forked from mirrors/linux
		
	 bb5167e619
			
		
	
	
		bb5167e619
		
	
	
	
	
		
			
			Mark btrfs_run_discard_work static and move it above its callers. Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
		
			
				
	
	
		
			777 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			777 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| 
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/ktime.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/sizes.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include "ctree.h"
 | |
| #include "block-group.h"
 | |
| #include "discard.h"
 | |
| #include "free-space-cache.h"
 | |
| #include "fs.h"
 | |
| 
 | |
| /*
 | |
|  * This contains the logic to handle async discard.
 | |
|  *
 | |
|  * Async discard manages trimming of free space outside of transaction commit.
 | |
|  * Discarding is done by managing the block_groups on a LRU list based on free
 | |
|  * space recency.  Two passes are used to first prioritize discarding extents
 | |
|  * and then allow for trimming in the bitmap the best opportunity to coalesce.
 | |
|  * The block_groups are maintained on multiple lists to allow for multiple
 | |
|  * passes with different discard filter requirements.  A delayed work item is
 | |
|  * used to manage discarding with timeout determined by a max of the delay
 | |
|  * incurred by the iops rate limit, the byte rate limit, and the max delay of
 | |
|  * BTRFS_DISCARD_MAX_DELAY.
 | |
|  *
 | |
|  * Note, this only keeps track of block_groups that are explicitly for data.
 | |
|  * Mixed block_groups are not supported.
 | |
|  *
 | |
|  * The first list is special to manage discarding of fully free block groups.
 | |
|  * This is necessary because we issue a final trim for a full free block group
 | |
|  * after forgetting it.  When a block group becomes unused, instead of directly
 | |
|  * being added to the unused_bgs list, we add it to this first list.  Then
 | |
|  * from there, if it becomes fully discarded, we place it onto the unused_bgs
 | |
|  * list.
 | |
|  *
 | |
|  * The in-memory free space cache serves as the backing state for discard.
 | |
|  * Consequently this means there is no persistence.  We opt to load all the
 | |
|  * block groups in as not discarded, so the mount case degenerates to the
 | |
|  * crashing case.
 | |
|  *
 | |
|  * As the free space cache uses bitmaps, there exists a tradeoff between
 | |
|  * ease/efficiency for find_free_extent() and the accuracy of discard state.
 | |
|  * Here we opt to let untrimmed regions merge with everything while only letting
 | |
|  * trimmed regions merge with other trimmed regions.  This can cause
 | |
|  * overtrimming, but the coalescing benefit seems to be worth it.  Additionally,
 | |
|  * bitmap state is tracked as a whole.  If we're able to fully trim a bitmap,
 | |
|  * the trimmed flag is set on the bitmap.  Otherwise, if an allocation comes in,
 | |
|  * this resets the state and we will retry trimming the whole bitmap.  This is a
 | |
|  * tradeoff between discard state accuracy and the cost of accounting.
 | |
|  */
 | |
| 
 | |
| /* This is an initial delay to give some chance for block reuse */
 | |
| #define BTRFS_DISCARD_DELAY		(120ULL * NSEC_PER_SEC)
 | |
| #define BTRFS_DISCARD_UNUSED_DELAY	(10ULL * NSEC_PER_SEC)
 | |
| 
 | |
| #define BTRFS_DISCARD_MIN_DELAY_MSEC	(1UL)
 | |
| #define BTRFS_DISCARD_MAX_DELAY_MSEC	(1000UL)
 | |
| #define BTRFS_DISCARD_MAX_IOPS		(1000U)
 | |
| 
 | |
| /* Monotonically decreasing minimum length filters after index 0 */
 | |
| static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
 | |
| 	0,
 | |
| 	BTRFS_ASYNC_DISCARD_MAX_FILTER,
 | |
| 	BTRFS_ASYNC_DISCARD_MIN_FILTER
 | |
| };
 | |
| 
 | |
| static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
 | |
| 					  struct btrfs_block_group *block_group)
 | |
| {
 | |
| 	return &discard_ctl->discard_list[block_group->discard_index];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine if async discard should be running.
 | |
|  *
 | |
|  * @discard_ctl: discard control
 | |
|  *
 | |
|  * Check if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
 | |
|  */
 | |
| static bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = container_of(discard_ctl,
 | |
| 						     struct btrfs_fs_info,
 | |
| 						     discard_ctl);
 | |
| 
 | |
| 	return (!(fs_info->sb->s_flags & SB_RDONLY) &&
 | |
| 		test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
 | |
| }
 | |
| 
 | |
| static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
 | |
| 				  struct btrfs_block_group *block_group)
 | |
| {
 | |
| 	lockdep_assert_held(&discard_ctl->lock);
 | |
| 	if (!btrfs_run_discard_work(discard_ctl))
 | |
| 		return;
 | |
| 
 | |
| 	if (list_empty(&block_group->discard_list) ||
 | |
| 	    block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
 | |
| 		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
 | |
| 			block_group->discard_index = BTRFS_DISCARD_INDEX_START;
 | |
| 		block_group->discard_eligible_time = (ktime_get_ns() +
 | |
| 						      BTRFS_DISCARD_DELAY);
 | |
| 		block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
 | |
| 	}
 | |
| 	if (list_empty(&block_group->discard_list))
 | |
| 		btrfs_get_block_group(block_group);
 | |
| 
 | |
| 	list_move_tail(&block_group->discard_list,
 | |
| 		       get_discard_list(discard_ctl, block_group));
 | |
| }
 | |
| 
 | |
| static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
 | |
| 				struct btrfs_block_group *block_group)
 | |
| {
 | |
| 	if (!btrfs_is_block_group_data_only(block_group))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&discard_ctl->lock);
 | |
| 	__add_to_discard_list(discard_ctl, block_group);
 | |
| 	spin_unlock(&discard_ctl->lock);
 | |
| }
 | |
| 
 | |
| static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
 | |
| 				       struct btrfs_block_group *block_group)
 | |
| {
 | |
| 	bool queued;
 | |
| 
 | |
| 	spin_lock(&discard_ctl->lock);
 | |
| 
 | |
| 	queued = !list_empty(&block_group->discard_list);
 | |
| 
 | |
| 	if (!btrfs_run_discard_work(discard_ctl)) {
 | |
| 		spin_unlock(&discard_ctl->lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	list_del_init(&block_group->discard_list);
 | |
| 
 | |
| 	block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
 | |
| 	block_group->discard_eligible_time = (ktime_get_ns() +
 | |
| 					      BTRFS_DISCARD_UNUSED_DELAY);
 | |
| 	block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
 | |
| 	if (!queued)
 | |
| 		btrfs_get_block_group(block_group);
 | |
| 	list_add_tail(&block_group->discard_list,
 | |
| 		      &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);
 | |
| 
 | |
| 	spin_unlock(&discard_ctl->lock);
 | |
| }
 | |
| 
 | |
| static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
 | |
| 				     struct btrfs_block_group *block_group)
 | |
| {
 | |
| 	bool running = false;
 | |
| 	bool queued = false;
 | |
| 
 | |
| 	spin_lock(&discard_ctl->lock);
 | |
| 
 | |
| 	if (block_group == discard_ctl->block_group) {
 | |
| 		running = true;
 | |
| 		discard_ctl->block_group = NULL;
 | |
| 	}
 | |
| 
 | |
| 	block_group->discard_eligible_time = 0;
 | |
| 	queued = !list_empty(&block_group->discard_list);
 | |
| 	list_del_init(&block_group->discard_list);
 | |
| 	/*
 | |
| 	 * If the block group is currently running in the discard workfn, we
 | |
| 	 * don't want to deref it, since it's still being used by the workfn.
 | |
| 	 * The workfn will notice this case and deref the block group when it is
 | |
| 	 * finished.
 | |
| 	 */
 | |
| 	if (queued && !running)
 | |
| 		btrfs_put_block_group(block_group);
 | |
| 
 | |
| 	spin_unlock(&discard_ctl->lock);
 | |
| 
 | |
| 	return running;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find block_group that's up next for discarding.
 | |
|  *
 | |
|  * @discard_ctl:  discard control
 | |
|  * @now:          current time
 | |
|  *
 | |
|  * Iterate over the discard lists to find the next block_group up for
 | |
|  * discarding checking the discard_eligible_time of block_group.
 | |
|  */
 | |
| static struct btrfs_block_group *find_next_block_group(
 | |
| 					struct btrfs_discard_ctl *discard_ctl,
 | |
| 					u64 now)
 | |
| {
 | |
| 	struct btrfs_block_group *ret_block_group = NULL, *block_group;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
 | |
| 		struct list_head *discard_list = &discard_ctl->discard_list[i];
 | |
| 
 | |
| 		if (!list_empty(discard_list)) {
 | |
| 			block_group = list_first_entry(discard_list,
 | |
| 						       struct btrfs_block_group,
 | |
| 						       discard_list);
 | |
| 
 | |
| 			if (!ret_block_group)
 | |
| 				ret_block_group = block_group;
 | |
| 
 | |
| 			if (ret_block_group->discard_eligible_time < now)
 | |
| 				break;
 | |
| 
 | |
| 			if (ret_block_group->discard_eligible_time >
 | |
| 			    block_group->discard_eligible_time)
 | |
| 				ret_block_group = block_group;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret_block_group;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look up next block group and set it for use.
 | |
|  *
 | |
|  * @discard_ctl:   discard control
 | |
|  * @discard_state: the discard_state of the block_group after state management
 | |
|  * @discard_index: the discard_index of the block_group after state management
 | |
|  * @now:           time when discard was invoked, in ns
 | |
|  *
 | |
|  * Wrap find_next_block_group() and set the block_group to be in use.
 | |
|  * @discard_state's control flow is managed here.  Variables related to
 | |
|  * @discard_state are reset here as needed (eg. @discard_cursor).  @discard_state
 | |
|  * and @discard_index are remembered as it may change while we're discarding,
 | |
|  * but we want the discard to execute in the context determined here.
 | |
|  */
 | |
| static struct btrfs_block_group *peek_discard_list(
 | |
| 					struct btrfs_discard_ctl *discard_ctl,
 | |
| 					enum btrfs_discard_state *discard_state,
 | |
| 					int *discard_index, u64 now)
 | |
| {
 | |
| 	struct btrfs_block_group *block_group;
 | |
| 
 | |
| 	spin_lock(&discard_ctl->lock);
 | |
| again:
 | |
| 	block_group = find_next_block_group(discard_ctl, now);
 | |
| 
 | |
| 	if (block_group && now >= block_group->discard_eligible_time) {
 | |
| 		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
 | |
| 		    block_group->used != 0) {
 | |
| 			if (btrfs_is_block_group_data_only(block_group)) {
 | |
| 				__add_to_discard_list(discard_ctl, block_group);
 | |
| 			} else {
 | |
| 				list_del_init(&block_group->discard_list);
 | |
| 				btrfs_put_block_group(block_group);
 | |
| 			}
 | |
| 			goto again;
 | |
| 		}
 | |
| 		if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
 | |
| 			block_group->discard_cursor = block_group->start;
 | |
| 			block_group->discard_state = BTRFS_DISCARD_EXTENTS;
 | |
| 		}
 | |
| 		discard_ctl->block_group = block_group;
 | |
| 	}
 | |
| 	if (block_group) {
 | |
| 		*discard_state = block_group->discard_state;
 | |
| 		*discard_index = block_group->discard_index;
 | |
| 	}
 | |
| 	spin_unlock(&discard_ctl->lock);
 | |
| 
 | |
| 	return block_group;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update a block group's filters.
 | |
|  *
 | |
|  * @block_group:  block group of interest
 | |
|  * @bytes:        recently freed region size after coalescing
 | |
|  *
 | |
|  * Async discard maintains multiple lists with progressively smaller filters
 | |
|  * to prioritize discarding based on size.  Should a free space that matches
 | |
|  * a larger filter be returned to the free_space_cache, prioritize that discard
 | |
|  * by moving @block_group to the proper filter.
 | |
|  */
 | |
| void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
 | |
| 				u64 bytes)
 | |
| {
 | |
| 	struct btrfs_discard_ctl *discard_ctl;
 | |
| 
 | |
| 	if (!block_group ||
 | |
| 	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
 | |
| 		return;
 | |
| 
 | |
| 	discard_ctl = &block_group->fs_info->discard_ctl;
 | |
| 
 | |
| 	if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
 | |
| 	    bytes >= discard_minlen[block_group->discard_index - 1]) {
 | |
| 		int i;
 | |
| 
 | |
| 		remove_from_discard_list(discard_ctl, block_group);
 | |
| 
 | |
| 		for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
 | |
| 		     i++) {
 | |
| 			if (bytes >= discard_minlen[i]) {
 | |
| 				block_group->discard_index = i;
 | |
| 				add_to_discard_list(discard_ctl, block_group);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move a block group along the discard lists.
 | |
|  *
 | |
|  * @discard_ctl: discard control
 | |
|  * @block_group: block_group of interest
 | |
|  *
 | |
|  * Increment @block_group's discard_index.  If it falls of the list, let it be.
 | |
|  * Otherwise add it back to the appropriate list.
 | |
|  */
 | |
| static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
 | |
| 				       struct btrfs_block_group *block_group)
 | |
| {
 | |
| 	block_group->discard_index++;
 | |
| 	if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
 | |
| 		block_group->discard_index = 1;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	add_to_discard_list(discard_ctl, block_group);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a block_group from the discard lists.
 | |
|  *
 | |
|  * @discard_ctl: discard control
 | |
|  * @block_group: block_group of interest
 | |
|  *
 | |
|  * Remove @block_group from the discard lists.  If necessary, wait on the
 | |
|  * current work and then reschedule the delayed work.
 | |
|  */
 | |
| void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
 | |
| 			       struct btrfs_block_group *block_group)
 | |
| {
 | |
| 	if (remove_from_discard_list(discard_ctl, block_group)) {
 | |
| 		cancel_delayed_work_sync(&discard_ctl->work);
 | |
| 		btrfs_discard_schedule_work(discard_ctl, true);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handles queuing the block_groups.
 | |
|  *
 | |
|  * @discard_ctl: discard control
 | |
|  * @block_group: block_group of interest
 | |
|  *
 | |
|  * Maintain the LRU order of the discard lists.
 | |
|  */
 | |
| void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
 | |
| 			      struct btrfs_block_group *block_group)
 | |
| {
 | |
| 	if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
 | |
| 		return;
 | |
| 
 | |
| 	if (block_group->used == 0)
 | |
| 		add_to_discard_unused_list(discard_ctl, block_group);
 | |
| 	else
 | |
| 		add_to_discard_list(discard_ctl, block_group);
 | |
| 
 | |
| 	if (!delayed_work_pending(&discard_ctl->work))
 | |
| 		btrfs_discard_schedule_work(discard_ctl, false);
 | |
| }
 | |
| 
 | |
| static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
 | |
| 					  u64 now, bool override)
 | |
| {
 | |
| 	struct btrfs_block_group *block_group;
 | |
| 
 | |
| 	if (!btrfs_run_discard_work(discard_ctl))
 | |
| 		return;
 | |
| 	if (!override && delayed_work_pending(&discard_ctl->work))
 | |
| 		return;
 | |
| 
 | |
| 	block_group = find_next_block_group(discard_ctl, now);
 | |
| 	if (block_group) {
 | |
| 		u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC;
 | |
| 		u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);
 | |
| 
 | |
| 		/*
 | |
| 		 * A single delayed workqueue item is responsible for
 | |
| 		 * discarding, so we can manage the bytes rate limit by keeping
 | |
| 		 * track of the previous discard.
 | |
| 		 */
 | |
| 		if (kbps_limit && discard_ctl->prev_discard) {
 | |
| 			u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
 | |
| 			u64 bps_delay = div64_u64(discard_ctl->prev_discard *
 | |
| 						  NSEC_PER_SEC, bps_limit);
 | |
| 
 | |
| 			delay = max(delay, bps_delay);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * This timeout is to hopefully prevent immediate discarding
 | |
| 		 * in a recently allocated block group.
 | |
| 		 */
 | |
| 		if (now < block_group->discard_eligible_time) {
 | |
| 			u64 bg_timeout = block_group->discard_eligible_time - now;
 | |
| 
 | |
| 			delay = max(delay, bg_timeout);
 | |
| 		}
 | |
| 
 | |
| 		if (override && discard_ctl->prev_discard) {
 | |
| 			u64 elapsed = now - discard_ctl->prev_discard_time;
 | |
| 
 | |
| 			if (delay > elapsed)
 | |
| 				delay -= elapsed;
 | |
| 			else
 | |
| 				delay = 0;
 | |
| 		}
 | |
| 
 | |
| 		mod_delayed_work(discard_ctl->discard_workers,
 | |
| 				 &discard_ctl->work, nsecs_to_jiffies(delay));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Responsible for scheduling the discard work.
 | |
|  *
 | |
|  * @discard_ctl:  discard control
 | |
|  * @override:     override the current timer
 | |
|  *
 | |
|  * Discards are issued by a delayed workqueue item.  @override is used to
 | |
|  * update the current delay as the baseline delay interval is reevaluated on
 | |
|  * transaction commit.  This is also maxed with any other rate limit.
 | |
|  */
 | |
| void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
 | |
| 				 bool override)
 | |
| {
 | |
| 	const u64 now = ktime_get_ns();
 | |
| 
 | |
| 	spin_lock(&discard_ctl->lock);
 | |
| 	__btrfs_discard_schedule_work(discard_ctl, now, override);
 | |
| 	spin_unlock(&discard_ctl->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine next step of a block_group.
 | |
|  *
 | |
|  * @discard_ctl: discard control
 | |
|  * @block_group: block_group of interest
 | |
|  *
 | |
|  * Determine the next step for a block group after it's finished going through
 | |
|  * a pass on a discard list.  If it is unused and fully trimmed, we can mark it
 | |
|  * unused and send it to the unused_bgs path.  Otherwise, pass it onto the
 | |
|  * appropriate filter list or let it fall off.
 | |
|  */
 | |
| static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
 | |
| 				      struct btrfs_block_group *block_group)
 | |
| {
 | |
| 	remove_from_discard_list(discard_ctl, block_group);
 | |
| 
 | |
| 	if (block_group->used == 0) {
 | |
| 		if (btrfs_is_free_space_trimmed(block_group))
 | |
| 			btrfs_mark_bg_unused(block_group);
 | |
| 		else
 | |
| 			add_to_discard_unused_list(discard_ctl, block_group);
 | |
| 	} else {
 | |
| 		btrfs_update_discard_index(discard_ctl, block_group);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Discard work queue callback
 | |
|  *
 | |
|  * @work: work
 | |
|  *
 | |
|  * Find the next block_group to start discarding and then discard a single
 | |
|  * region.  It does this in a two-pass fashion: first extents and second
 | |
|  * bitmaps.  Completely discarded block groups are sent to the unused_bgs path.
 | |
|  */
 | |
| static void btrfs_discard_workfn(struct work_struct *work)
 | |
| {
 | |
| 	struct btrfs_discard_ctl *discard_ctl;
 | |
| 	struct btrfs_block_group *block_group;
 | |
| 	enum btrfs_discard_state discard_state;
 | |
| 	int discard_index = 0;
 | |
| 	u64 trimmed = 0;
 | |
| 	u64 minlen = 0;
 | |
| 	u64 now = ktime_get_ns();
 | |
| 
 | |
| 	discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);
 | |
| 
 | |
| 	block_group = peek_discard_list(discard_ctl, &discard_state,
 | |
| 					&discard_index, now);
 | |
| 	if (!block_group || !btrfs_run_discard_work(discard_ctl))
 | |
| 		return;
 | |
| 	if (now < block_group->discard_eligible_time) {
 | |
| 		btrfs_discard_schedule_work(discard_ctl, false);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Perform discarding */
 | |
| 	minlen = discard_minlen[discard_index];
 | |
| 
 | |
| 	if (discard_state == BTRFS_DISCARD_BITMAPS) {
 | |
| 		u64 maxlen = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * Use the previous levels minimum discard length as the max
 | |
| 		 * length filter.  In the case something is added to make a
 | |
| 		 * region go beyond the max filter, the entire bitmap is set
 | |
| 		 * back to BTRFS_TRIM_STATE_UNTRIMMED.
 | |
| 		 */
 | |
| 		if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
 | |
| 			maxlen = discard_minlen[discard_index - 1];
 | |
| 
 | |
| 		btrfs_trim_block_group_bitmaps(block_group, &trimmed,
 | |
| 				       block_group->discard_cursor,
 | |
| 				       btrfs_block_group_end(block_group),
 | |
| 				       minlen, maxlen, true);
 | |
| 		discard_ctl->discard_bitmap_bytes += trimmed;
 | |
| 	} else {
 | |
| 		btrfs_trim_block_group_extents(block_group, &trimmed,
 | |
| 				       block_group->discard_cursor,
 | |
| 				       btrfs_block_group_end(block_group),
 | |
| 				       minlen, true);
 | |
| 		discard_ctl->discard_extent_bytes += trimmed;
 | |
| 	}
 | |
| 
 | |
| 	/* Determine next steps for a block_group */
 | |
| 	if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
 | |
| 		if (discard_state == BTRFS_DISCARD_BITMAPS) {
 | |
| 			btrfs_finish_discard_pass(discard_ctl, block_group);
 | |
| 		} else {
 | |
| 			block_group->discard_cursor = block_group->start;
 | |
| 			spin_lock(&discard_ctl->lock);
 | |
| 			if (block_group->discard_state !=
 | |
| 			    BTRFS_DISCARD_RESET_CURSOR)
 | |
| 				block_group->discard_state =
 | |
| 							BTRFS_DISCARD_BITMAPS;
 | |
| 			spin_unlock(&discard_ctl->lock);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	now = ktime_get_ns();
 | |
| 	spin_lock(&discard_ctl->lock);
 | |
| 	discard_ctl->prev_discard = trimmed;
 | |
| 	discard_ctl->prev_discard_time = now;
 | |
| 	/*
 | |
| 	 * If the block group was removed from the discard list while it was
 | |
| 	 * running in this workfn, then we didn't deref it, since this function
 | |
| 	 * still owned that reference. But we set the discard_ctl->block_group
 | |
| 	 * back to NULL, so we can use that condition to know that now we need
 | |
| 	 * to deref the block_group.
 | |
| 	 */
 | |
| 	if (discard_ctl->block_group == NULL)
 | |
| 		btrfs_put_block_group(block_group);
 | |
| 	discard_ctl->block_group = NULL;
 | |
| 	__btrfs_discard_schedule_work(discard_ctl, now, false);
 | |
| 	spin_unlock(&discard_ctl->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Recalculate the base delay.
 | |
|  *
 | |
|  * @discard_ctl: discard control
 | |
|  *
 | |
|  * Recalculate the base delay which is based off the total number of
 | |
|  * discardable_extents.  Clamp this between the lower_limit (iops_limit or 1ms)
 | |
|  * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
 | |
|  */
 | |
| void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
 | |
| {
 | |
| 	s32 discardable_extents;
 | |
| 	s64 discardable_bytes;
 | |
| 	u32 iops_limit;
 | |
| 	unsigned long min_delay = BTRFS_DISCARD_MIN_DELAY_MSEC;
 | |
| 	unsigned long delay;
 | |
| 
 | |
| 	discardable_extents = atomic_read(&discard_ctl->discardable_extents);
 | |
| 	if (!discardable_extents)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&discard_ctl->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * The following is to fix a potential -1 discrepancy that we're not
 | |
| 	 * sure how to reproduce. But given that this is the only place that
 | |
| 	 * utilizes these numbers and this is only called by from
 | |
| 	 * btrfs_finish_extent_commit() which is synchronized, we can correct
 | |
| 	 * here.
 | |
| 	 */
 | |
| 	if (discardable_extents < 0)
 | |
| 		atomic_add(-discardable_extents,
 | |
| 			   &discard_ctl->discardable_extents);
 | |
| 
 | |
| 	discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
 | |
| 	if (discardable_bytes < 0)
 | |
| 		atomic64_add(-discardable_bytes,
 | |
| 			     &discard_ctl->discardable_bytes);
 | |
| 
 | |
| 	if (discardable_extents <= 0) {
 | |
| 		spin_unlock(&discard_ctl->lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	iops_limit = READ_ONCE(discard_ctl->iops_limit);
 | |
| 
 | |
| 	if (iops_limit) {
 | |
| 		delay = MSEC_PER_SEC / iops_limit;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Unset iops_limit means go as fast as possible, so allow a
 | |
| 		 * delay of 0.
 | |
| 		 */
 | |
| 		delay = 0;
 | |
| 		min_delay = 0;
 | |
| 	}
 | |
| 
 | |
| 	delay = clamp(delay, min_delay, BTRFS_DISCARD_MAX_DELAY_MSEC);
 | |
| 	discard_ctl->delay_ms = delay;
 | |
| 
 | |
| 	spin_unlock(&discard_ctl->lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Propagate discard counters.
 | |
|  *
 | |
|  * @block_group: block_group of interest
 | |
|  *
 | |
|  * Propagate deltas of counters up to the discard_ctl.  It maintains a current
 | |
|  * counter and a previous counter passing the delta up to the global stat.
 | |
|  * Then the current counter value becomes the previous counter value.
 | |
|  */
 | |
| void btrfs_discard_update_discardable(struct btrfs_block_group *block_group)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl;
 | |
| 	struct btrfs_discard_ctl *discard_ctl;
 | |
| 	s32 extents_delta;
 | |
| 	s64 bytes_delta;
 | |
| 
 | |
| 	if (!block_group ||
 | |
| 	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
 | |
| 	    !btrfs_is_block_group_data_only(block_group))
 | |
| 		return;
 | |
| 
 | |
| 	ctl = block_group->free_space_ctl;
 | |
| 	discard_ctl = &block_group->fs_info->discard_ctl;
 | |
| 
 | |
| 	lockdep_assert_held(&ctl->tree_lock);
 | |
| 	extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
 | |
| 			ctl->discardable_extents[BTRFS_STAT_PREV];
 | |
| 	if (extents_delta) {
 | |
| 		atomic_add(extents_delta, &discard_ctl->discardable_extents);
 | |
| 		ctl->discardable_extents[BTRFS_STAT_PREV] =
 | |
| 			ctl->discardable_extents[BTRFS_STAT_CURR];
 | |
| 	}
 | |
| 
 | |
| 	bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
 | |
| 		      ctl->discardable_bytes[BTRFS_STAT_PREV];
 | |
| 	if (bytes_delta) {
 | |
| 		atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
 | |
| 		ctl->discardable_bytes[BTRFS_STAT_PREV] =
 | |
| 			ctl->discardable_bytes[BTRFS_STAT_CURR];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Punt unused_bgs list to discard lists.
 | |
|  *
 | |
|  * @fs_info: fs_info of interest
 | |
|  *
 | |
|  * The unused_bgs list needs to be punted to the discard lists because the
 | |
|  * order of operations is changed.  In the normal synchronous discard path, the
 | |
|  * block groups are trimmed via a single large trim in transaction commit.  This
 | |
|  * is ultimately what we are trying to avoid with asynchronous discard.  Thus,
 | |
|  * it must be done before going down the unused_bgs path.
 | |
|  */
 | |
| void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_block_group *block_group, *next;
 | |
| 
 | |
| 	spin_lock(&fs_info->unused_bgs_lock);
 | |
| 	/* We enabled async discard, so punt all to the queue */
 | |
| 	list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
 | |
| 				 bg_list) {
 | |
| 		list_del_init(&block_group->bg_list);
 | |
| 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
 | |
| 		/*
 | |
| 		 * This put is for the get done by btrfs_mark_bg_unused.
 | |
| 		 * Queueing discard incremented it for discard's reference.
 | |
| 		 */
 | |
| 		btrfs_put_block_group(block_group);
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->unused_bgs_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Purge discard lists.
 | |
|  *
 | |
|  * @discard_ctl: discard control
 | |
|  *
 | |
|  * If we are disabling async discard, we may have intercepted block groups that
 | |
|  * are completely free and ready for the unused_bgs path.  As discarding will
 | |
|  * now happen in transaction commit or not at all, we can safely mark the
 | |
|  * corresponding block groups as unused and they will be sent on their merry
 | |
|  * way to the unused_bgs list.
 | |
|  */
 | |
| static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
 | |
| {
 | |
| 	struct btrfs_block_group *block_group, *next;
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock(&discard_ctl->lock);
 | |
| 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
 | |
| 		list_for_each_entry_safe(block_group, next,
 | |
| 					 &discard_ctl->discard_list[i],
 | |
| 					 discard_list) {
 | |
| 			list_del_init(&block_group->discard_list);
 | |
| 			spin_unlock(&discard_ctl->lock);
 | |
| 			if (block_group->used == 0)
 | |
| 				btrfs_mark_bg_unused(block_group);
 | |
| 			spin_lock(&discard_ctl->lock);
 | |
| 			btrfs_put_block_group(block_group);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&discard_ctl->lock);
 | |
| }
 | |
| 
 | |
| void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
 | |
| 		btrfs_discard_cleanup(fs_info);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_discard_punt_unused_bgs_list(fs_info);
 | |
| 
 | |
| 	set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
 | |
| }
 | |
| 
 | |
| void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
 | |
| }
 | |
| 
 | |
| void btrfs_discard_init(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock_init(&discard_ctl->lock);
 | |
| 	INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);
 | |
| 
 | |
| 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
 | |
| 		INIT_LIST_HEAD(&discard_ctl->discard_list[i]);
 | |
| 
 | |
| 	discard_ctl->prev_discard = 0;
 | |
| 	discard_ctl->prev_discard_time = 0;
 | |
| 	atomic_set(&discard_ctl->discardable_extents, 0);
 | |
| 	atomic64_set(&discard_ctl->discardable_bytes, 0);
 | |
| 	discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
 | |
| 	discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC;
 | |
| 	discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
 | |
| 	discard_ctl->kbps_limit = 0;
 | |
| 	discard_ctl->discard_extent_bytes = 0;
 | |
| 	discard_ctl->discard_bitmap_bytes = 0;
 | |
| 	atomic64_set(&discard_ctl->discard_bytes_saved, 0);
 | |
| }
 | |
| 
 | |
| void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	btrfs_discard_stop(fs_info);
 | |
| 	cancel_delayed_work_sync(&fs_info->discard_ctl.work);
 | |
| 	btrfs_discard_purge_list(&fs_info->discard_ctl);
 | |
| }
 |