push
 | |
| #pragma GCC diagnostic ignored "-Wdiv-by-zero"
 | |
| 	if (unlikely(c == 0))
 | |
| 		return 1/0;
 | |
| #pragma GCC diagnostic pop
 | |
| 
 | |
| 	int shift = __builtin_ctzll(c);
 | |
| 
 | |
| 	/* try reducing the fraction in case the dividend becomes <= 64 bits */
 | |
| 	if ((n_hi >> shift) == 0) {
 | |
| 		u64 n = shift ? (n_lo >> shift) | (n_hi << (64 - shift)) : n_lo;
 | |
| 
 | |
| 		return div64_u64(n, c >> shift);
 | |
| 		/*
 | |
| 		 * The remainder value if needed would be:
 | |
| 		 *   res = div64_u64_rem(n, c >> shift, &rem);
 | |
| 		 *   rem = (rem << shift) + (n_lo - (n << shift));
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	if (n_hi >= c) {
 | |
| 		/* overflow: result is unrepresentable in a u64 */
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* Do the full 128 by 64 bits division */
 | |
| 
 | |
| 	shift = __builtin_clzll(c);
 | |
| 	c <<= shift;
 | |
| 
 | |
| 	int p = 64 + shift;
 | |
| 	u64 res = 0;
 | |
| 	bool carry;
 | |
| 
 | |
| 	do {
 | |
| 		carry = n_hi >> 63;
 | |
| 		shift = carry ? 1 : __builtin_clzll(n_hi);
 | |
| 		if (p < shift)
 | |
| 			break;
 | |
| 		p -= shift;
 | |
| 		n_hi <<= shift;
 | |
| 		n_hi |= n_lo >> (64 - shift);
 | |
| 		n_lo <<= shift;
 | |
| 		if (carry || (n_hi >= c)) {
 | |
| 			n_hi -= c;
 | |
| 			res |= 1ULL << p;
 | |
| 		}
 | |
| 	} while (n_hi);
 | |
| 	/* The remainder value if needed would be n_hi << p */
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(mul_u64_u64_div_u64);
 | |
| #endif
 |