forked from mirrors/linux
		
	vma->vm_page_prot is read lockless from the rmap_walk, it may be updated concurrently and this prevents the risk of reading intermediate values. Link: http://lkml.kernel.org/r/1474660305-19222-1-git-send-email-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Jan Vorlicek <janvorli@microsoft.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			2308 lines
		
	
	
	
		
			63 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2308 lines
		
	
	
	
		
			63 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  Copyright (C) 2009  Red Hat, Inc.
 | 
						|
 *
 | 
						|
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 | 
						|
 *  the COPYING file in the top-level directory.
 | 
						|
 */
 | 
						|
 | 
						|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | 
						|
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/hugetlb.h>
 | 
						|
#include <linux/mmu_notifier.h>
 | 
						|
#include <linux/rmap.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/shrinker.h>
 | 
						|
#include <linux/mm_inline.h>
 | 
						|
#include <linux/swapops.h>
 | 
						|
#include <linux/dax.h>
 | 
						|
#include <linux/khugepaged.h>
 | 
						|
#include <linux/freezer.h>
 | 
						|
#include <linux/pfn_t.h>
 | 
						|
#include <linux/mman.h>
 | 
						|
#include <linux/memremap.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/debugfs.h>
 | 
						|
#include <linux/migrate.h>
 | 
						|
#include <linux/hashtable.h>
 | 
						|
#include <linux/userfaultfd_k.h>
 | 
						|
#include <linux/page_idle.h>
 | 
						|
#include <linux/shmem_fs.h>
 | 
						|
 | 
						|
#include <asm/tlb.h>
 | 
						|
#include <asm/pgalloc.h>
 | 
						|
#include "internal.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * By default transparent hugepage support is disabled in order that avoid
 | 
						|
 * to risk increase the memory footprint of applications without a guaranteed
 | 
						|
 * benefit. When transparent hugepage support is enabled, is for all mappings,
 | 
						|
 * and khugepaged scans all mappings.
 | 
						|
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 | 
						|
 * for all hugepage allocations.
 | 
						|
 */
 | 
						|
unsigned long transparent_hugepage_flags __read_mostly =
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
 | 
						|
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
 | 
						|
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
 | 
						|
#endif
 | 
						|
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
 | 
						|
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
 | 
						|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 | 
						|
 | 
						|
static struct shrinker deferred_split_shrinker;
 | 
						|
 | 
						|
static atomic_t huge_zero_refcount;
 | 
						|
struct page *huge_zero_page __read_mostly;
 | 
						|
 | 
						|
static struct page *get_huge_zero_page(void)
 | 
						|
{
 | 
						|
	struct page *zero_page;
 | 
						|
retry:
 | 
						|
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 | 
						|
		return READ_ONCE(huge_zero_page);
 | 
						|
 | 
						|
	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 | 
						|
			HPAGE_PMD_ORDER);
 | 
						|
	if (!zero_page) {
 | 
						|
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	count_vm_event(THP_ZERO_PAGE_ALLOC);
 | 
						|
	preempt_disable();
 | 
						|
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 | 
						|
		preempt_enable();
 | 
						|
		__free_pages(zero_page, compound_order(zero_page));
 | 
						|
		goto retry;
 | 
						|
	}
 | 
						|
 | 
						|
	/* We take additional reference here. It will be put back by shrinker */
 | 
						|
	atomic_set(&huge_zero_refcount, 2);
 | 
						|
	preempt_enable();
 | 
						|
	return READ_ONCE(huge_zero_page);
 | 
						|
}
 | 
						|
 | 
						|
static void put_huge_zero_page(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Counter should never go to zero here. Only shrinker can put
 | 
						|
	 * last reference.
 | 
						|
	 */
 | 
						|
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 | 
						|
}
 | 
						|
 | 
						|
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 | 
						|
		return READ_ONCE(huge_zero_page);
 | 
						|
 | 
						|
	if (!get_huge_zero_page())
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 | 
						|
		put_huge_zero_page();
 | 
						|
 | 
						|
	return READ_ONCE(huge_zero_page);
 | 
						|
}
 | 
						|
 | 
						|
void mm_put_huge_zero_page(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 | 
						|
		put_huge_zero_page();
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 | 
						|
					struct shrink_control *sc)
 | 
						|
{
 | 
						|
	/* we can free zero page only if last reference remains */
 | 
						|
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 | 
						|
				       struct shrink_control *sc)
 | 
						|
{
 | 
						|
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 | 
						|
		struct page *zero_page = xchg(&huge_zero_page, NULL);
 | 
						|
		BUG_ON(zero_page == NULL);
 | 
						|
		__free_pages(zero_page, compound_order(zero_page));
 | 
						|
		return HPAGE_PMD_NR;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static struct shrinker huge_zero_page_shrinker = {
 | 
						|
	.count_objects = shrink_huge_zero_page_count,
 | 
						|
	.scan_objects = shrink_huge_zero_page_scan,
 | 
						|
	.seeks = DEFAULT_SEEKS,
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_SYSFS
 | 
						|
 | 
						|
static ssize_t triple_flag_store(struct kobject *kobj,
 | 
						|
				 struct kobj_attribute *attr,
 | 
						|
				 const char *buf, size_t count,
 | 
						|
				 enum transparent_hugepage_flag enabled,
 | 
						|
				 enum transparent_hugepage_flag deferred,
 | 
						|
				 enum transparent_hugepage_flag req_madv)
 | 
						|
{
 | 
						|
	if (!memcmp("defer", buf,
 | 
						|
		    min(sizeof("defer")-1, count))) {
 | 
						|
		if (enabled == deferred)
 | 
						|
			return -EINVAL;
 | 
						|
		clear_bit(enabled, &transparent_hugepage_flags);
 | 
						|
		clear_bit(req_madv, &transparent_hugepage_flags);
 | 
						|
		set_bit(deferred, &transparent_hugepage_flags);
 | 
						|
	} else if (!memcmp("always", buf,
 | 
						|
		    min(sizeof("always")-1, count))) {
 | 
						|
		clear_bit(deferred, &transparent_hugepage_flags);
 | 
						|
		clear_bit(req_madv, &transparent_hugepage_flags);
 | 
						|
		set_bit(enabled, &transparent_hugepage_flags);
 | 
						|
	} else if (!memcmp("madvise", buf,
 | 
						|
			   min(sizeof("madvise")-1, count))) {
 | 
						|
		clear_bit(enabled, &transparent_hugepage_flags);
 | 
						|
		clear_bit(deferred, &transparent_hugepage_flags);
 | 
						|
		set_bit(req_madv, &transparent_hugepage_flags);
 | 
						|
	} else if (!memcmp("never", buf,
 | 
						|
			   min(sizeof("never")-1, count))) {
 | 
						|
		clear_bit(enabled, &transparent_hugepage_flags);
 | 
						|
		clear_bit(req_madv, &transparent_hugepage_flags);
 | 
						|
		clear_bit(deferred, &transparent_hugepage_flags);
 | 
						|
	} else
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return count;
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t enabled_show(struct kobject *kobj,
 | 
						|
			    struct kobj_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 | 
						|
		return sprintf(buf, "[always] madvise never\n");
 | 
						|
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 | 
						|
		return sprintf(buf, "always [madvise] never\n");
 | 
						|
	else
 | 
						|
		return sprintf(buf, "always madvise [never]\n");
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t enabled_store(struct kobject *kobj,
 | 
						|
			     struct kobj_attribute *attr,
 | 
						|
			     const char *buf, size_t count)
 | 
						|
{
 | 
						|
	ssize_t ret;
 | 
						|
 | 
						|
	ret = triple_flag_store(kobj, attr, buf, count,
 | 
						|
				TRANSPARENT_HUGEPAGE_FLAG,
 | 
						|
				TRANSPARENT_HUGEPAGE_FLAG,
 | 
						|
				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 | 
						|
 | 
						|
	if (ret > 0) {
 | 
						|
		int err = start_stop_khugepaged();
 | 
						|
		if (err)
 | 
						|
			ret = err;
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
static struct kobj_attribute enabled_attr =
 | 
						|
	__ATTR(enabled, 0644, enabled_show, enabled_store);
 | 
						|
 | 
						|
ssize_t single_hugepage_flag_show(struct kobject *kobj,
 | 
						|
				struct kobj_attribute *attr, char *buf,
 | 
						|
				enum transparent_hugepage_flag flag)
 | 
						|
{
 | 
						|
	return sprintf(buf, "%d\n",
 | 
						|
		       !!test_bit(flag, &transparent_hugepage_flags));
 | 
						|
}
 | 
						|
 | 
						|
ssize_t single_hugepage_flag_store(struct kobject *kobj,
 | 
						|
				 struct kobj_attribute *attr,
 | 
						|
				 const char *buf, size_t count,
 | 
						|
				 enum transparent_hugepage_flag flag)
 | 
						|
{
 | 
						|
	unsigned long value;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = kstrtoul(buf, 10, &value);
 | 
						|
	if (ret < 0)
 | 
						|
		return ret;
 | 
						|
	if (value > 1)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (value)
 | 
						|
		set_bit(flag, &transparent_hugepage_flags);
 | 
						|
	else
 | 
						|
		clear_bit(flag, &transparent_hugepage_flags);
 | 
						|
 | 
						|
	return count;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 | 
						|
 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 | 
						|
 * memory just to allocate one more hugepage.
 | 
						|
 */
 | 
						|
static ssize_t defrag_show(struct kobject *kobj,
 | 
						|
			   struct kobj_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 | 
						|
		return sprintf(buf, "[always] defer madvise never\n");
 | 
						|
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 | 
						|
		return sprintf(buf, "always [defer] madvise never\n");
 | 
						|
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 | 
						|
		return sprintf(buf, "always defer [madvise] never\n");
 | 
						|
	else
 | 
						|
		return sprintf(buf, "always defer madvise [never]\n");
 | 
						|
 | 
						|
}
 | 
						|
static ssize_t defrag_store(struct kobject *kobj,
 | 
						|
			    struct kobj_attribute *attr,
 | 
						|
			    const char *buf, size_t count)
 | 
						|
{
 | 
						|
	return triple_flag_store(kobj, attr, buf, count,
 | 
						|
				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 | 
						|
				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 | 
						|
				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 | 
						|
}
 | 
						|
static struct kobj_attribute defrag_attr =
 | 
						|
	__ATTR(defrag, 0644, defrag_show, defrag_store);
 | 
						|
 | 
						|
static ssize_t use_zero_page_show(struct kobject *kobj,
 | 
						|
		struct kobj_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	return single_hugepage_flag_show(kobj, attr, buf,
 | 
						|
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 | 
						|
}
 | 
						|
static ssize_t use_zero_page_store(struct kobject *kobj,
 | 
						|
		struct kobj_attribute *attr, const char *buf, size_t count)
 | 
						|
{
 | 
						|
	return single_hugepage_flag_store(kobj, attr, buf, count,
 | 
						|
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 | 
						|
}
 | 
						|
static struct kobj_attribute use_zero_page_attr =
 | 
						|
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 | 
						|
#ifdef CONFIG_DEBUG_VM
 | 
						|
static ssize_t debug_cow_show(struct kobject *kobj,
 | 
						|
				struct kobj_attribute *attr, char *buf)
 | 
						|
{
 | 
						|
	return single_hugepage_flag_show(kobj, attr, buf,
 | 
						|
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 | 
						|
}
 | 
						|
static ssize_t debug_cow_store(struct kobject *kobj,
 | 
						|
			       struct kobj_attribute *attr,
 | 
						|
			       const char *buf, size_t count)
 | 
						|
{
 | 
						|
	return single_hugepage_flag_store(kobj, attr, buf, count,
 | 
						|
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 | 
						|
}
 | 
						|
static struct kobj_attribute debug_cow_attr =
 | 
						|
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 | 
						|
#endif /* CONFIG_DEBUG_VM */
 | 
						|
 | 
						|
static struct attribute *hugepage_attr[] = {
 | 
						|
	&enabled_attr.attr,
 | 
						|
	&defrag_attr.attr,
 | 
						|
	&use_zero_page_attr.attr,
 | 
						|
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
 | 
						|
	&shmem_enabled_attr.attr,
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_DEBUG_VM
 | 
						|
	&debug_cow_attr.attr,
 | 
						|
#endif
 | 
						|
	NULL,
 | 
						|
};
 | 
						|
 | 
						|
static struct attribute_group hugepage_attr_group = {
 | 
						|
	.attrs = hugepage_attr,
 | 
						|
};
 | 
						|
 | 
						|
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 | 
						|
	if (unlikely(!*hugepage_kobj)) {
 | 
						|
		pr_err("failed to create transparent hugepage kobject\n");
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 | 
						|
	if (err) {
 | 
						|
		pr_err("failed to register transparent hugepage group\n");
 | 
						|
		goto delete_obj;
 | 
						|
	}
 | 
						|
 | 
						|
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 | 
						|
	if (err) {
 | 
						|
		pr_err("failed to register transparent hugepage group\n");
 | 
						|
		goto remove_hp_group;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
remove_hp_group:
 | 
						|
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 | 
						|
delete_obj:
 | 
						|
	kobject_put(*hugepage_kobj);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 | 
						|
{
 | 
						|
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 | 
						|
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 | 
						|
	kobject_put(hugepage_kobj);
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif /* CONFIG_SYSFS */
 | 
						|
 | 
						|
static int __init hugepage_init(void)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
	struct kobject *hugepage_kobj;
 | 
						|
 | 
						|
	if (!has_transparent_hugepage()) {
 | 
						|
		transparent_hugepage_flags = 0;
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * hugepages can't be allocated by the buddy allocator
 | 
						|
	 */
 | 
						|
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 | 
						|
	/*
 | 
						|
	 * we use page->mapping and page->index in second tail page
 | 
						|
	 * as list_head: assuming THP order >= 2
 | 
						|
	 */
 | 
						|
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 | 
						|
 | 
						|
	err = hugepage_init_sysfs(&hugepage_kobj);
 | 
						|
	if (err)
 | 
						|
		goto err_sysfs;
 | 
						|
 | 
						|
	err = khugepaged_init();
 | 
						|
	if (err)
 | 
						|
		goto err_slab;
 | 
						|
 | 
						|
	err = register_shrinker(&huge_zero_page_shrinker);
 | 
						|
	if (err)
 | 
						|
		goto err_hzp_shrinker;
 | 
						|
	err = register_shrinker(&deferred_split_shrinker);
 | 
						|
	if (err)
 | 
						|
		goto err_split_shrinker;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * By default disable transparent hugepages on smaller systems,
 | 
						|
	 * where the extra memory used could hurt more than TLB overhead
 | 
						|
	 * is likely to save.  The admin can still enable it through /sys.
 | 
						|
	 */
 | 
						|
	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 | 
						|
		transparent_hugepage_flags = 0;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	err = start_stop_khugepaged();
 | 
						|
	if (err)
 | 
						|
		goto err_khugepaged;
 | 
						|
 | 
						|
	return 0;
 | 
						|
err_khugepaged:
 | 
						|
	unregister_shrinker(&deferred_split_shrinker);
 | 
						|
err_split_shrinker:
 | 
						|
	unregister_shrinker(&huge_zero_page_shrinker);
 | 
						|
err_hzp_shrinker:
 | 
						|
	khugepaged_destroy();
 | 
						|
err_slab:
 | 
						|
	hugepage_exit_sysfs(hugepage_kobj);
 | 
						|
err_sysfs:
 | 
						|
	return err;
 | 
						|
}
 | 
						|
subsys_initcall(hugepage_init);
 | 
						|
 | 
						|
static int __init setup_transparent_hugepage(char *str)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	if (!str)
 | 
						|
		goto out;
 | 
						|
	if (!strcmp(str, "always")) {
 | 
						|
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 | 
						|
			&transparent_hugepage_flags);
 | 
						|
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 | 
						|
			  &transparent_hugepage_flags);
 | 
						|
		ret = 1;
 | 
						|
	} else if (!strcmp(str, "madvise")) {
 | 
						|
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 | 
						|
			  &transparent_hugepage_flags);
 | 
						|
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 | 
						|
			&transparent_hugepage_flags);
 | 
						|
		ret = 1;
 | 
						|
	} else if (!strcmp(str, "never")) {
 | 
						|
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 | 
						|
			  &transparent_hugepage_flags);
 | 
						|
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 | 
						|
			  &transparent_hugepage_flags);
 | 
						|
		ret = 1;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	if (!ret)
 | 
						|
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
__setup("transparent_hugepage=", setup_transparent_hugepage);
 | 
						|
 | 
						|
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	if (likely(vma->vm_flags & VM_WRITE))
 | 
						|
		pmd = pmd_mkwrite(pmd);
 | 
						|
	return pmd;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct list_head *page_deferred_list(struct page *page)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * ->lru in the tail pages is occupied by compound_head.
 | 
						|
	 * Let's use ->mapping + ->index in the second tail page as list_head.
 | 
						|
	 */
 | 
						|
	return (struct list_head *)&page[2].mapping;
 | 
						|
}
 | 
						|
 | 
						|
void prep_transhuge_page(struct page *page)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * we use page->mapping and page->indexlru in second tail page
 | 
						|
	 * as list_head: assuming THP order >= 2
 | 
						|
	 */
 | 
						|
 | 
						|
	INIT_LIST_HEAD(page_deferred_list(page));
 | 
						|
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 | 
						|
}
 | 
						|
 | 
						|
unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
 | 
						|
		loff_t off, unsigned long flags, unsigned long size)
 | 
						|
{
 | 
						|
	unsigned long addr;
 | 
						|
	loff_t off_end = off + len;
 | 
						|
	loff_t off_align = round_up(off, size);
 | 
						|
	unsigned long len_pad;
 | 
						|
 | 
						|
	if (off_end <= off_align || (off_end - off_align) < size)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	len_pad = len + size;
 | 
						|
	if (len_pad < len || (off + len_pad) < off)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
 | 
						|
					      off >> PAGE_SHIFT, flags);
 | 
						|
	if (IS_ERR_VALUE(addr))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	addr += (off - addr) & (size - 1);
 | 
						|
	return addr;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 | 
						|
		unsigned long len, unsigned long pgoff, unsigned long flags)
 | 
						|
{
 | 
						|
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 | 
						|
 | 
						|
	if (addr)
 | 
						|
		goto out;
 | 
						|
	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
 | 
						|
	if (addr)
 | 
						|
		return addr;
 | 
						|
 | 
						|
 out:
 | 
						|
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 | 
						|
 | 
						|
static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
 | 
						|
		gfp_t gfp)
 | 
						|
{
 | 
						|
	struct vm_area_struct *vma = fe->vma;
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	pgtable_t pgtable;
 | 
						|
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(!PageCompound(page), page);
 | 
						|
 | 
						|
	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
 | 
						|
		put_page(page);
 | 
						|
		count_vm_event(THP_FAULT_FALLBACK);
 | 
						|
		return VM_FAULT_FALLBACK;
 | 
						|
	}
 | 
						|
 | 
						|
	pgtable = pte_alloc_one(vma->vm_mm, haddr);
 | 
						|
	if (unlikely(!pgtable)) {
 | 
						|
		mem_cgroup_cancel_charge(page, memcg, true);
 | 
						|
		put_page(page);
 | 
						|
		return VM_FAULT_OOM;
 | 
						|
	}
 | 
						|
 | 
						|
	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 | 
						|
	/*
 | 
						|
	 * The memory barrier inside __SetPageUptodate makes sure that
 | 
						|
	 * clear_huge_page writes become visible before the set_pmd_at()
 | 
						|
	 * write.
 | 
						|
	 */
 | 
						|
	__SetPageUptodate(page);
 | 
						|
 | 
						|
	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
 | 
						|
	if (unlikely(!pmd_none(*fe->pmd))) {
 | 
						|
		spin_unlock(fe->ptl);
 | 
						|
		mem_cgroup_cancel_charge(page, memcg, true);
 | 
						|
		put_page(page);
 | 
						|
		pte_free(vma->vm_mm, pgtable);
 | 
						|
	} else {
 | 
						|
		pmd_t entry;
 | 
						|
 | 
						|
		/* Deliver the page fault to userland */
 | 
						|
		if (userfaultfd_missing(vma)) {
 | 
						|
			int ret;
 | 
						|
 | 
						|
			spin_unlock(fe->ptl);
 | 
						|
			mem_cgroup_cancel_charge(page, memcg, true);
 | 
						|
			put_page(page);
 | 
						|
			pte_free(vma->vm_mm, pgtable);
 | 
						|
			ret = handle_userfault(fe, VM_UFFD_MISSING);
 | 
						|
			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
 | 
						|
		entry = mk_huge_pmd(page, vma->vm_page_prot);
 | 
						|
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 | 
						|
		page_add_new_anon_rmap(page, vma, haddr, true);
 | 
						|
		mem_cgroup_commit_charge(page, memcg, false, true);
 | 
						|
		lru_cache_add_active_or_unevictable(page, vma);
 | 
						|
		pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
 | 
						|
		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
 | 
						|
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 | 
						|
		atomic_long_inc(&vma->vm_mm->nr_ptes);
 | 
						|
		spin_unlock(fe->ptl);
 | 
						|
		count_vm_event(THP_FAULT_ALLOC);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If THP defrag is set to always then directly reclaim/compact as necessary
 | 
						|
 * If set to defer then do only background reclaim/compact and defer to khugepaged
 | 
						|
 * If set to madvise and the VMA is flagged then directly reclaim/compact
 | 
						|
 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
 | 
						|
 */
 | 
						|
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
 | 
						|
 | 
						|
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
 | 
						|
				&transparent_hugepage_flags) && vma_madvised)
 | 
						|
		return GFP_TRANSHUGE;
 | 
						|
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 | 
						|
						&transparent_hugepage_flags))
 | 
						|
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 | 
						|
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 | 
						|
						&transparent_hugepage_flags))
 | 
						|
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 | 
						|
 | 
						|
	return GFP_TRANSHUGE_LIGHT;
 | 
						|
}
 | 
						|
 | 
						|
/* Caller must hold page table lock. */
 | 
						|
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 | 
						|
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 | 
						|
		struct page *zero_page)
 | 
						|
{
 | 
						|
	pmd_t entry;
 | 
						|
	if (!pmd_none(*pmd))
 | 
						|
		return false;
 | 
						|
	entry = mk_pmd(zero_page, vma->vm_page_prot);
 | 
						|
	entry = pmd_mkhuge(entry);
 | 
						|
	if (pgtable)
 | 
						|
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 | 
						|
	set_pmd_at(mm, haddr, pmd, entry);
 | 
						|
	atomic_long_inc(&mm->nr_ptes);
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
int do_huge_pmd_anonymous_page(struct fault_env *fe)
 | 
						|
{
 | 
						|
	struct vm_area_struct *vma = fe->vma;
 | 
						|
	gfp_t gfp;
 | 
						|
	struct page *page;
 | 
						|
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
 | 
						|
 | 
						|
	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 | 
						|
		return VM_FAULT_FALLBACK;
 | 
						|
	if (unlikely(anon_vma_prepare(vma)))
 | 
						|
		return VM_FAULT_OOM;
 | 
						|
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 | 
						|
		return VM_FAULT_OOM;
 | 
						|
	if (!(fe->flags & FAULT_FLAG_WRITE) &&
 | 
						|
			!mm_forbids_zeropage(vma->vm_mm) &&
 | 
						|
			transparent_hugepage_use_zero_page()) {
 | 
						|
		pgtable_t pgtable;
 | 
						|
		struct page *zero_page;
 | 
						|
		bool set;
 | 
						|
		int ret;
 | 
						|
		pgtable = pte_alloc_one(vma->vm_mm, haddr);
 | 
						|
		if (unlikely(!pgtable))
 | 
						|
			return VM_FAULT_OOM;
 | 
						|
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 | 
						|
		if (unlikely(!zero_page)) {
 | 
						|
			pte_free(vma->vm_mm, pgtable);
 | 
						|
			count_vm_event(THP_FAULT_FALLBACK);
 | 
						|
			return VM_FAULT_FALLBACK;
 | 
						|
		}
 | 
						|
		fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
 | 
						|
		ret = 0;
 | 
						|
		set = false;
 | 
						|
		if (pmd_none(*fe->pmd)) {
 | 
						|
			if (userfaultfd_missing(vma)) {
 | 
						|
				spin_unlock(fe->ptl);
 | 
						|
				ret = handle_userfault(fe, VM_UFFD_MISSING);
 | 
						|
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 | 
						|
			} else {
 | 
						|
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 | 
						|
						   haddr, fe->pmd, zero_page);
 | 
						|
				spin_unlock(fe->ptl);
 | 
						|
				set = true;
 | 
						|
			}
 | 
						|
		} else
 | 
						|
			spin_unlock(fe->ptl);
 | 
						|
		if (!set)
 | 
						|
			pte_free(vma->vm_mm, pgtable);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
	gfp = alloc_hugepage_direct_gfpmask(vma);
 | 
						|
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 | 
						|
	if (unlikely(!page)) {
 | 
						|
		count_vm_event(THP_FAULT_FALLBACK);
 | 
						|
		return VM_FAULT_FALLBACK;
 | 
						|
	}
 | 
						|
	prep_transhuge_page(page);
 | 
						|
	return __do_huge_pmd_anonymous_page(fe, page, gfp);
 | 
						|
}
 | 
						|
 | 
						|
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 | 
						|
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	pmd_t entry;
 | 
						|
	spinlock_t *ptl;
 | 
						|
 | 
						|
	ptl = pmd_lock(mm, pmd);
 | 
						|
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 | 
						|
	if (pfn_t_devmap(pfn))
 | 
						|
		entry = pmd_mkdevmap(entry);
 | 
						|
	if (write) {
 | 
						|
		entry = pmd_mkyoung(pmd_mkdirty(entry));
 | 
						|
		entry = maybe_pmd_mkwrite(entry, vma);
 | 
						|
	}
 | 
						|
	set_pmd_at(mm, addr, pmd, entry);
 | 
						|
	update_mmu_cache_pmd(vma, addr, pmd);
 | 
						|
	spin_unlock(ptl);
 | 
						|
}
 | 
						|
 | 
						|
int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 | 
						|
			pmd_t *pmd, pfn_t pfn, bool write)
 | 
						|
{
 | 
						|
	pgprot_t pgprot = vma->vm_page_prot;
 | 
						|
	/*
 | 
						|
	 * If we had pmd_special, we could avoid all these restrictions,
 | 
						|
	 * but we need to be consistent with PTEs and architectures that
 | 
						|
	 * can't support a 'special' bit.
 | 
						|
	 */
 | 
						|
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 | 
						|
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 | 
						|
						(VM_PFNMAP|VM_MIXEDMAP));
 | 
						|
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 | 
						|
	BUG_ON(!pfn_t_devmap(pfn));
 | 
						|
 | 
						|
	if (addr < vma->vm_start || addr >= vma->vm_end)
 | 
						|
		return VM_FAULT_SIGBUS;
 | 
						|
	if (track_pfn_insert(vma, &pgprot, pfn))
 | 
						|
		return VM_FAULT_SIGBUS;
 | 
						|
	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
 | 
						|
	return VM_FAULT_NOPAGE;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
 | 
						|
 | 
						|
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 | 
						|
		pmd_t *pmd)
 | 
						|
{
 | 
						|
	pmd_t _pmd;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We should set the dirty bit only for FOLL_WRITE but for now
 | 
						|
	 * the dirty bit in the pmd is meaningless.  And if the dirty
 | 
						|
	 * bit will become meaningful and we'll only set it with
 | 
						|
	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
 | 
						|
	 * set the young bit, instead of the current set_pmd_at.
 | 
						|
	 */
 | 
						|
	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
 | 
						|
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 | 
						|
				pmd, _pmd,  1))
 | 
						|
		update_mmu_cache_pmd(vma, addr, pmd);
 | 
						|
}
 | 
						|
 | 
						|
struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 | 
						|
		pmd_t *pmd, int flags)
 | 
						|
{
 | 
						|
	unsigned long pfn = pmd_pfn(*pmd);
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	struct dev_pagemap *pgmap;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	assert_spin_locked(pmd_lockptr(mm, pmd));
 | 
						|
 | 
						|
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (pmd_present(*pmd) && pmd_devmap(*pmd))
 | 
						|
		/* pass */;
 | 
						|
	else
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (flags & FOLL_TOUCH)
 | 
						|
		touch_pmd(vma, addr, pmd);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * device mapped pages can only be returned if the
 | 
						|
	 * caller will manage the page reference count.
 | 
						|
	 */
 | 
						|
	if (!(flags & FOLL_GET))
 | 
						|
		return ERR_PTR(-EEXIST);
 | 
						|
 | 
						|
	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 | 
						|
	pgmap = get_dev_pagemap(pfn, NULL);
 | 
						|
	if (!pgmap)
 | 
						|
		return ERR_PTR(-EFAULT);
 | 
						|
	page = pfn_to_page(pfn);
 | 
						|
	get_page(page);
 | 
						|
	put_dev_pagemap(pgmap);
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 | 
						|
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 | 
						|
		  struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	spinlock_t *dst_ptl, *src_ptl;
 | 
						|
	struct page *src_page;
 | 
						|
	pmd_t pmd;
 | 
						|
	pgtable_t pgtable = NULL;
 | 
						|
	int ret = -ENOMEM;
 | 
						|
 | 
						|
	/* Skip if can be re-fill on fault */
 | 
						|
	if (!vma_is_anonymous(vma))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	pgtable = pte_alloc_one(dst_mm, addr);
 | 
						|
	if (unlikely(!pgtable))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
 | 
						|
	src_ptl = pmd_lockptr(src_mm, src_pmd);
 | 
						|
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 | 
						|
 | 
						|
	ret = -EAGAIN;
 | 
						|
	pmd = *src_pmd;
 | 
						|
	if (unlikely(!pmd_trans_huge(pmd))) {
 | 
						|
		pte_free(dst_mm, pgtable);
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * When page table lock is held, the huge zero pmd should not be
 | 
						|
	 * under splitting since we don't split the page itself, only pmd to
 | 
						|
	 * a page table.
 | 
						|
	 */
 | 
						|
	if (is_huge_zero_pmd(pmd)) {
 | 
						|
		struct page *zero_page;
 | 
						|
		/*
 | 
						|
		 * get_huge_zero_page() will never allocate a new page here,
 | 
						|
		 * since we already have a zero page to copy. It just takes a
 | 
						|
		 * reference.
 | 
						|
		 */
 | 
						|
		zero_page = mm_get_huge_zero_page(dst_mm);
 | 
						|
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 | 
						|
				zero_page);
 | 
						|
		ret = 0;
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	src_page = pmd_page(pmd);
 | 
						|
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 | 
						|
	get_page(src_page);
 | 
						|
	page_dup_rmap(src_page, true);
 | 
						|
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 | 
						|
	atomic_long_inc(&dst_mm->nr_ptes);
 | 
						|
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 | 
						|
 | 
						|
	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 | 
						|
	pmd = pmd_mkold(pmd_wrprotect(pmd));
 | 
						|
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
out_unlock:
 | 
						|
	spin_unlock(src_ptl);
 | 
						|
	spin_unlock(dst_ptl);
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
 | 
						|
{
 | 
						|
	pmd_t entry;
 | 
						|
	unsigned long haddr;
 | 
						|
 | 
						|
	fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
 | 
						|
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
 | 
						|
		goto unlock;
 | 
						|
 | 
						|
	entry = pmd_mkyoung(orig_pmd);
 | 
						|
	haddr = fe->address & HPAGE_PMD_MASK;
 | 
						|
	if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
 | 
						|
				fe->flags & FAULT_FLAG_WRITE))
 | 
						|
		update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
 | 
						|
 | 
						|
unlock:
 | 
						|
	spin_unlock(fe->ptl);
 | 
						|
}
 | 
						|
 | 
						|
static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
 | 
						|
		struct page *page)
 | 
						|
{
 | 
						|
	struct vm_area_struct *vma = fe->vma;
 | 
						|
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	pgtable_t pgtable;
 | 
						|
	pmd_t _pmd;
 | 
						|
	int ret = 0, i;
 | 
						|
	struct page **pages;
 | 
						|
	unsigned long mmun_start;	/* For mmu_notifiers */
 | 
						|
	unsigned long mmun_end;		/* For mmu_notifiers */
 | 
						|
 | 
						|
	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 | 
						|
			GFP_KERNEL);
 | 
						|
	if (unlikely(!pages)) {
 | 
						|
		ret |= VM_FAULT_OOM;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < HPAGE_PMD_NR; i++) {
 | 
						|
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 | 
						|
					       __GFP_OTHER_NODE, vma,
 | 
						|
					       fe->address, page_to_nid(page));
 | 
						|
		if (unlikely(!pages[i] ||
 | 
						|
			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
 | 
						|
				     GFP_KERNEL, &memcg, false))) {
 | 
						|
			if (pages[i])
 | 
						|
				put_page(pages[i]);
 | 
						|
			while (--i >= 0) {
 | 
						|
				memcg = (void *)page_private(pages[i]);
 | 
						|
				set_page_private(pages[i], 0);
 | 
						|
				mem_cgroup_cancel_charge(pages[i], memcg,
 | 
						|
						false);
 | 
						|
				put_page(pages[i]);
 | 
						|
			}
 | 
						|
			kfree(pages);
 | 
						|
			ret |= VM_FAULT_OOM;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		set_page_private(pages[i], (unsigned long)memcg);
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < HPAGE_PMD_NR; i++) {
 | 
						|
		copy_user_highpage(pages[i], page + i,
 | 
						|
				   haddr + PAGE_SIZE * i, vma);
 | 
						|
		__SetPageUptodate(pages[i]);
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
 | 
						|
	mmun_start = haddr;
 | 
						|
	mmun_end   = haddr + HPAGE_PMD_SIZE;
 | 
						|
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
 | 
						|
 | 
						|
	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
 | 
						|
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
 | 
						|
		goto out_free_pages;
 | 
						|
	VM_BUG_ON_PAGE(!PageHead(page), page);
 | 
						|
 | 
						|
	pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
 | 
						|
	/* leave pmd empty until pte is filled */
 | 
						|
 | 
						|
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
 | 
						|
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
 | 
						|
 | 
						|
	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 | 
						|
		pte_t entry;
 | 
						|
		entry = mk_pte(pages[i], vma->vm_page_prot);
 | 
						|
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 | 
						|
		memcg = (void *)page_private(pages[i]);
 | 
						|
		set_page_private(pages[i], 0);
 | 
						|
		page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
 | 
						|
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
 | 
						|
		lru_cache_add_active_or_unevictable(pages[i], vma);
 | 
						|
		fe->pte = pte_offset_map(&_pmd, haddr);
 | 
						|
		VM_BUG_ON(!pte_none(*fe->pte));
 | 
						|
		set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
 | 
						|
		pte_unmap(fe->pte);
 | 
						|
	}
 | 
						|
	kfree(pages);
 | 
						|
 | 
						|
	smp_wmb(); /* make pte visible before pmd */
 | 
						|
	pmd_populate(vma->vm_mm, fe->pmd, pgtable);
 | 
						|
	page_remove_rmap(page, true);
 | 
						|
	spin_unlock(fe->ptl);
 | 
						|
 | 
						|
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
 | 
						|
 | 
						|
	ret |= VM_FAULT_WRITE;
 | 
						|
	put_page(page);
 | 
						|
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
 | 
						|
out_free_pages:
 | 
						|
	spin_unlock(fe->ptl);
 | 
						|
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
 | 
						|
	for (i = 0; i < HPAGE_PMD_NR; i++) {
 | 
						|
		memcg = (void *)page_private(pages[i]);
 | 
						|
		set_page_private(pages[i], 0);
 | 
						|
		mem_cgroup_cancel_charge(pages[i], memcg, false);
 | 
						|
		put_page(pages[i]);
 | 
						|
	}
 | 
						|
	kfree(pages);
 | 
						|
	goto out;
 | 
						|
}
 | 
						|
 | 
						|
int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
 | 
						|
{
 | 
						|
	struct vm_area_struct *vma = fe->vma;
 | 
						|
	struct page *page = NULL, *new_page;
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
 | 
						|
	unsigned long mmun_start;	/* For mmu_notifiers */
 | 
						|
	unsigned long mmun_end;		/* For mmu_notifiers */
 | 
						|
	gfp_t huge_gfp;			/* for allocation and charge */
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
 | 
						|
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
 | 
						|
	if (is_huge_zero_pmd(orig_pmd))
 | 
						|
		goto alloc;
 | 
						|
	spin_lock(fe->ptl);
 | 
						|
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	page = pmd_page(orig_pmd);
 | 
						|
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
 | 
						|
	/*
 | 
						|
	 * We can only reuse the page if nobody else maps the huge page or it's
 | 
						|
	 * part.
 | 
						|
	 */
 | 
						|
	if (page_trans_huge_mapcount(page, NULL) == 1) {
 | 
						|
		pmd_t entry;
 | 
						|
		entry = pmd_mkyoung(orig_pmd);
 | 
						|
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 | 
						|
		if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry,  1))
 | 
						|
			update_mmu_cache_pmd(vma, fe->address, fe->pmd);
 | 
						|
		ret |= VM_FAULT_WRITE;
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
	get_page(page);
 | 
						|
	spin_unlock(fe->ptl);
 | 
						|
alloc:
 | 
						|
	if (transparent_hugepage_enabled(vma) &&
 | 
						|
	    !transparent_hugepage_debug_cow()) {
 | 
						|
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
 | 
						|
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
 | 
						|
	} else
 | 
						|
		new_page = NULL;
 | 
						|
 | 
						|
	if (likely(new_page)) {
 | 
						|
		prep_transhuge_page(new_page);
 | 
						|
	} else {
 | 
						|
		if (!page) {
 | 
						|
			split_huge_pmd(vma, fe->pmd, fe->address);
 | 
						|
			ret |= VM_FAULT_FALLBACK;
 | 
						|
		} else {
 | 
						|
			ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
 | 
						|
			if (ret & VM_FAULT_OOM) {
 | 
						|
				split_huge_pmd(vma, fe->pmd, fe->address);
 | 
						|
				ret |= VM_FAULT_FALLBACK;
 | 
						|
			}
 | 
						|
			put_page(page);
 | 
						|
		}
 | 
						|
		count_vm_event(THP_FAULT_FALLBACK);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
 | 
						|
					huge_gfp, &memcg, true))) {
 | 
						|
		put_page(new_page);
 | 
						|
		split_huge_pmd(vma, fe->pmd, fe->address);
 | 
						|
		if (page)
 | 
						|
			put_page(page);
 | 
						|
		ret |= VM_FAULT_FALLBACK;
 | 
						|
		count_vm_event(THP_FAULT_FALLBACK);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	count_vm_event(THP_FAULT_ALLOC);
 | 
						|
 | 
						|
	if (!page)
 | 
						|
		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
 | 
						|
	else
 | 
						|
		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
 | 
						|
	__SetPageUptodate(new_page);
 | 
						|
 | 
						|
	mmun_start = haddr;
 | 
						|
	mmun_end   = haddr + HPAGE_PMD_SIZE;
 | 
						|
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
 | 
						|
 | 
						|
	spin_lock(fe->ptl);
 | 
						|
	if (page)
 | 
						|
		put_page(page);
 | 
						|
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
 | 
						|
		spin_unlock(fe->ptl);
 | 
						|
		mem_cgroup_cancel_charge(new_page, memcg, true);
 | 
						|
		put_page(new_page);
 | 
						|
		goto out_mn;
 | 
						|
	} else {
 | 
						|
		pmd_t entry;
 | 
						|
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
 | 
						|
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 | 
						|
		pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
 | 
						|
		page_add_new_anon_rmap(new_page, vma, haddr, true);
 | 
						|
		mem_cgroup_commit_charge(new_page, memcg, false, true);
 | 
						|
		lru_cache_add_active_or_unevictable(new_page, vma);
 | 
						|
		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
 | 
						|
		update_mmu_cache_pmd(vma, fe->address, fe->pmd);
 | 
						|
		if (!page) {
 | 
						|
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 | 
						|
		} else {
 | 
						|
			VM_BUG_ON_PAGE(!PageHead(page), page);
 | 
						|
			page_remove_rmap(page, true);
 | 
						|
			put_page(page);
 | 
						|
		}
 | 
						|
		ret |= VM_FAULT_WRITE;
 | 
						|
	}
 | 
						|
	spin_unlock(fe->ptl);
 | 
						|
out_mn:
 | 
						|
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
 | 
						|
out:
 | 
						|
	return ret;
 | 
						|
out_unlock:
 | 
						|
	spin_unlock(fe->ptl);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
 | 
						|
				   unsigned long addr,
 | 
						|
				   pmd_t *pmd,
 | 
						|
				   unsigned int flags)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	struct page *page = NULL;
 | 
						|
 | 
						|
	assert_spin_locked(pmd_lockptr(mm, pmd));
 | 
						|
 | 
						|
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* Avoid dumping huge zero page */
 | 
						|
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
 | 
						|
		return ERR_PTR(-EFAULT);
 | 
						|
 | 
						|
	/* Full NUMA hinting faults to serialise migration in fault paths */
 | 
						|
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	page = pmd_page(*pmd);
 | 
						|
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
 | 
						|
	if (flags & FOLL_TOUCH)
 | 
						|
		touch_pmd(vma, addr, pmd);
 | 
						|
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
 | 
						|
		/*
 | 
						|
		 * We don't mlock() pte-mapped THPs. This way we can avoid
 | 
						|
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
 | 
						|
		 *
 | 
						|
		 * For anon THP:
 | 
						|
		 *
 | 
						|
		 * In most cases the pmd is the only mapping of the page as we
 | 
						|
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
 | 
						|
		 * writable private mappings in populate_vma_page_range().
 | 
						|
		 *
 | 
						|
		 * The only scenario when we have the page shared here is if we
 | 
						|
		 * mlocking read-only mapping shared over fork(). We skip
 | 
						|
		 * mlocking such pages.
 | 
						|
		 *
 | 
						|
		 * For file THP:
 | 
						|
		 *
 | 
						|
		 * We can expect PageDoubleMap() to be stable under page lock:
 | 
						|
		 * for file pages we set it in page_add_file_rmap(), which
 | 
						|
		 * requires page to be locked.
 | 
						|
		 */
 | 
						|
 | 
						|
		if (PageAnon(page) && compound_mapcount(page) != 1)
 | 
						|
			goto skip_mlock;
 | 
						|
		if (PageDoubleMap(page) || !page->mapping)
 | 
						|
			goto skip_mlock;
 | 
						|
		if (!trylock_page(page))
 | 
						|
			goto skip_mlock;
 | 
						|
		lru_add_drain();
 | 
						|
		if (page->mapping && !PageDoubleMap(page))
 | 
						|
			mlock_vma_page(page);
 | 
						|
		unlock_page(page);
 | 
						|
	}
 | 
						|
skip_mlock:
 | 
						|
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
 | 
						|
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
 | 
						|
	if (flags & FOLL_GET)
 | 
						|
		get_page(page);
 | 
						|
 | 
						|
out:
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
/* NUMA hinting page fault entry point for trans huge pmds */
 | 
						|
int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
 | 
						|
{
 | 
						|
	struct vm_area_struct *vma = fe->vma;
 | 
						|
	struct anon_vma *anon_vma = NULL;
 | 
						|
	struct page *page;
 | 
						|
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
 | 
						|
	int page_nid = -1, this_nid = numa_node_id();
 | 
						|
	int target_nid, last_cpupid = -1;
 | 
						|
	bool page_locked;
 | 
						|
	bool migrated = false;
 | 
						|
	bool was_writable;
 | 
						|
	int flags = 0;
 | 
						|
 | 
						|
	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
 | 
						|
	if (unlikely(!pmd_same(pmd, *fe->pmd)))
 | 
						|
		goto out_unlock;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If there are potential migrations, wait for completion and retry
 | 
						|
	 * without disrupting NUMA hinting information. Do not relock and
 | 
						|
	 * check_same as the page may no longer be mapped.
 | 
						|
	 */
 | 
						|
	if (unlikely(pmd_trans_migrating(*fe->pmd))) {
 | 
						|
		page = pmd_page(*fe->pmd);
 | 
						|
		spin_unlock(fe->ptl);
 | 
						|
		wait_on_page_locked(page);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	page = pmd_page(pmd);
 | 
						|
	BUG_ON(is_huge_zero_page(page));
 | 
						|
	page_nid = page_to_nid(page);
 | 
						|
	last_cpupid = page_cpupid_last(page);
 | 
						|
	count_vm_numa_event(NUMA_HINT_FAULTS);
 | 
						|
	if (page_nid == this_nid) {
 | 
						|
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
 | 
						|
		flags |= TNF_FAULT_LOCAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* See similar comment in do_numa_page for explanation */
 | 
						|
	if (!pmd_write(pmd))
 | 
						|
		flags |= TNF_NO_GROUP;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Acquire the page lock to serialise THP migrations but avoid dropping
 | 
						|
	 * page_table_lock if at all possible
 | 
						|
	 */
 | 
						|
	page_locked = trylock_page(page);
 | 
						|
	target_nid = mpol_misplaced(page, vma, haddr);
 | 
						|
	if (target_nid == -1) {
 | 
						|
		/* If the page was locked, there are no parallel migrations */
 | 
						|
		if (page_locked)
 | 
						|
			goto clear_pmdnuma;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Migration could have started since the pmd_trans_migrating check */
 | 
						|
	if (!page_locked) {
 | 
						|
		spin_unlock(fe->ptl);
 | 
						|
		wait_on_page_locked(page);
 | 
						|
		page_nid = -1;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
 | 
						|
	 * to serialises splits
 | 
						|
	 */
 | 
						|
	get_page(page);
 | 
						|
	spin_unlock(fe->ptl);
 | 
						|
	anon_vma = page_lock_anon_vma_read(page);
 | 
						|
 | 
						|
	/* Confirm the PMD did not change while page_table_lock was released */
 | 
						|
	spin_lock(fe->ptl);
 | 
						|
	if (unlikely(!pmd_same(pmd, *fe->pmd))) {
 | 
						|
		unlock_page(page);
 | 
						|
		put_page(page);
 | 
						|
		page_nid = -1;
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Bail if we fail to protect against THP splits for any reason */
 | 
						|
	if (unlikely(!anon_vma)) {
 | 
						|
		put_page(page);
 | 
						|
		page_nid = -1;
 | 
						|
		goto clear_pmdnuma;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Migrate the THP to the requested node, returns with page unlocked
 | 
						|
	 * and access rights restored.
 | 
						|
	 */
 | 
						|
	spin_unlock(fe->ptl);
 | 
						|
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
 | 
						|
				fe->pmd, pmd, fe->address, page, target_nid);
 | 
						|
	if (migrated) {
 | 
						|
		flags |= TNF_MIGRATED;
 | 
						|
		page_nid = target_nid;
 | 
						|
	} else
 | 
						|
		flags |= TNF_MIGRATE_FAIL;
 | 
						|
 | 
						|
	goto out;
 | 
						|
clear_pmdnuma:
 | 
						|
	BUG_ON(!PageLocked(page));
 | 
						|
	was_writable = pmd_write(pmd);
 | 
						|
	pmd = pmd_modify(pmd, vma->vm_page_prot);
 | 
						|
	pmd = pmd_mkyoung(pmd);
 | 
						|
	if (was_writable)
 | 
						|
		pmd = pmd_mkwrite(pmd);
 | 
						|
	set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
 | 
						|
	update_mmu_cache_pmd(vma, fe->address, fe->pmd);
 | 
						|
	unlock_page(page);
 | 
						|
out_unlock:
 | 
						|
	spin_unlock(fe->ptl);
 | 
						|
 | 
						|
out:
 | 
						|
	if (anon_vma)
 | 
						|
		page_unlock_anon_vma_read(anon_vma);
 | 
						|
 | 
						|
	if (page_nid != -1)
 | 
						|
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return true if we do MADV_FREE successfully on entire pmd page.
 | 
						|
 * Otherwise, return false.
 | 
						|
 */
 | 
						|
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
 | 
						|
		pmd_t *pmd, unsigned long addr, unsigned long next)
 | 
						|
{
 | 
						|
	spinlock_t *ptl;
 | 
						|
	pmd_t orig_pmd;
 | 
						|
	struct page *page;
 | 
						|
	struct mm_struct *mm = tlb->mm;
 | 
						|
	bool ret = false;
 | 
						|
 | 
						|
	ptl = pmd_trans_huge_lock(pmd, vma);
 | 
						|
	if (!ptl)
 | 
						|
		goto out_unlocked;
 | 
						|
 | 
						|
	orig_pmd = *pmd;
 | 
						|
	if (is_huge_zero_pmd(orig_pmd))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	page = pmd_page(orig_pmd);
 | 
						|
	/*
 | 
						|
	 * If other processes are mapping this page, we couldn't discard
 | 
						|
	 * the page unless they all do MADV_FREE so let's skip the page.
 | 
						|
	 */
 | 
						|
	if (page_mapcount(page) != 1)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (!trylock_page(page))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If user want to discard part-pages of THP, split it so MADV_FREE
 | 
						|
	 * will deactivate only them.
 | 
						|
	 */
 | 
						|
	if (next - addr != HPAGE_PMD_SIZE) {
 | 
						|
		get_page(page);
 | 
						|
		spin_unlock(ptl);
 | 
						|
		split_huge_page(page);
 | 
						|
		put_page(page);
 | 
						|
		unlock_page(page);
 | 
						|
		goto out_unlocked;
 | 
						|
	}
 | 
						|
 | 
						|
	if (PageDirty(page))
 | 
						|
		ClearPageDirty(page);
 | 
						|
	unlock_page(page);
 | 
						|
 | 
						|
	if (PageActive(page))
 | 
						|
		deactivate_page(page);
 | 
						|
 | 
						|
	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
 | 
						|
		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
 | 
						|
			tlb->fullmm);
 | 
						|
		orig_pmd = pmd_mkold(orig_pmd);
 | 
						|
		orig_pmd = pmd_mkclean(orig_pmd);
 | 
						|
 | 
						|
		set_pmd_at(mm, addr, pmd, orig_pmd);
 | 
						|
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
 | 
						|
	}
 | 
						|
	ret = true;
 | 
						|
out:
 | 
						|
	spin_unlock(ptl);
 | 
						|
out_unlocked:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
 | 
						|
		 pmd_t *pmd, unsigned long addr)
 | 
						|
{
 | 
						|
	pmd_t orig_pmd;
 | 
						|
	spinlock_t *ptl;
 | 
						|
 | 
						|
	ptl = __pmd_trans_huge_lock(pmd, vma);
 | 
						|
	if (!ptl)
 | 
						|
		return 0;
 | 
						|
	/*
 | 
						|
	 * For architectures like ppc64 we look at deposited pgtable
 | 
						|
	 * when calling pmdp_huge_get_and_clear. So do the
 | 
						|
	 * pgtable_trans_huge_withdraw after finishing pmdp related
 | 
						|
	 * operations.
 | 
						|
	 */
 | 
						|
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
 | 
						|
			tlb->fullmm);
 | 
						|
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
 | 
						|
	if (vma_is_dax(vma)) {
 | 
						|
		spin_unlock(ptl);
 | 
						|
		if (is_huge_zero_pmd(orig_pmd))
 | 
						|
			tlb_remove_page(tlb, pmd_page(orig_pmd));
 | 
						|
	} else if (is_huge_zero_pmd(orig_pmd)) {
 | 
						|
		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
 | 
						|
		atomic_long_dec(&tlb->mm->nr_ptes);
 | 
						|
		spin_unlock(ptl);
 | 
						|
		tlb_remove_page(tlb, pmd_page(orig_pmd));
 | 
						|
	} else {
 | 
						|
		struct page *page = pmd_page(orig_pmd);
 | 
						|
		page_remove_rmap(page, true);
 | 
						|
		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
 | 
						|
		VM_BUG_ON_PAGE(!PageHead(page), page);
 | 
						|
		if (PageAnon(page)) {
 | 
						|
			pgtable_t pgtable;
 | 
						|
			pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
 | 
						|
			pte_free(tlb->mm, pgtable);
 | 
						|
			atomic_long_dec(&tlb->mm->nr_ptes);
 | 
						|
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
 | 
						|
		} else {
 | 
						|
			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
 | 
						|
		}
 | 
						|
		spin_unlock(ptl);
 | 
						|
		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
 | 
						|
	}
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
 | 
						|
		  unsigned long new_addr, unsigned long old_end,
 | 
						|
		  pmd_t *old_pmd, pmd_t *new_pmd)
 | 
						|
{
 | 
						|
	spinlock_t *old_ptl, *new_ptl;
 | 
						|
	pmd_t pmd;
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
 | 
						|
	if ((old_addr & ~HPAGE_PMD_MASK) ||
 | 
						|
	    (new_addr & ~HPAGE_PMD_MASK) ||
 | 
						|
	    old_end - old_addr < HPAGE_PMD_SIZE)
 | 
						|
		return false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The destination pmd shouldn't be established, free_pgtables()
 | 
						|
	 * should have release it.
 | 
						|
	 */
 | 
						|
	if (WARN_ON(!pmd_none(*new_pmd))) {
 | 
						|
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't have to worry about the ordering of src and dst
 | 
						|
	 * ptlocks because exclusive mmap_sem prevents deadlock.
 | 
						|
	 */
 | 
						|
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
 | 
						|
	if (old_ptl) {
 | 
						|
		new_ptl = pmd_lockptr(mm, new_pmd);
 | 
						|
		if (new_ptl != old_ptl)
 | 
						|
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 | 
						|
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
 | 
						|
		VM_BUG_ON(!pmd_none(*new_pmd));
 | 
						|
 | 
						|
		if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
 | 
						|
				vma_is_anonymous(vma)) {
 | 
						|
			pgtable_t pgtable;
 | 
						|
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
 | 
						|
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
 | 
						|
		}
 | 
						|
		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
 | 
						|
		if (new_ptl != old_ptl)
 | 
						|
			spin_unlock(new_ptl);
 | 
						|
		spin_unlock(old_ptl);
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns
 | 
						|
 *  - 0 if PMD could not be locked
 | 
						|
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 | 
						|
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 | 
						|
 */
 | 
						|
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
 | 
						|
		unsigned long addr, pgprot_t newprot, int prot_numa)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	spinlock_t *ptl;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	ptl = __pmd_trans_huge_lock(pmd, vma);
 | 
						|
	if (ptl) {
 | 
						|
		pmd_t entry;
 | 
						|
		bool preserve_write = prot_numa && pmd_write(*pmd);
 | 
						|
		ret = 1;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Avoid trapping faults against the zero page. The read-only
 | 
						|
		 * data is likely to be read-cached on the local CPU and
 | 
						|
		 * local/remote hits to the zero page are not interesting.
 | 
						|
		 */
 | 
						|
		if (prot_numa && is_huge_zero_pmd(*pmd)) {
 | 
						|
			spin_unlock(ptl);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!prot_numa || !pmd_protnone(*pmd)) {
 | 
						|
			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
 | 
						|
			entry = pmd_modify(entry, newprot);
 | 
						|
			if (preserve_write)
 | 
						|
				entry = pmd_mkwrite(entry);
 | 
						|
			ret = HPAGE_PMD_NR;
 | 
						|
			set_pmd_at(mm, addr, pmd, entry);
 | 
						|
			BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
 | 
						|
					pmd_write(entry));
 | 
						|
		}
 | 
						|
		spin_unlock(ptl);
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
 | 
						|
 *
 | 
						|
 * Note that if it returns page table lock pointer, this routine returns without
 | 
						|
 * unlocking page table lock. So callers must unlock it.
 | 
						|
 */
 | 
						|
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	spinlock_t *ptl;
 | 
						|
	ptl = pmd_lock(vma->vm_mm, pmd);
 | 
						|
	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
 | 
						|
		return ptl;
 | 
						|
	spin_unlock(ptl);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
 | 
						|
		unsigned long haddr, pmd_t *pmd)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	pgtable_t pgtable;
 | 
						|
	pmd_t _pmd;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* leave pmd empty until pte is filled */
 | 
						|
	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
 | 
						|
 | 
						|
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
 | 
						|
	pmd_populate(mm, &_pmd, pgtable);
 | 
						|
 | 
						|
	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 | 
						|
		pte_t *pte, entry;
 | 
						|
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
 | 
						|
		entry = pte_mkspecial(entry);
 | 
						|
		pte = pte_offset_map(&_pmd, haddr);
 | 
						|
		VM_BUG_ON(!pte_none(*pte));
 | 
						|
		set_pte_at(mm, haddr, pte, entry);
 | 
						|
		pte_unmap(pte);
 | 
						|
	}
 | 
						|
	smp_wmb(); /* make pte visible before pmd */
 | 
						|
	pmd_populate(mm, pmd, pgtable);
 | 
						|
}
 | 
						|
 | 
						|
static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
 | 
						|
		unsigned long haddr, bool freeze)
 | 
						|
{
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	struct page *page;
 | 
						|
	pgtable_t pgtable;
 | 
						|
	pmd_t _pmd;
 | 
						|
	bool young, write, dirty, soft_dirty;
 | 
						|
	unsigned long addr;
 | 
						|
	int i;
 | 
						|
 | 
						|
	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
 | 
						|
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
 | 
						|
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
 | 
						|
	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
 | 
						|
 | 
						|
	count_vm_event(THP_SPLIT_PMD);
 | 
						|
 | 
						|
	if (!vma_is_anonymous(vma)) {
 | 
						|
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
 | 
						|
		if (vma_is_dax(vma))
 | 
						|
			return;
 | 
						|
		page = pmd_page(_pmd);
 | 
						|
		if (!PageReferenced(page) && pmd_young(_pmd))
 | 
						|
			SetPageReferenced(page);
 | 
						|
		page_remove_rmap(page, true);
 | 
						|
		put_page(page);
 | 
						|
		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
 | 
						|
		return;
 | 
						|
	} else if (is_huge_zero_pmd(*pmd)) {
 | 
						|
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
 | 
						|
	}
 | 
						|
 | 
						|
	page = pmd_page(*pmd);
 | 
						|
	VM_BUG_ON_PAGE(!page_count(page), page);
 | 
						|
	page_ref_add(page, HPAGE_PMD_NR - 1);
 | 
						|
	write = pmd_write(*pmd);
 | 
						|
	young = pmd_young(*pmd);
 | 
						|
	dirty = pmd_dirty(*pmd);
 | 
						|
	soft_dirty = pmd_soft_dirty(*pmd);
 | 
						|
 | 
						|
	pmdp_huge_split_prepare(vma, haddr, pmd);
 | 
						|
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
 | 
						|
	pmd_populate(mm, &_pmd, pgtable);
 | 
						|
 | 
						|
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
 | 
						|
		pte_t entry, *pte;
 | 
						|
		/*
 | 
						|
		 * Note that NUMA hinting access restrictions are not
 | 
						|
		 * transferred to avoid any possibility of altering
 | 
						|
		 * permissions across VMAs.
 | 
						|
		 */
 | 
						|
		if (freeze) {
 | 
						|
			swp_entry_t swp_entry;
 | 
						|
			swp_entry = make_migration_entry(page + i, write);
 | 
						|
			entry = swp_entry_to_pte(swp_entry);
 | 
						|
			if (soft_dirty)
 | 
						|
				entry = pte_swp_mksoft_dirty(entry);
 | 
						|
		} else {
 | 
						|
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
 | 
						|
			entry = maybe_mkwrite(entry, vma);
 | 
						|
			if (!write)
 | 
						|
				entry = pte_wrprotect(entry);
 | 
						|
			if (!young)
 | 
						|
				entry = pte_mkold(entry);
 | 
						|
			if (soft_dirty)
 | 
						|
				entry = pte_mksoft_dirty(entry);
 | 
						|
		}
 | 
						|
		if (dirty)
 | 
						|
			SetPageDirty(page + i);
 | 
						|
		pte = pte_offset_map(&_pmd, addr);
 | 
						|
		BUG_ON(!pte_none(*pte));
 | 
						|
		set_pte_at(mm, addr, pte, entry);
 | 
						|
		atomic_inc(&page[i]._mapcount);
 | 
						|
		pte_unmap(pte);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set PG_double_map before dropping compound_mapcount to avoid
 | 
						|
	 * false-negative page_mapped().
 | 
						|
	 */
 | 
						|
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
 | 
						|
		for (i = 0; i < HPAGE_PMD_NR; i++)
 | 
						|
			atomic_inc(&page[i]._mapcount);
 | 
						|
	}
 | 
						|
 | 
						|
	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
 | 
						|
		/* Last compound_mapcount is gone. */
 | 
						|
		__dec_node_page_state(page, NR_ANON_THPS);
 | 
						|
		if (TestClearPageDoubleMap(page)) {
 | 
						|
			/* No need in mapcount reference anymore */
 | 
						|
			for (i = 0; i < HPAGE_PMD_NR; i++)
 | 
						|
				atomic_dec(&page[i]._mapcount);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	smp_wmb(); /* make pte visible before pmd */
 | 
						|
	/*
 | 
						|
	 * Up to this point the pmd is present and huge and userland has the
 | 
						|
	 * whole access to the hugepage during the split (which happens in
 | 
						|
	 * place). If we overwrite the pmd with the not-huge version pointing
 | 
						|
	 * to the pte here (which of course we could if all CPUs were bug
 | 
						|
	 * free), userland could trigger a small page size TLB miss on the
 | 
						|
	 * small sized TLB while the hugepage TLB entry is still established in
 | 
						|
	 * the huge TLB. Some CPU doesn't like that.
 | 
						|
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
 | 
						|
	 * 383 on page 93. Intel should be safe but is also warns that it's
 | 
						|
	 * only safe if the permission and cache attributes of the two entries
 | 
						|
	 * loaded in the two TLB is identical (which should be the case here).
 | 
						|
	 * But it is generally safer to never allow small and huge TLB entries
 | 
						|
	 * for the same virtual address to be loaded simultaneously. So instead
 | 
						|
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
 | 
						|
	 * current pmd notpresent (atomically because here the pmd_trans_huge
 | 
						|
	 * and pmd_trans_splitting must remain set at all times on the pmd
 | 
						|
	 * until the split is complete for this pmd), then we flush the SMP TLB
 | 
						|
	 * and finally we write the non-huge version of the pmd entry with
 | 
						|
	 * pmd_populate.
 | 
						|
	 */
 | 
						|
	pmdp_invalidate(vma, haddr, pmd);
 | 
						|
	pmd_populate(mm, pmd, pgtable);
 | 
						|
 | 
						|
	if (freeze) {
 | 
						|
		for (i = 0; i < HPAGE_PMD_NR; i++) {
 | 
						|
			page_remove_rmap(page + i, false);
 | 
						|
			put_page(page + i);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
 | 
						|
		unsigned long address, bool freeze, struct page *page)
 | 
						|
{
 | 
						|
	spinlock_t *ptl;
 | 
						|
	struct mm_struct *mm = vma->vm_mm;
 | 
						|
	unsigned long haddr = address & HPAGE_PMD_MASK;
 | 
						|
 | 
						|
	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
 | 
						|
	ptl = pmd_lock(mm, pmd);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If caller asks to setup a migration entries, we need a page to check
 | 
						|
	 * pmd against. Otherwise we can end up replacing wrong page.
 | 
						|
	 */
 | 
						|
	VM_BUG_ON(freeze && !page);
 | 
						|
	if (page && page != pmd_page(*pmd))
 | 
						|
	        goto out;
 | 
						|
 | 
						|
	if (pmd_trans_huge(*pmd)) {
 | 
						|
		page = pmd_page(*pmd);
 | 
						|
		if (PageMlocked(page))
 | 
						|
			clear_page_mlock(page);
 | 
						|
	} else if (!pmd_devmap(*pmd))
 | 
						|
		goto out;
 | 
						|
	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
 | 
						|
out:
 | 
						|
	spin_unlock(ptl);
 | 
						|
	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
 | 
						|
}
 | 
						|
 | 
						|
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
 | 
						|
		bool freeze, struct page *page)
 | 
						|
{
 | 
						|
	pgd_t *pgd;
 | 
						|
	pud_t *pud;
 | 
						|
	pmd_t *pmd;
 | 
						|
 | 
						|
	pgd = pgd_offset(vma->vm_mm, address);
 | 
						|
	if (!pgd_present(*pgd))
 | 
						|
		return;
 | 
						|
 | 
						|
	pud = pud_offset(pgd, address);
 | 
						|
	if (!pud_present(*pud))
 | 
						|
		return;
 | 
						|
 | 
						|
	pmd = pmd_offset(pud, address);
 | 
						|
 | 
						|
	__split_huge_pmd(vma, pmd, address, freeze, page);
 | 
						|
}
 | 
						|
 | 
						|
void vma_adjust_trans_huge(struct vm_area_struct *vma,
 | 
						|
			     unsigned long start,
 | 
						|
			     unsigned long end,
 | 
						|
			     long adjust_next)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If the new start address isn't hpage aligned and it could
 | 
						|
	 * previously contain an hugepage: check if we need to split
 | 
						|
	 * an huge pmd.
 | 
						|
	 */
 | 
						|
	if (start & ~HPAGE_PMD_MASK &&
 | 
						|
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
 | 
						|
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
 | 
						|
		split_huge_pmd_address(vma, start, false, NULL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the new end address isn't hpage aligned and it could
 | 
						|
	 * previously contain an hugepage: check if we need to split
 | 
						|
	 * an huge pmd.
 | 
						|
	 */
 | 
						|
	if (end & ~HPAGE_PMD_MASK &&
 | 
						|
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
 | 
						|
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
 | 
						|
		split_huge_pmd_address(vma, end, false, NULL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we're also updating the vma->vm_next->vm_start, if the new
 | 
						|
	 * vm_next->vm_start isn't page aligned and it could previously
 | 
						|
	 * contain an hugepage: check if we need to split an huge pmd.
 | 
						|
	 */
 | 
						|
	if (adjust_next > 0) {
 | 
						|
		struct vm_area_struct *next = vma->vm_next;
 | 
						|
		unsigned long nstart = next->vm_start;
 | 
						|
		nstart += adjust_next << PAGE_SHIFT;
 | 
						|
		if (nstart & ~HPAGE_PMD_MASK &&
 | 
						|
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
 | 
						|
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
 | 
						|
			split_huge_pmd_address(next, nstart, false, NULL);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void freeze_page(struct page *page)
 | 
						|
{
 | 
						|
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
 | 
						|
		TTU_RMAP_LOCKED;
 | 
						|
	int i, ret;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(!PageHead(page), page);
 | 
						|
 | 
						|
	if (PageAnon(page))
 | 
						|
		ttu_flags |= TTU_MIGRATION;
 | 
						|
 | 
						|
	/* We only need TTU_SPLIT_HUGE_PMD once */
 | 
						|
	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
 | 
						|
	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
 | 
						|
		/* Cut short if the page is unmapped */
 | 
						|
		if (page_count(page) == 1)
 | 
						|
			return;
 | 
						|
 | 
						|
		ret = try_to_unmap(page + i, ttu_flags);
 | 
						|
	}
 | 
						|
	VM_BUG_ON_PAGE(ret, page + i - 1);
 | 
						|
}
 | 
						|
 | 
						|
static void unfreeze_page(struct page *page)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < HPAGE_PMD_NR; i++)
 | 
						|
		remove_migration_ptes(page + i, page + i, true);
 | 
						|
}
 | 
						|
 | 
						|
static void __split_huge_page_tail(struct page *head, int tail,
 | 
						|
		struct lruvec *lruvec, struct list_head *list)
 | 
						|
{
 | 
						|
	struct page *page_tail = head + tail;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
 | 
						|
	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * tail_page->_refcount is zero and not changing from under us. But
 | 
						|
	 * get_page_unless_zero() may be running from under us on the
 | 
						|
	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
 | 
						|
	 * atomic_add(), we would then run atomic_set() concurrently with
 | 
						|
	 * get_page_unless_zero(), and atomic_set() is implemented in C not
 | 
						|
	 * using locked ops. spin_unlock on x86 sometime uses locked ops
 | 
						|
	 * because of PPro errata 66, 92, so unless somebody can guarantee
 | 
						|
	 * atomic_set() here would be safe on all archs (and not only on x86),
 | 
						|
	 * it's safer to use atomic_inc()/atomic_add().
 | 
						|
	 */
 | 
						|
	if (PageAnon(head)) {
 | 
						|
		page_ref_inc(page_tail);
 | 
						|
	} else {
 | 
						|
		/* Additional pin to radix tree */
 | 
						|
		page_ref_add(page_tail, 2);
 | 
						|
	}
 | 
						|
 | 
						|
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
 | 
						|
	page_tail->flags |= (head->flags &
 | 
						|
			((1L << PG_referenced) |
 | 
						|
			 (1L << PG_swapbacked) |
 | 
						|
			 (1L << PG_mlocked) |
 | 
						|
			 (1L << PG_uptodate) |
 | 
						|
			 (1L << PG_active) |
 | 
						|
			 (1L << PG_locked) |
 | 
						|
			 (1L << PG_unevictable) |
 | 
						|
			 (1L << PG_dirty)));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * After clearing PageTail the gup refcount can be released.
 | 
						|
	 * Page flags also must be visible before we make the page non-compound.
 | 
						|
	 */
 | 
						|
	smp_wmb();
 | 
						|
 | 
						|
	clear_compound_head(page_tail);
 | 
						|
 | 
						|
	if (page_is_young(head))
 | 
						|
		set_page_young(page_tail);
 | 
						|
	if (page_is_idle(head))
 | 
						|
		set_page_idle(page_tail);
 | 
						|
 | 
						|
	/* ->mapping in first tail page is compound_mapcount */
 | 
						|
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
 | 
						|
			page_tail);
 | 
						|
	page_tail->mapping = head->mapping;
 | 
						|
 | 
						|
	page_tail->index = head->index + tail;
 | 
						|
	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
 | 
						|
	lru_add_page_tail(head, page_tail, lruvec, list);
 | 
						|
}
 | 
						|
 | 
						|
static void __split_huge_page(struct page *page, struct list_head *list,
 | 
						|
		unsigned long flags)
 | 
						|
{
 | 
						|
	struct page *head = compound_head(page);
 | 
						|
	struct zone *zone = page_zone(head);
 | 
						|
	struct lruvec *lruvec;
 | 
						|
	pgoff_t end = -1;
 | 
						|
	int i;
 | 
						|
 | 
						|
	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
 | 
						|
 | 
						|
	/* complete memcg works before add pages to LRU */
 | 
						|
	mem_cgroup_split_huge_fixup(head);
 | 
						|
 | 
						|
	if (!PageAnon(page))
 | 
						|
		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
 | 
						|
 | 
						|
	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
 | 
						|
		__split_huge_page_tail(head, i, lruvec, list);
 | 
						|
		/* Some pages can be beyond i_size: drop them from page cache */
 | 
						|
		if (head[i].index >= end) {
 | 
						|
			__ClearPageDirty(head + i);
 | 
						|
			__delete_from_page_cache(head + i, NULL);
 | 
						|
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
 | 
						|
				shmem_uncharge(head->mapping->host, 1);
 | 
						|
			put_page(head + i);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	ClearPageCompound(head);
 | 
						|
	/* See comment in __split_huge_page_tail() */
 | 
						|
	if (PageAnon(head)) {
 | 
						|
		page_ref_inc(head);
 | 
						|
	} else {
 | 
						|
		/* Additional pin to radix tree */
 | 
						|
		page_ref_add(head, 2);
 | 
						|
		spin_unlock(&head->mapping->tree_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
 | 
						|
 | 
						|
	unfreeze_page(head);
 | 
						|
 | 
						|
	for (i = 0; i < HPAGE_PMD_NR; i++) {
 | 
						|
		struct page *subpage = head + i;
 | 
						|
		if (subpage == page)
 | 
						|
			continue;
 | 
						|
		unlock_page(subpage);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Subpages may be freed if there wasn't any mapping
 | 
						|
		 * like if add_to_swap() is running on a lru page that
 | 
						|
		 * had its mapping zapped. And freeing these pages
 | 
						|
		 * requires taking the lru_lock so we do the put_page
 | 
						|
		 * of the tail pages after the split is complete.
 | 
						|
		 */
 | 
						|
		put_page(subpage);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int total_mapcount(struct page *page)
 | 
						|
{
 | 
						|
	int i, compound, ret;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(PageTail(page), page);
 | 
						|
 | 
						|
	if (likely(!PageCompound(page)))
 | 
						|
		return atomic_read(&page->_mapcount) + 1;
 | 
						|
 | 
						|
	compound = compound_mapcount(page);
 | 
						|
	if (PageHuge(page))
 | 
						|
		return compound;
 | 
						|
	ret = compound;
 | 
						|
	for (i = 0; i < HPAGE_PMD_NR; i++)
 | 
						|
		ret += atomic_read(&page[i]._mapcount) + 1;
 | 
						|
	/* File pages has compound_mapcount included in _mapcount */
 | 
						|
	if (!PageAnon(page))
 | 
						|
		return ret - compound * HPAGE_PMD_NR;
 | 
						|
	if (PageDoubleMap(page))
 | 
						|
		ret -= HPAGE_PMD_NR;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This calculates accurately how many mappings a transparent hugepage
 | 
						|
 * has (unlike page_mapcount() which isn't fully accurate). This full
 | 
						|
 * accuracy is primarily needed to know if copy-on-write faults can
 | 
						|
 * reuse the page and change the mapping to read-write instead of
 | 
						|
 * copying them. At the same time this returns the total_mapcount too.
 | 
						|
 *
 | 
						|
 * The function returns the highest mapcount any one of the subpages
 | 
						|
 * has. If the return value is one, even if different processes are
 | 
						|
 * mapping different subpages of the transparent hugepage, they can
 | 
						|
 * all reuse it, because each process is reusing a different subpage.
 | 
						|
 *
 | 
						|
 * The total_mapcount is instead counting all virtual mappings of the
 | 
						|
 * subpages. If the total_mapcount is equal to "one", it tells the
 | 
						|
 * caller all mappings belong to the same "mm" and in turn the
 | 
						|
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 | 
						|
 * local one as no other process may be mapping any of the subpages.
 | 
						|
 *
 | 
						|
 * It would be more accurate to replace page_mapcount() with
 | 
						|
 * page_trans_huge_mapcount(), however we only use
 | 
						|
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 | 
						|
 * need full accuracy to avoid breaking page pinning, because
 | 
						|
 * page_trans_huge_mapcount() is slower than page_mapcount().
 | 
						|
 */
 | 
						|
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
 | 
						|
{
 | 
						|
	int i, ret, _total_mapcount, mapcount;
 | 
						|
 | 
						|
	/* hugetlbfs shouldn't call it */
 | 
						|
	VM_BUG_ON_PAGE(PageHuge(page), page);
 | 
						|
 | 
						|
	if (likely(!PageTransCompound(page))) {
 | 
						|
		mapcount = atomic_read(&page->_mapcount) + 1;
 | 
						|
		if (total_mapcount)
 | 
						|
			*total_mapcount = mapcount;
 | 
						|
		return mapcount;
 | 
						|
	}
 | 
						|
 | 
						|
	page = compound_head(page);
 | 
						|
 | 
						|
	_total_mapcount = ret = 0;
 | 
						|
	for (i = 0; i < HPAGE_PMD_NR; i++) {
 | 
						|
		mapcount = atomic_read(&page[i]._mapcount) + 1;
 | 
						|
		ret = max(ret, mapcount);
 | 
						|
		_total_mapcount += mapcount;
 | 
						|
	}
 | 
						|
	if (PageDoubleMap(page)) {
 | 
						|
		ret -= 1;
 | 
						|
		_total_mapcount -= HPAGE_PMD_NR;
 | 
						|
	}
 | 
						|
	mapcount = compound_mapcount(page);
 | 
						|
	ret += mapcount;
 | 
						|
	_total_mapcount += mapcount;
 | 
						|
	if (total_mapcount)
 | 
						|
		*total_mapcount = _total_mapcount;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function splits huge page into normal pages. @page can point to any
 | 
						|
 * subpage of huge page to split. Split doesn't change the position of @page.
 | 
						|
 *
 | 
						|
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 | 
						|
 * The huge page must be locked.
 | 
						|
 *
 | 
						|
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 | 
						|
 *
 | 
						|
 * Both head page and tail pages will inherit mapping, flags, and so on from
 | 
						|
 * the hugepage.
 | 
						|
 *
 | 
						|
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 | 
						|
 * they are not mapped.
 | 
						|
 *
 | 
						|
 * Returns 0 if the hugepage is split successfully.
 | 
						|
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 | 
						|
 * us.
 | 
						|
 */
 | 
						|
int split_huge_page_to_list(struct page *page, struct list_head *list)
 | 
						|
{
 | 
						|
	struct page *head = compound_head(page);
 | 
						|
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
 | 
						|
	struct anon_vma *anon_vma = NULL;
 | 
						|
	struct address_space *mapping = NULL;
 | 
						|
	int count, mapcount, extra_pins, ret;
 | 
						|
	bool mlocked;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
 | 
						|
	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | 
						|
	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 | 
						|
	VM_BUG_ON_PAGE(!PageCompound(page), page);
 | 
						|
 | 
						|
	if (PageAnon(head)) {
 | 
						|
		/*
 | 
						|
		 * The caller does not necessarily hold an mmap_sem that would
 | 
						|
		 * prevent the anon_vma disappearing so we first we take a
 | 
						|
		 * reference to it and then lock the anon_vma for write. This
 | 
						|
		 * is similar to page_lock_anon_vma_read except the write lock
 | 
						|
		 * is taken to serialise against parallel split or collapse
 | 
						|
		 * operations.
 | 
						|
		 */
 | 
						|
		anon_vma = page_get_anon_vma(head);
 | 
						|
		if (!anon_vma) {
 | 
						|
			ret = -EBUSY;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		extra_pins = 0;
 | 
						|
		mapping = NULL;
 | 
						|
		anon_vma_lock_write(anon_vma);
 | 
						|
	} else {
 | 
						|
		mapping = head->mapping;
 | 
						|
 | 
						|
		/* Truncated ? */
 | 
						|
		if (!mapping) {
 | 
						|
			ret = -EBUSY;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Addidional pins from radix tree */
 | 
						|
		extra_pins = HPAGE_PMD_NR;
 | 
						|
		anon_vma = NULL;
 | 
						|
		i_mmap_lock_read(mapping);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Racy check if we can split the page, before freeze_page() will
 | 
						|
	 * split PMDs
 | 
						|
	 */
 | 
						|
	if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
 | 
						|
		ret = -EBUSY;
 | 
						|
		goto out_unlock;
 | 
						|
	}
 | 
						|
 | 
						|
	mlocked = PageMlocked(page);
 | 
						|
	freeze_page(head);
 | 
						|
	VM_BUG_ON_PAGE(compound_mapcount(head), head);
 | 
						|
 | 
						|
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
 | 
						|
	if (mlocked)
 | 
						|
		lru_add_drain();
 | 
						|
 | 
						|
	/* prevent PageLRU to go away from under us, and freeze lru stats */
 | 
						|
	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
 | 
						|
 | 
						|
	if (mapping) {
 | 
						|
		void **pslot;
 | 
						|
 | 
						|
		spin_lock(&mapping->tree_lock);
 | 
						|
		pslot = radix_tree_lookup_slot(&mapping->page_tree,
 | 
						|
				page_index(head));
 | 
						|
		/*
 | 
						|
		 * Check if the head page is present in radix tree.
 | 
						|
		 * We assume all tail are present too, if head is there.
 | 
						|
		 */
 | 
						|
		if (radix_tree_deref_slot_protected(pslot,
 | 
						|
					&mapping->tree_lock) != head)
 | 
						|
			goto fail;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Prevent deferred_split_scan() touching ->_refcount */
 | 
						|
	spin_lock(&pgdata->split_queue_lock);
 | 
						|
	count = page_count(head);
 | 
						|
	mapcount = total_mapcount(head);
 | 
						|
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
 | 
						|
		if (!list_empty(page_deferred_list(head))) {
 | 
						|
			pgdata->split_queue_len--;
 | 
						|
			list_del(page_deferred_list(head));
 | 
						|
		}
 | 
						|
		if (mapping)
 | 
						|
			__dec_node_page_state(page, NR_SHMEM_THPS);
 | 
						|
		spin_unlock(&pgdata->split_queue_lock);
 | 
						|
		__split_huge_page(page, list, flags);
 | 
						|
		ret = 0;
 | 
						|
	} else {
 | 
						|
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
 | 
						|
			pr_alert("total_mapcount: %u, page_count(): %u\n",
 | 
						|
					mapcount, count);
 | 
						|
			if (PageTail(page))
 | 
						|
				dump_page(head, NULL);
 | 
						|
			dump_page(page, "total_mapcount(head) > 0");
 | 
						|
			BUG();
 | 
						|
		}
 | 
						|
		spin_unlock(&pgdata->split_queue_lock);
 | 
						|
fail:		if (mapping)
 | 
						|
			spin_unlock(&mapping->tree_lock);
 | 
						|
		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
 | 
						|
		unfreeze_page(head);
 | 
						|
		ret = -EBUSY;
 | 
						|
	}
 | 
						|
 | 
						|
out_unlock:
 | 
						|
	if (anon_vma) {
 | 
						|
		anon_vma_unlock_write(anon_vma);
 | 
						|
		put_anon_vma(anon_vma);
 | 
						|
	}
 | 
						|
	if (mapping)
 | 
						|
		i_mmap_unlock_read(mapping);
 | 
						|
out:
 | 
						|
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void free_transhuge_page(struct page *page)
 | 
						|
{
 | 
						|
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
 | 
						|
	if (!list_empty(page_deferred_list(page))) {
 | 
						|
		pgdata->split_queue_len--;
 | 
						|
		list_del(page_deferred_list(page));
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
 | 
						|
	free_compound_page(page);
 | 
						|
}
 | 
						|
 | 
						|
void deferred_split_huge_page(struct page *page)
 | 
						|
{
 | 
						|
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 | 
						|
 | 
						|
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
 | 
						|
	if (list_empty(page_deferred_list(page))) {
 | 
						|
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
 | 
						|
		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
 | 
						|
		pgdata->split_queue_len++;
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long deferred_split_count(struct shrinker *shrink,
 | 
						|
		struct shrink_control *sc)
 | 
						|
{
 | 
						|
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
 | 
						|
	return ACCESS_ONCE(pgdata->split_queue_len);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long deferred_split_scan(struct shrinker *shrink,
 | 
						|
		struct shrink_control *sc)
 | 
						|
{
 | 
						|
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
 | 
						|
	unsigned long flags;
 | 
						|
	LIST_HEAD(list), *pos, *next;
 | 
						|
	struct page *page;
 | 
						|
	int split = 0;
 | 
						|
 | 
						|
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
 | 
						|
	/* Take pin on all head pages to avoid freeing them under us */
 | 
						|
	list_for_each_safe(pos, next, &pgdata->split_queue) {
 | 
						|
		page = list_entry((void *)pos, struct page, mapping);
 | 
						|
		page = compound_head(page);
 | 
						|
		if (get_page_unless_zero(page)) {
 | 
						|
			list_move(page_deferred_list(page), &list);
 | 
						|
		} else {
 | 
						|
			/* We lost race with put_compound_page() */
 | 
						|
			list_del_init(page_deferred_list(page));
 | 
						|
			pgdata->split_queue_len--;
 | 
						|
		}
 | 
						|
		if (!--sc->nr_to_scan)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
 | 
						|
 | 
						|
	list_for_each_safe(pos, next, &list) {
 | 
						|
		page = list_entry((void *)pos, struct page, mapping);
 | 
						|
		lock_page(page);
 | 
						|
		/* split_huge_page() removes page from list on success */
 | 
						|
		if (!split_huge_page(page))
 | 
						|
			split++;
 | 
						|
		unlock_page(page);
 | 
						|
		put_page(page);
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
 | 
						|
	list_splice_tail(&list, &pgdata->split_queue);
 | 
						|
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Stop shrinker if we didn't split any page, but the queue is empty.
 | 
						|
	 * This can happen if pages were freed under us.
 | 
						|
	 */
 | 
						|
	if (!split && list_empty(&pgdata->split_queue))
 | 
						|
		return SHRINK_STOP;
 | 
						|
	return split;
 | 
						|
}
 | 
						|
 | 
						|
static struct shrinker deferred_split_shrinker = {
 | 
						|
	.count_objects = deferred_split_count,
 | 
						|
	.scan_objects = deferred_split_scan,
 | 
						|
	.seeks = DEFAULT_SEEKS,
 | 
						|
	.flags = SHRINKER_NUMA_AWARE,
 | 
						|
};
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_FS
 | 
						|
static int split_huge_pages_set(void *data, u64 val)
 | 
						|
{
 | 
						|
	struct zone *zone;
 | 
						|
	struct page *page;
 | 
						|
	unsigned long pfn, max_zone_pfn;
 | 
						|
	unsigned long total = 0, split = 0;
 | 
						|
 | 
						|
	if (val != 1)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	for_each_populated_zone(zone) {
 | 
						|
		max_zone_pfn = zone_end_pfn(zone);
 | 
						|
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
 | 
						|
			if (!pfn_valid(pfn))
 | 
						|
				continue;
 | 
						|
 | 
						|
			page = pfn_to_page(pfn);
 | 
						|
			if (!get_page_unless_zero(page))
 | 
						|
				continue;
 | 
						|
 | 
						|
			if (zone != page_zone(page))
 | 
						|
				goto next;
 | 
						|
 | 
						|
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
 | 
						|
				goto next;
 | 
						|
 | 
						|
			total++;
 | 
						|
			lock_page(page);
 | 
						|
			if (!split_huge_page(page))
 | 
						|
				split++;
 | 
						|
			unlock_page(page);
 | 
						|
next:
 | 
						|
			put_page(page);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	pr_info("%lu of %lu THP split\n", split, total);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
 | 
						|
		"%llu\n");
 | 
						|
 | 
						|
static int __init split_huge_pages_debugfs(void)
 | 
						|
{
 | 
						|
	void *ret;
 | 
						|
 | 
						|
	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
 | 
						|
			&split_huge_pages_fops);
 | 
						|
	if (!ret)
 | 
						|
		pr_warn("Failed to create split_huge_pages in debugfs");
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
late_initcall(split_huge_pages_debugfs);
 | 
						|
#endif
 |