forked from mirrors/linux
		
	 b81679b163
			
		
	
	
		b81679b163
		
	
	
	
	
		
			
			Patch series "mm: memory_failure: unmap poisoned folio during migrate properly", v3. Fix two bugs during folio migration if the folio is poisoned. This patch (of 3): Commit6da6b1d4a7("mm/hwpoison: convert TTU_IGNORE_HWPOISON to TTU_HWPOISON") introduce TTU_HWPOISON to replace TTU_IGNORE_HWPOISON in order to stop send SIGBUS signal when accessing an error page after a memory error on a clean folio. However during page migration, anon folio must be set with TTU_HWPOISON during unmap_*(). For pagecache we need some policy just like the one in hwpoison_user_mappings to set this flag. So move this policy from hwpoison_user_mappings to unmap_poisoned_folio to handle this warning properly. Warning will be produced during unamp poison folio with the following log: ------------[ cut here ]------------ WARNING: CPU: 1 PID: 365 at mm/rmap.c:1847 try_to_unmap_one+0x8fc/0xd3c Modules linked in: CPU: 1 UID: 0 PID: 365 Comm: bash Tainted: G W 6.13.0-rc1-00018-gacdb4bbda7ab #42 Tainted: [W]=WARN Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015 pstate: 20400005 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : try_to_unmap_one+0x8fc/0xd3c lr : try_to_unmap_one+0x3dc/0xd3c Call trace: try_to_unmap_one+0x8fc/0xd3c (P) try_to_unmap_one+0x3dc/0xd3c (L) rmap_walk_anon+0xdc/0x1f8 rmap_walk+0x3c/0x58 try_to_unmap+0x88/0x90 unmap_poisoned_folio+0x30/0xa8 do_migrate_range+0x4a0/0x568 offline_pages+0x5a4/0x670 memory_block_action+0x17c/0x374 memory_subsys_offline+0x3c/0x78 device_offline+0xa4/0xd0 state_store+0x8c/0xf0 dev_attr_store+0x18/0x2c sysfs_kf_write+0x44/0x54 kernfs_fop_write_iter+0x118/0x1a8 vfs_write+0x3a8/0x4bc ksys_write+0x6c/0xf8 __arm64_sys_write+0x1c/0x28 invoke_syscall+0x44/0x100 el0_svc_common.constprop.0+0x40/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x30/0xd0 el0t_64_sync_handler+0xc8/0xcc el0t_64_sync+0x198/0x19c ---[ end trace 0000000000000000 ]--- [mawupeng1@huawei.com: unmap_poisoned_folio(): remove shadowed local `mapping', per Miaohe] Link: https://lkml.kernel.org/r/20250219060653.3849083-1-mawupeng1@huawei.com Link: https://lkml.kernel.org/r/20250217014329.3610326-1-mawupeng1@huawei.com Link: https://lkml.kernel.org/r/20250217014329.3610326-2-mawupeng1@huawei.com Fixes:6da6b1d4a7("mm/hwpoison: convert TTU_IGNORE_HWPOISON to TTU_HWPOISON") Signed-off-by: Ma Wupeng <mawupeng1@huawei.com> Suggested-by: David Hildenbrand <david@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Ma Wupeng <mawupeng1@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			1550 lines
		
	
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1550 lines
		
	
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0-or-later */
 | |
| /* internal.h: mm/ internal definitions
 | |
|  *
 | |
|  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
 | |
|  * Written by David Howells (dhowells@redhat.com)
 | |
|  */
 | |
| #ifndef __MM_INTERNAL_H
 | |
| #define __MM_INTERNAL_H
 | |
| 
 | |
| #include <linux/fs.h>
 | |
| #include <linux/khugepaged.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/pagewalk.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/swap_cgroup.h>
 | |
| #include <linux/tracepoint-defs.h>
 | |
| 
 | |
| /* Internal core VMA manipulation functions. */
 | |
| #include "vma.h"
 | |
| 
 | |
| struct folio_batch;
 | |
| 
 | |
| /*
 | |
|  * The set of flags that only affect watermark checking and reclaim
 | |
|  * behaviour. This is used by the MM to obey the caller constraints
 | |
|  * about IO, FS and watermark checking while ignoring placement
 | |
|  * hints such as HIGHMEM usage.
 | |
|  */
 | |
| #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
 | |
| 			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
 | |
| 			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
 | |
| 			__GFP_NOLOCKDEP)
 | |
| 
 | |
| /* The GFP flags allowed during early boot */
 | |
| #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
 | |
| 
 | |
| /* Control allocation cpuset and node placement constraints */
 | |
| #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
 | |
| 
 | |
| /* Do not use these with a slab allocator */
 | |
| #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
 | |
| 
 | |
| /*
 | |
|  * Different from WARN_ON_ONCE(), no warning will be issued
 | |
|  * when we specify __GFP_NOWARN.
 | |
|  */
 | |
| #define WARN_ON_ONCE_GFP(cond, gfp)	({				\
 | |
| 	static bool __section(".data..once") __warned;			\
 | |
| 	int __ret_warn_once = !!(cond);					\
 | |
| 									\
 | |
| 	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
 | |
| 		__warned = true;					\
 | |
| 		WARN_ON(1);						\
 | |
| 	}								\
 | |
| 	unlikely(__ret_warn_once);					\
 | |
| })
 | |
| 
 | |
| void page_writeback_init(void);
 | |
| 
 | |
| /*
 | |
|  * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
 | |
|  * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
 | |
|  * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently
 | |
|  * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
 | |
|  */
 | |
| #define ENTIRELY_MAPPED		0x800000
 | |
| #define FOLIO_PAGES_MAPPED	(ENTIRELY_MAPPED - 1)
 | |
| 
 | |
| /*
 | |
|  * Flags passed to __show_mem() and show_free_areas() to suppress output in
 | |
|  * various contexts.
 | |
|  */
 | |
| #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
 | |
| 
 | |
| /*
 | |
|  * How many individual pages have an elevated _mapcount.  Excludes
 | |
|  * the folio's entire_mapcount.
 | |
|  *
 | |
|  * Don't use this function outside of debugging code.
 | |
|  */
 | |
| static inline int folio_nr_pages_mapped(const struct folio *folio)
 | |
| {
 | |
| 	return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Retrieve the first entry of a folio based on a provided entry within the
 | |
|  * folio. We cannot rely on folio->swap as there is no guarantee that it has
 | |
|  * been initialized. Used for calling arch_swap_restore()
 | |
|  */
 | |
| static inline swp_entry_t folio_swap(swp_entry_t entry,
 | |
| 		const struct folio *folio)
 | |
| {
 | |
| 	swp_entry_t swap = {
 | |
| 		.val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)),
 | |
| 	};
 | |
| 
 | |
| 	return swap;
 | |
| }
 | |
| 
 | |
| static inline void *folio_raw_mapping(const struct folio *folio)
 | |
| {
 | |
| 	unsigned long mapping = (unsigned long)folio->mapping;
 | |
| 
 | |
| 	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a file-backed mapping, and is about to be memory mapped - invoke its
 | |
|  * mmap hook and safely handle error conditions. On error, VMA hooks will be
 | |
|  * mutated.
 | |
|  *
 | |
|  * @file: File which backs the mapping.
 | |
|  * @vma:  VMA which we are mapping.
 | |
|  *
 | |
|  * Returns: 0 if success, error otherwise.
 | |
|  */
 | |
| static inline int mmap_file(struct file *file, struct vm_area_struct *vma)
 | |
| {
 | |
| 	int err = call_mmap(file, vma);
 | |
| 
 | |
| 	if (likely(!err))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * OK, we tried to call the file hook for mmap(), but an error
 | |
| 	 * arose. The mapping is in an inconsistent state and we most not invoke
 | |
| 	 * any further hooks on it.
 | |
| 	 */
 | |
| 	vma->vm_ops = &vma_dummy_vm_ops;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the VMA has a close hook then close it, and since closing it might leave
 | |
|  * it in an inconsistent state which makes the use of any hooks suspect, clear
 | |
|  * them down by installing dummy empty hooks.
 | |
|  */
 | |
| static inline void vma_close(struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (vma->vm_ops && vma->vm_ops->close) {
 | |
| 		vma->vm_ops->close(vma);
 | |
| 
 | |
| 		/*
 | |
| 		 * The mapping is in an inconsistent state, and no further hooks
 | |
| 		 * may be invoked upon it.
 | |
| 		 */
 | |
| 		vma->vm_ops = &vma_dummy_vm_ops;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| 
 | |
| /* Flags for folio_pte_batch(). */
 | |
| typedef int __bitwise fpb_t;
 | |
| 
 | |
| /* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */
 | |
| #define FPB_IGNORE_DIRTY		((__force fpb_t)BIT(0))
 | |
| 
 | |
| /* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */
 | |
| #define FPB_IGNORE_SOFT_DIRTY		((__force fpb_t)BIT(1))
 | |
| 
 | |
| static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
 | |
| {
 | |
| 	if (flags & FPB_IGNORE_DIRTY)
 | |
| 		pte = pte_mkclean(pte);
 | |
| 	if (likely(flags & FPB_IGNORE_SOFT_DIRTY))
 | |
| 		pte = pte_clear_soft_dirty(pte);
 | |
| 	return pte_wrprotect(pte_mkold(pte));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_pte_batch - detect a PTE batch for a large folio
 | |
|  * @folio: The large folio to detect a PTE batch for.
 | |
|  * @addr: The user virtual address the first page is mapped at.
 | |
|  * @start_ptep: Page table pointer for the first entry.
 | |
|  * @pte: Page table entry for the first page.
 | |
|  * @max_nr: The maximum number of table entries to consider.
 | |
|  * @flags: Flags to modify the PTE batch semantics.
 | |
|  * @any_writable: Optional pointer to indicate whether any entry except the
 | |
|  *		  first one is writable.
 | |
|  * @any_young: Optional pointer to indicate whether any entry except the
 | |
|  *		  first one is young.
 | |
|  * @any_dirty: Optional pointer to indicate whether any entry except the
 | |
|  *		  first one is dirty.
 | |
|  *
 | |
|  * Detect a PTE batch: consecutive (present) PTEs that map consecutive
 | |
|  * pages of the same large folio.
 | |
|  *
 | |
|  * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
 | |
|  * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and
 | |
|  * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY).
 | |
|  *
 | |
|  * start_ptep must map any page of the folio. max_nr must be at least one and
 | |
|  * must be limited by the caller so scanning cannot exceed a single page table.
 | |
|  *
 | |
|  * Return: the number of table entries in the batch.
 | |
|  */
 | |
| static inline int folio_pte_batch(struct folio *folio, unsigned long addr,
 | |
| 		pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags,
 | |
| 		bool *any_writable, bool *any_young, bool *any_dirty)
 | |
| {
 | |
| 	unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio);
 | |
| 	const pte_t *end_ptep = start_ptep + max_nr;
 | |
| 	pte_t expected_pte, *ptep;
 | |
| 	bool writable, young, dirty;
 | |
| 	int nr;
 | |
| 
 | |
| 	if (any_writable)
 | |
| 		*any_writable = false;
 | |
| 	if (any_young)
 | |
| 		*any_young = false;
 | |
| 	if (any_dirty)
 | |
| 		*any_dirty = false;
 | |
| 
 | |
| 	VM_WARN_ON_FOLIO(!pte_present(pte), folio);
 | |
| 	VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
 | |
| 	VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
 | |
| 
 | |
| 	nr = pte_batch_hint(start_ptep, pte);
 | |
| 	expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
 | |
| 	ptep = start_ptep + nr;
 | |
| 
 | |
| 	while (ptep < end_ptep) {
 | |
| 		pte = ptep_get(ptep);
 | |
| 		if (any_writable)
 | |
| 			writable = !!pte_write(pte);
 | |
| 		if (any_young)
 | |
| 			young = !!pte_young(pte);
 | |
| 		if (any_dirty)
 | |
| 			dirty = !!pte_dirty(pte);
 | |
| 		pte = __pte_batch_clear_ignored(pte, flags);
 | |
| 
 | |
| 		if (!pte_same(pte, expected_pte))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Stop immediately once we reached the end of the folio. In
 | |
| 		 * corner cases the next PFN might fall into a different
 | |
| 		 * folio.
 | |
| 		 */
 | |
| 		if (pte_pfn(pte) >= folio_end_pfn)
 | |
| 			break;
 | |
| 
 | |
| 		if (any_writable)
 | |
| 			*any_writable |= writable;
 | |
| 		if (any_young)
 | |
| 			*any_young |= young;
 | |
| 		if (any_dirty)
 | |
| 			*any_dirty |= dirty;
 | |
| 
 | |
| 		nr = pte_batch_hint(ptep, pte);
 | |
| 		expected_pte = pte_advance_pfn(expected_pte, nr);
 | |
| 		ptep += nr;
 | |
| 	}
 | |
| 
 | |
| 	return min(ptep - start_ptep, max_nr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pte_move_swp_offset - Move the swap entry offset field of a swap pte
 | |
|  *	 forward or backward by delta
 | |
|  * @pte: The initial pte state; is_swap_pte(pte) must be true and
 | |
|  *	 non_swap_entry() must be false.
 | |
|  * @delta: The direction and the offset we are moving; forward if delta
 | |
|  *	 is positive; backward if delta is negative
 | |
|  *
 | |
|  * Moves the swap offset, while maintaining all other fields, including
 | |
|  * swap type, and any swp pte bits. The resulting pte is returned.
 | |
|  */
 | |
| static inline pte_t pte_move_swp_offset(pte_t pte, long delta)
 | |
| {
 | |
| 	swp_entry_t entry = pte_to_swp_entry(pte);
 | |
| 	pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry),
 | |
| 						   (swp_offset(entry) + delta)));
 | |
| 
 | |
| 	if (pte_swp_soft_dirty(pte))
 | |
| 		new = pte_swp_mksoft_dirty(new);
 | |
| 	if (pte_swp_exclusive(pte))
 | |
| 		new = pte_swp_mkexclusive(new);
 | |
| 	if (pte_swp_uffd_wp(pte))
 | |
| 		new = pte_swp_mkuffd_wp(new);
 | |
| 
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * pte_next_swp_offset - Increment the swap entry offset field of a swap pte.
 | |
|  * @pte: The initial pte state; is_swap_pte(pte) must be true and
 | |
|  *	 non_swap_entry() must be false.
 | |
|  *
 | |
|  * Increments the swap offset, while maintaining all other fields, including
 | |
|  * swap type, and any swp pte bits. The resulting pte is returned.
 | |
|  */
 | |
| static inline pte_t pte_next_swp_offset(pte_t pte)
 | |
| {
 | |
| 	return pte_move_swp_offset(pte, 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries
 | |
|  * @start_ptep: Page table pointer for the first entry.
 | |
|  * @max_nr: The maximum number of table entries to consider.
 | |
|  * @pte: Page table entry for the first entry.
 | |
|  *
 | |
|  * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs
 | |
|  * containing swap entries all with consecutive offsets and targeting the same
 | |
|  * swap type, all with matching swp pte bits.
 | |
|  *
 | |
|  * max_nr must be at least one and must be limited by the caller so scanning
 | |
|  * cannot exceed a single page table.
 | |
|  *
 | |
|  * Return: the number of table entries in the batch.
 | |
|  */
 | |
| static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte)
 | |
| {
 | |
| 	pte_t expected_pte = pte_next_swp_offset(pte);
 | |
| 	const pte_t *end_ptep = start_ptep + max_nr;
 | |
| 	swp_entry_t entry = pte_to_swp_entry(pte);
 | |
| 	pte_t *ptep = start_ptep + 1;
 | |
| 	unsigned short cgroup_id;
 | |
| 
 | |
| 	VM_WARN_ON(max_nr < 1);
 | |
| 	VM_WARN_ON(!is_swap_pte(pte));
 | |
| 	VM_WARN_ON(non_swap_entry(entry));
 | |
| 
 | |
| 	cgroup_id = lookup_swap_cgroup_id(entry);
 | |
| 	while (ptep < end_ptep) {
 | |
| 		pte = ptep_get(ptep);
 | |
| 
 | |
| 		if (!pte_same(pte, expected_pte))
 | |
| 			break;
 | |
| 		if (lookup_swap_cgroup_id(pte_to_swp_entry(pte)) != cgroup_id)
 | |
| 			break;
 | |
| 		expected_pte = pte_next_swp_offset(expected_pte);
 | |
| 		ptep++;
 | |
| 	}
 | |
| 
 | |
| 	return ptep - start_ptep;
 | |
| }
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
 | |
| 						int nr_throttled);
 | |
| static inline void acct_reclaim_writeback(struct folio *folio)
 | |
| {
 | |
| 	pg_data_t *pgdat = folio_pgdat(folio);
 | |
| 	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
 | |
| 
 | |
| 	if (nr_throttled)
 | |
| 		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
 | |
| }
 | |
| 
 | |
| static inline void wake_throttle_isolated(pg_data_t *pgdat)
 | |
| {
 | |
| 	wait_queue_head_t *wqh;
 | |
| 
 | |
| 	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
 | |
| 	if (waitqueue_active(wqh))
 | |
| 		wake_up(wqh);
 | |
| }
 | |
| 
 | |
| vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf);
 | |
| static inline vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
 | |
| {
 | |
| 	vm_fault_t ret = __vmf_anon_prepare(vmf);
 | |
| 
 | |
| 	if (unlikely(ret & VM_FAULT_RETRY))
 | |
| 		vma_end_read(vmf->vma);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| vm_fault_t do_swap_page(struct vm_fault *vmf);
 | |
| void folio_rotate_reclaimable(struct folio *folio);
 | |
| bool __folio_end_writeback(struct folio *folio);
 | |
| void deactivate_file_folio(struct folio *folio);
 | |
| void folio_activate(struct folio *folio);
 | |
| 
 | |
| void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
 | |
| 		   struct vm_area_struct *start_vma, unsigned long floor,
 | |
| 		   unsigned long ceiling, bool mm_wr_locked);
 | |
| void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
 | |
| 
 | |
| struct zap_details;
 | |
| void unmap_page_range(struct mmu_gather *tlb,
 | |
| 			     struct vm_area_struct *vma,
 | |
| 			     unsigned long addr, unsigned long end,
 | |
| 			     struct zap_details *details);
 | |
| int folio_unmap_invalidate(struct address_space *mapping, struct folio *folio,
 | |
| 			   gfp_t gfp);
 | |
| 
 | |
| void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
 | |
| 		unsigned int order);
 | |
| void force_page_cache_ra(struct readahead_control *, unsigned long nr);
 | |
| static inline void force_page_cache_readahead(struct address_space *mapping,
 | |
| 		struct file *file, pgoff_t index, unsigned long nr_to_read)
 | |
| {
 | |
| 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
 | |
| 	force_page_cache_ra(&ractl, nr_to_read);
 | |
| }
 | |
| 
 | |
| unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
 | |
| 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
 | |
| unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
 | |
| 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
 | |
| void filemap_free_folio(struct address_space *mapping, struct folio *folio);
 | |
| int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
 | |
| bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
 | |
| 		loff_t end);
 | |
| long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
 | |
| unsigned long mapping_try_invalidate(struct address_space *mapping,
 | |
| 		pgoff_t start, pgoff_t end, unsigned long *nr_failed);
 | |
| 
 | |
| /**
 | |
|  * folio_evictable - Test whether a folio is evictable.
 | |
|  * @folio: The folio to test.
 | |
|  *
 | |
|  * Test whether @folio is evictable -- i.e., should be placed on
 | |
|  * active/inactive lists vs unevictable list.
 | |
|  *
 | |
|  * Reasons folio might not be evictable:
 | |
|  * 1. folio's mapping marked unevictable
 | |
|  * 2. One of the pages in the folio is part of an mlocked VMA
 | |
|  */
 | |
| static inline bool folio_evictable(struct folio *folio)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	/* Prevent address_space of inode and swap cache from being freed */
 | |
| 	rcu_read_lock();
 | |
| 	ret = !mapping_unevictable(folio_mapping(folio)) &&
 | |
| 			!folio_test_mlocked(folio);
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Turn a non-refcounted page (->_refcount == 0) into refcounted with
 | |
|  * a count of one.
 | |
|  */
 | |
| static inline void set_page_refcounted(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(PageTail(page), page);
 | |
| 	VM_BUG_ON_PAGE(page_ref_count(page), page);
 | |
| 	set_page_count(page, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if a folio needs ->release_folio() calling upon it.
 | |
|  */
 | |
| static inline bool folio_needs_release(struct folio *folio)
 | |
| {
 | |
| 	struct address_space *mapping = folio_mapping(folio);
 | |
| 
 | |
| 	return folio_has_private(folio) ||
 | |
| 		(mapping && mapping_release_always(mapping));
 | |
| }
 | |
| 
 | |
| extern unsigned long highest_memmap_pfn;
 | |
| 
 | |
| /*
 | |
|  * Maximum number of reclaim retries without progress before the OOM
 | |
|  * killer is consider the only way forward.
 | |
|  */
 | |
| #define MAX_RECLAIM_RETRIES 16
 | |
| 
 | |
| /*
 | |
|  * in mm/vmscan.c:
 | |
|  */
 | |
| bool folio_isolate_lru(struct folio *folio);
 | |
| void folio_putback_lru(struct folio *folio);
 | |
| extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
 | |
| 
 | |
| /*
 | |
|  * in mm/rmap.c:
 | |
|  */
 | |
| pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
 | |
| 
 | |
| /*
 | |
|  * in mm/page_alloc.c
 | |
|  */
 | |
| #define K(x) ((x) << (PAGE_SHIFT-10))
 | |
| 
 | |
| extern char * const zone_names[MAX_NR_ZONES];
 | |
| 
 | |
| /* perform sanity checks on struct pages being allocated or freed */
 | |
| DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
 | |
| 
 | |
| extern int min_free_kbytes;
 | |
| 
 | |
| void setup_per_zone_wmarks(void);
 | |
| void calculate_min_free_kbytes(void);
 | |
| int __meminit init_per_zone_wmark_min(void);
 | |
| void page_alloc_sysctl_init(void);
 | |
| 
 | |
| /*
 | |
|  * Structure for holding the mostly immutable allocation parameters passed
 | |
|  * between functions involved in allocations, including the alloc_pages*
 | |
|  * family of functions.
 | |
|  *
 | |
|  * nodemask, migratetype and highest_zoneidx are initialized only once in
 | |
|  * __alloc_pages() and then never change.
 | |
|  *
 | |
|  * zonelist, preferred_zone and highest_zoneidx are set first in
 | |
|  * __alloc_pages() for the fast path, and might be later changed
 | |
|  * in __alloc_pages_slowpath(). All other functions pass the whole structure
 | |
|  * by a const pointer.
 | |
|  */
 | |
| struct alloc_context {
 | |
| 	struct zonelist *zonelist;
 | |
| 	nodemask_t *nodemask;
 | |
| 	struct zoneref *preferred_zoneref;
 | |
| 	int migratetype;
 | |
| 
 | |
| 	/*
 | |
| 	 * highest_zoneidx represents highest usable zone index of
 | |
| 	 * the allocation request. Due to the nature of the zone,
 | |
| 	 * memory on lower zone than the highest_zoneidx will be
 | |
| 	 * protected by lowmem_reserve[highest_zoneidx].
 | |
| 	 *
 | |
| 	 * highest_zoneidx is also used by reclaim/compaction to limit
 | |
| 	 * the target zone since higher zone than this index cannot be
 | |
| 	 * usable for this allocation request.
 | |
| 	 */
 | |
| 	enum zone_type highest_zoneidx;
 | |
| 	bool spread_dirty_pages;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This function returns the order of a free page in the buddy system. In
 | |
|  * general, page_zone(page)->lock must be held by the caller to prevent the
 | |
|  * page from being allocated in parallel and returning garbage as the order.
 | |
|  * If a caller does not hold page_zone(page)->lock, it must guarantee that the
 | |
|  * page cannot be allocated or merged in parallel. Alternatively, it must
 | |
|  * handle invalid values gracefully, and use buddy_order_unsafe() below.
 | |
|  */
 | |
| static inline unsigned int buddy_order(struct page *page)
 | |
| {
 | |
| 	/* PageBuddy() must be checked by the caller */
 | |
| 	return page_private(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
 | |
|  * PageBuddy() should be checked first by the caller to minimize race window,
 | |
|  * and invalid values must be handled gracefully.
 | |
|  *
 | |
|  * READ_ONCE is used so that if the caller assigns the result into a local
 | |
|  * variable and e.g. tests it for valid range before using, the compiler cannot
 | |
|  * decide to remove the variable and inline the page_private(page) multiple
 | |
|  * times, potentially observing different values in the tests and the actual
 | |
|  * use of the result.
 | |
|  */
 | |
| #define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
 | |
| 
 | |
| /*
 | |
|  * This function checks whether a page is free && is the buddy
 | |
|  * we can coalesce a page and its buddy if
 | |
|  * (a) the buddy is not in a hole (check before calling!) &&
 | |
|  * (b) the buddy is in the buddy system &&
 | |
|  * (c) a page and its buddy have the same order &&
 | |
|  * (d) a page and its buddy are in the same zone.
 | |
|  *
 | |
|  * For recording whether a page is in the buddy system, we set PageBuddy.
 | |
|  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
 | |
|  *
 | |
|  * For recording page's order, we use page_private(page).
 | |
|  */
 | |
| static inline bool page_is_buddy(struct page *page, struct page *buddy,
 | |
| 				 unsigned int order)
 | |
| {
 | |
| 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
 | |
| 		return false;
 | |
| 
 | |
| 	if (buddy_order(buddy) != order)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * zone check is done late to avoid uselessly calculating
 | |
| 	 * zone/node ids for pages that could never merge.
 | |
| 	 */
 | |
| 	if (page_zone_id(page) != page_zone_id(buddy))
 | |
| 		return false;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Locate the struct page for both the matching buddy in our
 | |
|  * pair (buddy1) and the combined O(n+1) page they form (page).
 | |
|  *
 | |
|  * 1) Any buddy B1 will have an order O twin B2 which satisfies
 | |
|  * the following equation:
 | |
|  *     B2 = B1 ^ (1 << O)
 | |
|  * For example, if the starting buddy (buddy2) is #8 its order
 | |
|  * 1 buddy is #10:
 | |
|  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 | |
|  *
 | |
|  * 2) Any buddy B will have an order O+1 parent P which
 | |
|  * satisfies the following equation:
 | |
|  *     P = B & ~(1 << O)
 | |
|  *
 | |
|  * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
 | |
|  */
 | |
| static inline unsigned long
 | |
| __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
 | |
| {
 | |
| 	return page_pfn ^ (1 << order);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the buddy of @page and validate it.
 | |
|  * @page: The input page
 | |
|  * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
 | |
|  *       function is used in the performance-critical __free_one_page().
 | |
|  * @order: The order of the page
 | |
|  * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
 | |
|  *             page_to_pfn().
 | |
|  *
 | |
|  * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
 | |
|  * not the same as @page. The validation is necessary before use it.
 | |
|  *
 | |
|  * Return: the found buddy page or NULL if not found.
 | |
|  */
 | |
| static inline struct page *find_buddy_page_pfn(struct page *page,
 | |
| 			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
 | |
| {
 | |
| 	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
 | |
| 	struct page *buddy;
 | |
| 
 | |
| 	buddy = page + (__buddy_pfn - pfn);
 | |
| 	if (buddy_pfn)
 | |
| 		*buddy_pfn = __buddy_pfn;
 | |
| 
 | |
| 	if (page_is_buddy(page, buddy, order))
 | |
| 		return buddy;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
 | |
| 				unsigned long end_pfn, struct zone *zone);
 | |
| 
 | |
| static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
 | |
| 				unsigned long end_pfn, struct zone *zone)
 | |
| {
 | |
| 	if (zone->contiguous)
 | |
| 		return pfn_to_page(start_pfn);
 | |
| 
 | |
| 	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
 | |
| }
 | |
| 
 | |
| void set_zone_contiguous(struct zone *zone);
 | |
| 
 | |
| static inline void clear_zone_contiguous(struct zone *zone)
 | |
| {
 | |
| 	zone->contiguous = false;
 | |
| }
 | |
| 
 | |
| extern int __isolate_free_page(struct page *page, unsigned int order);
 | |
| extern void __putback_isolated_page(struct page *page, unsigned int order,
 | |
| 				    int mt);
 | |
| extern void memblock_free_pages(struct page *page, unsigned long pfn,
 | |
| 					unsigned int order);
 | |
| extern void __free_pages_core(struct page *page, unsigned int order,
 | |
| 		enum meminit_context context);
 | |
| 
 | |
| /*
 | |
|  * This will have no effect, other than possibly generating a warning, if the
 | |
|  * caller passes in a non-large folio.
 | |
|  */
 | |
| static inline void folio_set_order(struct folio *folio, unsigned int order)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
 | |
| 		return;
 | |
| 
 | |
| 	folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
 | |
| #ifdef CONFIG_64BIT
 | |
| 	folio->_folio_nr_pages = 1U << order;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| bool __folio_unqueue_deferred_split(struct folio *folio);
 | |
| static inline bool folio_unqueue_deferred_split(struct folio *folio)
 | |
| {
 | |
| 	if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, there is no one trying to add the folio to
 | |
| 	 * deferred_list. If folio is not in deferred_list, it's safe
 | |
| 	 * to check without acquiring the split_queue_lock.
 | |
| 	 */
 | |
| 	if (data_race(list_empty(&folio->_deferred_list)))
 | |
| 		return false;
 | |
| 
 | |
| 	return __folio_unqueue_deferred_split(folio);
 | |
| }
 | |
| 
 | |
| static inline struct folio *page_rmappable_folio(struct page *page)
 | |
| {
 | |
| 	struct folio *folio = (struct folio *)page;
 | |
| 
 | |
| 	if (folio && folio_test_large(folio))
 | |
| 		folio_set_large_rmappable(folio);
 | |
| 	return folio;
 | |
| }
 | |
| 
 | |
| static inline void prep_compound_head(struct page *page, unsigned int order)
 | |
| {
 | |
| 	struct folio *folio = (struct folio *)page;
 | |
| 
 | |
| 	folio_set_order(folio, order);
 | |
| 	atomic_set(&folio->_large_mapcount, -1);
 | |
| 	atomic_set(&folio->_entire_mapcount, -1);
 | |
| 	atomic_set(&folio->_nr_pages_mapped, 0);
 | |
| 	atomic_set(&folio->_pincount, 0);
 | |
| 	if (order > 1)
 | |
| 		INIT_LIST_HEAD(&folio->_deferred_list);
 | |
| }
 | |
| 
 | |
| static inline void prep_compound_tail(struct page *head, int tail_idx)
 | |
| {
 | |
| 	struct page *p = head + tail_idx;
 | |
| 
 | |
| 	p->mapping = TAIL_MAPPING;
 | |
| 	set_compound_head(p, head);
 | |
| 	set_page_private(p, 0);
 | |
| }
 | |
| 
 | |
| extern void prep_compound_page(struct page *page, unsigned int order);
 | |
| 
 | |
| void post_alloc_hook(struct page *page, unsigned int order, gfp_t gfp_flags);
 | |
| extern bool free_pages_prepare(struct page *page, unsigned int order);
 | |
| 
 | |
| extern int user_min_free_kbytes;
 | |
| 
 | |
| struct page *__alloc_frozen_pages_noprof(gfp_t, unsigned int order, int nid,
 | |
| 		nodemask_t *);
 | |
| #define __alloc_frozen_pages(...) \
 | |
| 	alloc_hooks(__alloc_frozen_pages_noprof(__VA_ARGS__))
 | |
| void free_frozen_pages(struct page *page, unsigned int order);
 | |
| void free_unref_folios(struct folio_batch *fbatch);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| struct page *alloc_frozen_pages_noprof(gfp_t, unsigned int order);
 | |
| #else
 | |
| static inline struct page *alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order)
 | |
| {
 | |
| 	return __alloc_frozen_pages_noprof(gfp, order, numa_node_id(), NULL);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #define alloc_frozen_pages(...) \
 | |
| 	alloc_hooks(alloc_frozen_pages_noprof(__VA_ARGS__))
 | |
| 
 | |
| extern void zone_pcp_reset(struct zone *zone);
 | |
| extern void zone_pcp_disable(struct zone *zone);
 | |
| extern void zone_pcp_enable(struct zone *zone);
 | |
| extern void zone_pcp_init(struct zone *zone);
 | |
| 
 | |
| extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
 | |
| 			  phys_addr_t min_addr,
 | |
| 			  int nid, bool exact_nid);
 | |
| 
 | |
| void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
 | |
| 		unsigned long, enum meminit_context, struct vmem_altmap *, int);
 | |
| 
 | |
| #if defined CONFIG_COMPACTION || defined CONFIG_CMA
 | |
| 
 | |
| /*
 | |
|  * in mm/compaction.c
 | |
|  */
 | |
| /*
 | |
|  * compact_control is used to track pages being migrated and the free pages
 | |
|  * they are being migrated to during memory compaction. The free_pfn starts
 | |
|  * at the end of a zone and migrate_pfn begins at the start. Movable pages
 | |
|  * are moved to the end of a zone during a compaction run and the run
 | |
|  * completes when free_pfn <= migrate_pfn
 | |
|  */
 | |
| struct compact_control {
 | |
| 	struct list_head freepages[NR_PAGE_ORDERS];	/* List of free pages to migrate to */
 | |
| 	struct list_head migratepages;	/* List of pages being migrated */
 | |
| 	unsigned int nr_freepages;	/* Number of isolated free pages */
 | |
| 	unsigned int nr_migratepages;	/* Number of pages to migrate */
 | |
| 	unsigned long free_pfn;		/* isolate_freepages search base */
 | |
| 	/*
 | |
| 	 * Acts as an in/out parameter to page isolation for migration.
 | |
| 	 * isolate_migratepages uses it as a search base.
 | |
| 	 * isolate_migratepages_block will update the value to the next pfn
 | |
| 	 * after the last isolated one.
 | |
| 	 */
 | |
| 	unsigned long migrate_pfn;
 | |
| 	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
 | |
| 	struct zone *zone;
 | |
| 	unsigned long total_migrate_scanned;
 | |
| 	unsigned long total_free_scanned;
 | |
| 	unsigned short fast_search_fail;/* failures to use free list searches */
 | |
| 	short search_order;		/* order to start a fast search at */
 | |
| 	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
 | |
| 	int order;			/* order a direct compactor needs */
 | |
| 	int migratetype;		/* migratetype of direct compactor */
 | |
| 	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
 | |
| 	const int highest_zoneidx;	/* zone index of a direct compactor */
 | |
| 	enum migrate_mode mode;		/* Async or sync migration mode */
 | |
| 	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
 | |
| 	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
 | |
| 	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
 | |
| 	bool direct_compaction;		/* False from kcompactd or /proc/... */
 | |
| 	bool proactive_compaction;	/* kcompactd proactive compaction */
 | |
| 	bool whole_zone;		/* Whole zone should/has been scanned */
 | |
| 	bool contended;			/* Signal lock contention */
 | |
| 	bool finish_pageblock;		/* Scan the remainder of a pageblock. Used
 | |
| 					 * when there are potentially transient
 | |
| 					 * isolation or migration failures to
 | |
| 					 * ensure forward progress.
 | |
| 					 */
 | |
| 	bool alloc_contig;		/* alloc_contig_range allocation */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Used in direct compaction when a page should be taken from the freelists
 | |
|  * immediately when one is created during the free path.
 | |
|  */
 | |
| struct capture_control {
 | |
| 	struct compact_control *cc;
 | |
| 	struct page *page;
 | |
| };
 | |
| 
 | |
| unsigned long
 | |
| isolate_freepages_range(struct compact_control *cc,
 | |
| 			unsigned long start_pfn, unsigned long end_pfn);
 | |
| int
 | |
| isolate_migratepages_range(struct compact_control *cc,
 | |
| 			   unsigned long low_pfn, unsigned long end_pfn);
 | |
| 
 | |
| /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
 | |
| void init_cma_reserved_pageblock(struct page *page);
 | |
| 
 | |
| #endif /* CONFIG_COMPACTION || CONFIG_CMA */
 | |
| 
 | |
| int find_suitable_fallback(struct free_area *area, unsigned int order,
 | |
| 			int migratetype, bool only_stealable, bool *can_steal);
 | |
| 
 | |
| static inline bool free_area_empty(struct free_area *area, int migratetype)
 | |
| {
 | |
| 	return list_empty(&area->free_list[migratetype]);
 | |
| }
 | |
| 
 | |
| /* mm/util.c */
 | |
| struct anon_vma *folio_anon_vma(const struct folio *folio);
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| void unmap_mapping_folio(struct folio *folio);
 | |
| extern long populate_vma_page_range(struct vm_area_struct *vma,
 | |
| 		unsigned long start, unsigned long end, int *locked);
 | |
| extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
 | |
| 		unsigned long end, bool write, int *locked);
 | |
| extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
 | |
| 			       unsigned long bytes);
 | |
| 
 | |
| /*
 | |
|  * NOTE: This function can't tell whether the folio is "fully mapped" in the
 | |
|  * range.
 | |
|  * "fully mapped" means all the pages of folio is associated with the page
 | |
|  * table of range while this function just check whether the folio range is
 | |
|  * within the range [start, end). Function caller needs to do page table
 | |
|  * check if it cares about the page table association.
 | |
|  *
 | |
|  * Typical usage (like mlock or madvise) is:
 | |
|  * Caller knows at least 1 page of folio is associated with page table of VMA
 | |
|  * and the range [start, end) is intersect with the VMA range. Caller wants
 | |
|  * to know whether the folio is fully associated with the range. It calls
 | |
|  * this function to check whether the folio is in the range first. Then checks
 | |
|  * the page table to know whether the folio is fully mapped to the range.
 | |
|  */
 | |
| static inline bool
 | |
| folio_within_range(struct folio *folio, struct vm_area_struct *vma,
 | |
| 		unsigned long start, unsigned long end)
 | |
| {
 | |
| 	pgoff_t pgoff, addr;
 | |
| 	unsigned long vma_pglen = vma_pages(vma);
 | |
| 
 | |
| 	VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
 | |
| 	if (start > end)
 | |
| 		return false;
 | |
| 
 | |
| 	if (start < vma->vm_start)
 | |
| 		start = vma->vm_start;
 | |
| 
 | |
| 	if (end > vma->vm_end)
 | |
| 		end = vma->vm_end;
 | |
| 
 | |
| 	pgoff = folio_pgoff(folio);
 | |
| 
 | |
| 	/* if folio start address is not in vma range */
 | |
| 	if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
 | |
| 		return false;
 | |
| 
 | |
| 	addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 | |
| 
 | |
| 	return !(addr < start || end - addr < folio_size(folio));
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
 | |
| {
 | |
| 	return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mlock_vma_folio() and munlock_vma_folio():
 | |
|  * should be called with vma's mmap_lock held for read or write,
 | |
|  * under page table lock for the pte/pmd being added or removed.
 | |
|  *
 | |
|  * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
 | |
|  * the end of folio_remove_rmap_*(); but new anon folios are managed by
 | |
|  * folio_add_lru_vma() calling mlock_new_folio().
 | |
|  */
 | |
| void mlock_folio(struct folio *folio);
 | |
| static inline void mlock_vma_folio(struct folio *folio,
 | |
| 				struct vm_area_struct *vma)
 | |
| {
 | |
| 	/*
 | |
| 	 * The VM_SPECIAL check here serves two purposes.
 | |
| 	 * 1) VM_IO check prevents migration from double-counting during mlock.
 | |
| 	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
 | |
| 	 *    is never left set on a VM_SPECIAL vma, there is an interval while
 | |
| 	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
 | |
| 	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
 | |
| 	 */
 | |
| 	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
 | |
| 		mlock_folio(folio);
 | |
| }
 | |
| 
 | |
| void munlock_folio(struct folio *folio);
 | |
| static inline void munlock_vma_folio(struct folio *folio,
 | |
| 					struct vm_area_struct *vma)
 | |
| {
 | |
| 	/*
 | |
| 	 * munlock if the function is called. Ideally, we should only
 | |
| 	 * do munlock if any page of folio is unmapped from VMA and
 | |
| 	 * cause folio not fully mapped to VMA.
 | |
| 	 *
 | |
| 	 * But it's not easy to confirm that's the situation. So we
 | |
| 	 * always munlock the folio and page reclaim will correct it
 | |
| 	 * if it's wrong.
 | |
| 	 */
 | |
| 	if (unlikely(vma->vm_flags & VM_LOCKED))
 | |
| 		munlock_folio(folio);
 | |
| }
 | |
| 
 | |
| void mlock_new_folio(struct folio *folio);
 | |
| bool need_mlock_drain(int cpu);
 | |
| void mlock_drain_local(void);
 | |
| void mlock_drain_remote(int cpu);
 | |
| 
 | |
| extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
 | |
| 
 | |
| /**
 | |
|  * vma_address - Find the virtual address a page range is mapped at
 | |
|  * @vma: The vma which maps this object.
 | |
|  * @pgoff: The page offset within its object.
 | |
|  * @nr_pages: The number of pages to consider.
 | |
|  *
 | |
|  * If any page in this range is mapped by this VMA, return the first address
 | |
|  * where any of these pages appear.  Otherwise, return -EFAULT.
 | |
|  */
 | |
| static inline unsigned long vma_address(const struct vm_area_struct *vma,
 | |
| 		pgoff_t pgoff, unsigned long nr_pages)
 | |
| {
 | |
| 	unsigned long address;
 | |
| 
 | |
| 	if (pgoff >= vma->vm_pgoff) {
 | |
| 		address = vma->vm_start +
 | |
| 			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 | |
| 		/* Check for address beyond vma (or wrapped through 0?) */
 | |
| 		if (address < vma->vm_start || address >= vma->vm_end)
 | |
| 			address = -EFAULT;
 | |
| 	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
 | |
| 		/* Test above avoids possibility of wrap to 0 on 32-bit */
 | |
| 		address = vma->vm_start;
 | |
| 	} else {
 | |
| 		address = -EFAULT;
 | |
| 	}
 | |
| 	return address;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Then at what user virtual address will none of the range be found in vma?
 | |
|  * Assumes that vma_address() already returned a good starting address.
 | |
|  */
 | |
| static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
 | |
| {
 | |
| 	struct vm_area_struct *vma = pvmw->vma;
 | |
| 	pgoff_t pgoff;
 | |
| 	unsigned long address;
 | |
| 
 | |
| 	/* Common case, plus ->pgoff is invalid for KSM */
 | |
| 	if (pvmw->nr_pages == 1)
 | |
| 		return pvmw->address + PAGE_SIZE;
 | |
| 
 | |
| 	pgoff = pvmw->pgoff + pvmw->nr_pages;
 | |
| 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 | |
| 	/* Check for address beyond vma (or wrapped through 0?) */
 | |
| 	if (address < vma->vm_start || address > vma->vm_end)
 | |
| 		address = vma->vm_end;
 | |
| 	return address;
 | |
| }
 | |
| 
 | |
| static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
 | |
| 						    struct file *fpin)
 | |
| {
 | |
| 	int flags = vmf->flags;
 | |
| 
 | |
| 	if (fpin)
 | |
| 		return fpin;
 | |
| 
 | |
| 	/*
 | |
| 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
 | |
| 	 * anything, so we only pin the file and drop the mmap_lock if only
 | |
| 	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
 | |
| 	 */
 | |
| 	if (fault_flag_allow_retry_first(flags) &&
 | |
| 	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
 | |
| 		fpin = get_file(vmf->vma->vm_file);
 | |
| 		release_fault_lock(vmf);
 | |
| 	}
 | |
| 	return fpin;
 | |
| }
 | |
| #else /* !CONFIG_MMU */
 | |
| static inline void unmap_mapping_folio(struct folio *folio) { }
 | |
| static inline void mlock_new_folio(struct folio *folio) { }
 | |
| static inline bool need_mlock_drain(int cpu) { return false; }
 | |
| static inline void mlock_drain_local(void) { }
 | |
| static inline void mlock_drain_remote(int cpu) { }
 | |
| static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
 | |
| {
 | |
| }
 | |
| #endif /* !CONFIG_MMU */
 | |
| 
 | |
| /* Memory initialisation debug and verification */
 | |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 | |
| DECLARE_STATIC_KEY_TRUE(deferred_pages);
 | |
| 
 | |
| bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
 | |
| #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 | |
| 
 | |
| enum mminit_level {
 | |
| 	MMINIT_WARNING,
 | |
| 	MMINIT_VERIFY,
 | |
| 	MMINIT_TRACE
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_MEMORY_INIT
 | |
| 
 | |
| extern int mminit_loglevel;
 | |
| 
 | |
| #define mminit_dprintk(level, prefix, fmt, arg...) \
 | |
| do { \
 | |
| 	if (level < mminit_loglevel) { \
 | |
| 		if (level <= MMINIT_WARNING) \
 | |
| 			pr_warn("mminit::" prefix " " fmt, ##arg);	\
 | |
| 		else \
 | |
| 			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
 | |
| 	} \
 | |
| } while (0)
 | |
| 
 | |
| extern void mminit_verify_pageflags_layout(void);
 | |
| extern void mminit_verify_zonelist(void);
 | |
| #else
 | |
| 
 | |
| static inline void mminit_dprintk(enum mminit_level level,
 | |
| 				const char *prefix, const char *fmt, ...)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void mminit_verify_pageflags_layout(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void mminit_verify_zonelist(void)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_DEBUG_MEMORY_INIT */
 | |
| 
 | |
| #define NODE_RECLAIM_NOSCAN	-2
 | |
| #define NODE_RECLAIM_FULL	-1
 | |
| #define NODE_RECLAIM_SOME	0
 | |
| #define NODE_RECLAIM_SUCCESS	1
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
 | |
| extern int find_next_best_node(int node, nodemask_t *used_node_mask);
 | |
| #else
 | |
| static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
 | |
| 				unsigned int order)
 | |
| {
 | |
| 	return NODE_RECLAIM_NOSCAN;
 | |
| }
 | |
| static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
 | |
| {
 | |
| 	return NUMA_NO_NODE;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * mm/memory-failure.c
 | |
|  */
 | |
| #ifdef CONFIG_MEMORY_FAILURE
 | |
| int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill);
 | |
| void shake_folio(struct folio *folio);
 | |
| extern int hwpoison_filter(struct page *p);
 | |
| 
 | |
| extern u32 hwpoison_filter_dev_major;
 | |
| extern u32 hwpoison_filter_dev_minor;
 | |
| extern u64 hwpoison_filter_flags_mask;
 | |
| extern u64 hwpoison_filter_flags_value;
 | |
| extern u64 hwpoison_filter_memcg;
 | |
| extern u32 hwpoison_filter_enable;
 | |
| #define MAGIC_HWPOISON	0x48575053U	/* HWPS */
 | |
| void SetPageHWPoisonTakenOff(struct page *page);
 | |
| void ClearPageHWPoisonTakenOff(struct page *page);
 | |
| bool take_page_off_buddy(struct page *page);
 | |
| bool put_page_back_buddy(struct page *page);
 | |
| struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
 | |
| void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
 | |
| 		     struct vm_area_struct *vma, struct list_head *to_kill,
 | |
| 		     unsigned long ksm_addr);
 | |
| unsigned long page_mapped_in_vma(const struct page *page,
 | |
| 		struct vm_area_struct *vma);
 | |
| 
 | |
| #else
 | |
| static inline int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
 | |
| {
 | |
| 	return -EBUSY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
 | |
|         unsigned long, unsigned long,
 | |
|         unsigned long, unsigned long);
 | |
| 
 | |
| extern void set_pageblock_order(void);
 | |
| struct folio *alloc_migrate_folio(struct folio *src, unsigned long private);
 | |
| unsigned long reclaim_pages(struct list_head *folio_list);
 | |
| unsigned int reclaim_clean_pages_from_list(struct zone *zone,
 | |
| 					    struct list_head *folio_list);
 | |
| /* The ALLOC_WMARK bits are used as an index to zone->watermark */
 | |
| #define ALLOC_WMARK_MIN		WMARK_MIN
 | |
| #define ALLOC_WMARK_LOW		WMARK_LOW
 | |
| #define ALLOC_WMARK_HIGH	WMARK_HIGH
 | |
| #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
 | |
| 
 | |
| /* Mask to get the watermark bits */
 | |
| #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
 | |
| 
 | |
| /*
 | |
|  * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
 | |
|  * cannot assume a reduced access to memory reserves is sufficient for
 | |
|  * !MMU
 | |
|  */
 | |
| #ifdef CONFIG_MMU
 | |
| #define ALLOC_OOM		0x08
 | |
| #else
 | |
| #define ALLOC_OOM		ALLOC_NO_WATERMARKS
 | |
| #endif
 | |
| 
 | |
| #define ALLOC_NON_BLOCK		 0x10 /* Caller cannot block. Allow access
 | |
| 				       * to 25% of the min watermark or
 | |
| 				       * 62.5% if __GFP_HIGH is set.
 | |
| 				       */
 | |
| #define ALLOC_MIN_RESERVE	 0x20 /* __GFP_HIGH set. Allow access to 50%
 | |
| 				       * of the min watermark.
 | |
| 				       */
 | |
| #define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
 | |
| #define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
 | |
| #ifdef CONFIG_ZONE_DMA32
 | |
| #define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
 | |
| #else
 | |
| #define ALLOC_NOFRAGMENT	  0x0
 | |
| #endif
 | |
| #define ALLOC_HIGHATOMIC	0x200 /* Allows access to MIGRATE_HIGHATOMIC */
 | |
| #define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
 | |
| 
 | |
| /* Flags that allow allocations below the min watermark. */
 | |
| #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
 | |
| 
 | |
| enum ttu_flags;
 | |
| struct tlbflush_unmap_batch;
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * only for MM internal work items which do not depend on
 | |
|  * any allocations or locks which might depend on allocations
 | |
|  */
 | |
| extern struct workqueue_struct *mm_percpu_wq;
 | |
| 
 | |
| #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 | |
| void try_to_unmap_flush(void);
 | |
| void try_to_unmap_flush_dirty(void);
 | |
| void flush_tlb_batched_pending(struct mm_struct *mm);
 | |
| #else
 | |
| static inline void try_to_unmap_flush(void)
 | |
| {
 | |
| }
 | |
| static inline void try_to_unmap_flush_dirty(void)
 | |
| {
 | |
| }
 | |
| static inline void flush_tlb_batched_pending(struct mm_struct *mm)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 | |
| 
 | |
| extern const struct trace_print_flags pageflag_names[];
 | |
| extern const struct trace_print_flags vmaflag_names[];
 | |
| extern const struct trace_print_flags gfpflag_names[];
 | |
| 
 | |
| static inline bool is_migrate_highatomic(enum migratetype migratetype)
 | |
| {
 | |
| 	return migratetype == MIGRATE_HIGHATOMIC;
 | |
| }
 | |
| 
 | |
| void setup_zone_pageset(struct zone *zone);
 | |
| 
 | |
| struct migration_target_control {
 | |
| 	int nid;		/* preferred node id */
 | |
| 	nodemask_t *nmask;
 | |
| 	gfp_t gfp_mask;
 | |
| 	enum migrate_reason reason;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * mm/filemap.c
 | |
|  */
 | |
| size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
 | |
| 			      struct folio *folio, loff_t fpos, size_t size);
 | |
| 
 | |
| /*
 | |
|  * mm/vmalloc.c
 | |
|  */
 | |
| #ifdef CONFIG_MMU
 | |
| void __init vmalloc_init(void);
 | |
| int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 | |
|                 pgprot_t prot, struct page **pages, unsigned int page_shift);
 | |
| unsigned int get_vm_area_page_order(struct vm_struct *vm);
 | |
| #else
 | |
| static inline void vmalloc_init(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline
 | |
| int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 | |
|                 pgprot_t prot, struct page **pages, unsigned int page_shift)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int __must_check __vmap_pages_range_noflush(unsigned long addr,
 | |
| 			       unsigned long end, pgprot_t prot,
 | |
| 			       struct page **pages, unsigned int page_shift);
 | |
| 
 | |
| void vunmap_range_noflush(unsigned long start, unsigned long end);
 | |
| 
 | |
| void __vunmap_range_noflush(unsigned long start, unsigned long end);
 | |
| 
 | |
| int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
 | |
| 		      unsigned long addr, int *flags, bool writable,
 | |
| 		      int *last_cpupid);
 | |
| 
 | |
| void free_zone_device_folio(struct folio *folio);
 | |
| int migrate_device_coherent_folio(struct folio *folio);
 | |
| 
 | |
| struct vm_struct *__get_vm_area_node(unsigned long size,
 | |
| 				     unsigned long align, unsigned long shift,
 | |
| 				     unsigned long flags, unsigned long start,
 | |
| 				     unsigned long end, int node, gfp_t gfp_mask,
 | |
| 				     const void *caller);
 | |
| 
 | |
| /*
 | |
|  * mm/gup.c
 | |
|  */
 | |
| int __must_check try_grab_folio(struct folio *folio, int refs,
 | |
| 				unsigned int flags);
 | |
| 
 | |
| /*
 | |
|  * mm/huge_memory.c
 | |
|  */
 | |
| void touch_pud(struct vm_area_struct *vma, unsigned long addr,
 | |
| 	       pud_t *pud, bool write);
 | |
| void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 	       pmd_t *pmd, bool write);
 | |
| 
 | |
| /*
 | |
|  * Parses a string with mem suffixes into its order. Useful to parse kernel
 | |
|  * parameters.
 | |
|  */
 | |
| static inline int get_order_from_str(const char *size_str,
 | |
| 				     unsigned long valid_orders)
 | |
| {
 | |
| 	unsigned long size;
 | |
| 	char *endptr;
 | |
| 	int order;
 | |
| 
 | |
| 	size = memparse(size_str, &endptr);
 | |
| 
 | |
| 	if (!is_power_of_2(size))
 | |
| 		return -EINVAL;
 | |
| 	order = get_order(size);
 | |
| 	if (BIT(order) & ~valid_orders)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return order;
 | |
| }
 | |
| 
 | |
| enum {
 | |
| 	/* mark page accessed */
 | |
| 	FOLL_TOUCH = 1 << 16,
 | |
| 	/* a retry, previous pass started an IO */
 | |
| 	FOLL_TRIED = 1 << 17,
 | |
| 	/* we are working on non-current tsk/mm */
 | |
| 	FOLL_REMOTE = 1 << 18,
 | |
| 	/* pages must be released via unpin_user_page */
 | |
| 	FOLL_PIN = 1 << 19,
 | |
| 	/* gup_fast: prevent fall-back to slow gup */
 | |
| 	FOLL_FAST_ONLY = 1 << 20,
 | |
| 	/* allow unlocking the mmap lock */
 | |
| 	FOLL_UNLOCKABLE = 1 << 21,
 | |
| 	/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
 | |
| 	FOLL_MADV_POPULATE = 1 << 22,
 | |
| };
 | |
| 
 | |
| #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
 | |
| 			    FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
 | |
| 			    FOLL_MADV_POPULATE)
 | |
| 
 | |
| /*
 | |
|  * Indicates for which pages that are write-protected in the page table,
 | |
|  * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
 | |
|  * GUP pin will remain consistent with the pages mapped into the page tables
 | |
|  * of the MM.
 | |
|  *
 | |
|  * Temporary unmapping of PageAnonExclusive() pages or clearing of
 | |
|  * PageAnonExclusive() has to protect against concurrent GUP:
 | |
|  * * Ordinary GUP: Using the PT lock
 | |
|  * * GUP-fast and fork(): mm->write_protect_seq
 | |
|  * * GUP-fast and KSM or temporary unmapping (swap, migration): see
 | |
|  *    folio_try_share_anon_rmap_*()
 | |
|  *
 | |
|  * Must be called with the (sub)page that's actually referenced via the
 | |
|  * page table entry, which might not necessarily be the head page for a
 | |
|  * PTE-mapped THP.
 | |
|  *
 | |
|  * If the vma is NULL, we're coming from the GUP-fast path and might have
 | |
|  * to fallback to the slow path just to lookup the vma.
 | |
|  */
 | |
| static inline bool gup_must_unshare(struct vm_area_struct *vma,
 | |
| 				    unsigned int flags, struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * FOLL_WRITE is implicitly handled correctly as the page table entry
 | |
| 	 * has to be writable -- and if it references (part of) an anonymous
 | |
| 	 * folio, that part is required to be marked exclusive.
 | |
| 	 */
 | |
| 	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
 | |
| 		return false;
 | |
| 	/*
 | |
| 	 * Note: PageAnon(page) is stable until the page is actually getting
 | |
| 	 * freed.
 | |
| 	 */
 | |
| 	if (!PageAnon(page)) {
 | |
| 		/*
 | |
| 		 * We only care about R/O long-term pining: R/O short-term
 | |
| 		 * pinning does not have the semantics to observe successive
 | |
| 		 * changes through the process page tables.
 | |
| 		 */
 | |
| 		if (!(flags & FOLL_LONGTERM))
 | |
| 			return false;
 | |
| 
 | |
| 		/* We really need the vma ... */
 | |
| 		if (!vma)
 | |
| 			return true;
 | |
| 
 | |
| 		/*
 | |
| 		 * ... because we only care about writable private ("COW")
 | |
| 		 * mappings where we have to break COW early.
 | |
| 		 */
 | |
| 		return is_cow_mapping(vma->vm_flags);
 | |
| 	}
 | |
| 
 | |
| 	/* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
 | |
| 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
 | |
| 		smp_rmb();
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that KSM pages cannot be exclusive, and consequently,
 | |
| 	 * cannot get pinned.
 | |
| 	 */
 | |
| 	return !PageAnonExclusive(page);
 | |
| }
 | |
| 
 | |
| extern bool mirrored_kernelcore;
 | |
| extern bool memblock_has_mirror(void);
 | |
| 
 | |
| static __always_inline void vma_set_range(struct vm_area_struct *vma,
 | |
| 					  unsigned long start, unsigned long end,
 | |
| 					  pgoff_t pgoff)
 | |
| {
 | |
| 	vma->vm_start = start;
 | |
| 	vma->vm_end = end;
 | |
| 	vma->vm_pgoff = pgoff;
 | |
| }
 | |
| 
 | |
| static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
 | |
| {
 | |
| 	/*
 | |
| 	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
 | |
| 	 * enablements, because when without soft-dirty being compiled in,
 | |
| 	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
 | |
| 	 * will be constantly true.
 | |
| 	 */
 | |
| 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Soft-dirty is kind of special: its tracking is enabled when the
 | |
| 	 * vma flags not set.
 | |
| 	 */
 | |
| 	return !(vma->vm_flags & VM_SOFTDIRTY);
 | |
| }
 | |
| 
 | |
| static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd)
 | |
| {
 | |
| 	return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd);
 | |
| }
 | |
| 
 | |
| static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte)
 | |
| {
 | |
| 	return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte);
 | |
| }
 | |
| 
 | |
| void __meminit __init_single_page(struct page *page, unsigned long pfn,
 | |
| 				unsigned long zone, int nid);
 | |
| 
 | |
| /* shrinker related functions */
 | |
| unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
 | |
| 			  int priority);
 | |
| 
 | |
| #ifdef CONFIG_SHRINKER_DEBUG
 | |
| static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
 | |
| 			struct shrinker *shrinker, const char *fmt, va_list ap)
 | |
| {
 | |
| 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
 | |
| 
 | |
| 	return shrinker->name ? 0 : -ENOMEM;
 | |
| }
 | |
| 
 | |
| static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
 | |
| {
 | |
| 	kfree_const(shrinker->name);
 | |
| 	shrinker->name = NULL;
 | |
| }
 | |
| 
 | |
| extern int shrinker_debugfs_add(struct shrinker *shrinker);
 | |
| extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
 | |
| 					      int *debugfs_id);
 | |
| extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
 | |
| 				    int debugfs_id);
 | |
| #else /* CONFIG_SHRINKER_DEBUG */
 | |
| static inline int shrinker_debugfs_add(struct shrinker *shrinker)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
 | |
| 					      const char *fmt, va_list ap)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
 | |
| {
 | |
| }
 | |
| static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
 | |
| 						     int *debugfs_id)
 | |
| {
 | |
| 	*debugfs_id = -1;
 | |
| 	return NULL;
 | |
| }
 | |
| static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
 | |
| 					   int debugfs_id)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_SHRINKER_DEBUG */
 | |
| 
 | |
| /* Only track the nodes of mappings with shadow entries */
 | |
| void workingset_update_node(struct xa_node *node);
 | |
| extern struct list_lru shadow_nodes;
 | |
| #define mapping_set_update(xas, mapping) do {			\
 | |
| 	if (!dax_mapping(mapping) && !shmem_mapping(mapping)) {	\
 | |
| 		xas_set_update(xas, workingset_update_node);	\
 | |
| 		xas_set_lru(xas, &shadow_nodes);		\
 | |
| 	}							\
 | |
| } while (0)
 | |
| 
 | |
| /* mremap.c */
 | |
| unsigned long move_page_tables(struct vm_area_struct *vma,
 | |
| 	unsigned long old_addr, struct vm_area_struct *new_vma,
 | |
| 	unsigned long new_addr, unsigned long len,
 | |
| 	bool need_rmap_locks, bool for_stack);
 | |
| 
 | |
| #ifdef CONFIG_UNACCEPTED_MEMORY
 | |
| void accept_page(struct page *page);
 | |
| #else /* CONFIG_UNACCEPTED_MEMORY */
 | |
| static inline void accept_page(struct page *page)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_UNACCEPTED_MEMORY */
 | |
| 
 | |
| /* pagewalk.c */
 | |
| int walk_page_range_mm(struct mm_struct *mm, unsigned long start,
 | |
| 		unsigned long end, const struct mm_walk_ops *ops,
 | |
| 		void *private);
 | |
| 
 | |
| /* pt_reclaim.c */
 | |
| bool try_get_and_clear_pmd(struct mm_struct *mm, pmd_t *pmd, pmd_t *pmdval);
 | |
| void free_pte(struct mm_struct *mm, unsigned long addr, struct mmu_gather *tlb,
 | |
| 	      pmd_t pmdval);
 | |
| void try_to_free_pte(struct mm_struct *mm, pmd_t *pmd, unsigned long addr,
 | |
| 		     struct mmu_gather *tlb);
 | |
| 
 | |
| #ifdef CONFIG_PT_RECLAIM
 | |
| bool reclaim_pt_is_enabled(unsigned long start, unsigned long end,
 | |
| 			   struct zap_details *details);
 | |
| #else
 | |
| static inline bool reclaim_pt_is_enabled(unsigned long start, unsigned long end,
 | |
| 					 struct zap_details *details)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif /* CONFIG_PT_RECLAIM */
 | |
| 
 | |
| 
 | |
| #endif	/* __MM_INTERNAL_H */
 |