forked from mirrors/linux
		
	 7ec7096b85
			
		
	
	
		7ec7096b85
		
	
	
	
	
		
			
			page_ext must be initialized after all struct pages are initialized. Therefore, page_ext is initialized after page_alloc_init_late(), and can optionally be initialized earlier via early_page_ext kernel parameter which as a side effect also disables deferred struct pages. Allow to automatically init page_ext early when there are no deferred struct pages in order to be able to use page_ext during kernel boot and track for example page allocations early. [pasha.tatashin@soleen.com: fix build with CONFIG_PAGE_EXTENSION=n] Link: https://lkml.kernel.org/r/20230118155251.2522985-1-pasha.tatashin@soleen.com Link: https://lkml.kernel.org/r/20230117204617.1553748-1-pasha.tatashin@soleen.com Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Charan Teja Kalla <quic_charante@quicinc.com> Cc: David Hildenbrand <david@redhat.com> Cc: Li Zhe <lizhe.67@bytedance.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			539 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			539 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/page_ext.h>
 | |
| #include <linux/memory.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/page_owner.h>
 | |
| #include <linux/page_idle.h>
 | |
| #include <linux/page_table_check.h>
 | |
| #include <linux/rcupdate.h>
 | |
| 
 | |
| /*
 | |
|  * struct page extension
 | |
|  *
 | |
|  * This is the feature to manage memory for extended data per page.
 | |
|  *
 | |
|  * Until now, we must modify struct page itself to store extra data per page.
 | |
|  * This requires rebuilding the kernel and it is really time consuming process.
 | |
|  * And, sometimes, rebuild is impossible due to third party module dependency.
 | |
|  * At last, enlarging struct page could cause un-wanted system behaviour change.
 | |
|  *
 | |
|  * This feature is intended to overcome above mentioned problems. This feature
 | |
|  * allocates memory for extended data per page in certain place rather than
 | |
|  * the struct page itself. This memory can be accessed by the accessor
 | |
|  * functions provided by this code. During the boot process, it checks whether
 | |
|  * allocation of huge chunk of memory is needed or not. If not, it avoids
 | |
|  * allocating memory at all. With this advantage, we can include this feature
 | |
|  * into the kernel in default and can avoid rebuild and solve related problems.
 | |
|  *
 | |
|  * To help these things to work well, there are two callbacks for clients. One
 | |
|  * is the need callback which is mandatory if user wants to avoid useless
 | |
|  * memory allocation at boot-time. The other is optional, init callback, which
 | |
|  * is used to do proper initialization after memory is allocated.
 | |
|  *
 | |
|  * The need callback is used to decide whether extended memory allocation is
 | |
|  * needed or not. Sometimes users want to deactivate some features in this
 | |
|  * boot and extra memory would be unnecessary. In this case, to avoid
 | |
|  * allocating huge chunk of memory, each clients represent their need of
 | |
|  * extra memory through the need callback. If one of the need callbacks
 | |
|  * returns true, it means that someone needs extra memory so that
 | |
|  * page extension core should allocates memory for page extension. If
 | |
|  * none of need callbacks return true, memory isn't needed at all in this boot
 | |
|  * and page extension core can skip to allocate memory. As result,
 | |
|  * none of memory is wasted.
 | |
|  *
 | |
|  * When need callback returns true, page_ext checks if there is a request for
 | |
|  * extra memory through size in struct page_ext_operations. If it is non-zero,
 | |
|  * extra space is allocated for each page_ext entry and offset is returned to
 | |
|  * user through offset in struct page_ext_operations.
 | |
|  *
 | |
|  * The init callback is used to do proper initialization after page extension
 | |
|  * is completely initialized. In sparse memory system, extra memory is
 | |
|  * allocated some time later than memmap is allocated. In other words, lifetime
 | |
|  * of memory for page extension isn't same with memmap for struct page.
 | |
|  * Therefore, clients can't store extra data until page extension is
 | |
|  * initialized, even if pages are allocated and used freely. This could
 | |
|  * cause inadequate state of extra data per page, so, to prevent it, client
 | |
|  * can utilize this callback to initialize the state of it correctly.
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM
 | |
| #define PAGE_EXT_INVALID       (0x1)
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
 | |
| static bool need_page_idle(void)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| static struct page_ext_operations page_idle_ops __initdata = {
 | |
| 	.need = need_page_idle,
 | |
| 	.need_shared_flags = true,
 | |
| };
 | |
| #endif
 | |
| 
 | |
| static struct page_ext_operations *page_ext_ops[] __initdata = {
 | |
| #ifdef CONFIG_PAGE_OWNER
 | |
| 	&page_owner_ops,
 | |
| #endif
 | |
| #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
 | |
| 	&page_idle_ops,
 | |
| #endif
 | |
| #ifdef CONFIG_PAGE_TABLE_CHECK
 | |
| 	&page_table_check_ops,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| unsigned long page_ext_size;
 | |
| 
 | |
| static unsigned long total_usage;
 | |
| static struct page_ext *lookup_page_ext(const struct page *page);
 | |
| 
 | |
| bool early_page_ext __meminitdata;
 | |
| static int __init setup_early_page_ext(char *str)
 | |
| {
 | |
| 	early_page_ext = true;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("early_page_ext", setup_early_page_ext);
 | |
| 
 | |
| static bool __init invoke_need_callbacks(void)
 | |
| {
 | |
| 	int i;
 | |
| 	int entries = ARRAY_SIZE(page_ext_ops);
 | |
| 	bool need = false;
 | |
| 
 | |
| 	for (i = 0; i < entries; i++) {
 | |
| 		if (page_ext_ops[i]->need()) {
 | |
| 			if (page_ext_ops[i]->need_shared_flags) {
 | |
| 				page_ext_size = sizeof(struct page_ext);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < entries; i++) {
 | |
| 		if (page_ext_ops[i]->need()) {
 | |
| 			page_ext_ops[i]->offset = page_ext_size;
 | |
| 			page_ext_size += page_ext_ops[i]->size;
 | |
| 			need = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return need;
 | |
| }
 | |
| 
 | |
| static void __init invoke_init_callbacks(void)
 | |
| {
 | |
| 	int i;
 | |
| 	int entries = ARRAY_SIZE(page_ext_ops);
 | |
| 
 | |
| 	for (i = 0; i < entries; i++) {
 | |
| 		if (page_ext_ops[i]->init)
 | |
| 			page_ext_ops[i]->init();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SPARSEMEM
 | |
| void __init page_ext_init_flatmem_late(void)
 | |
| {
 | |
| 	invoke_init_callbacks();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline struct page_ext *get_entry(void *base, unsigned long index)
 | |
| {
 | |
| 	return base + page_ext_size * index;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * page_ext_get() - Get the extended information for a page.
 | |
|  * @page: The page we're interested in.
 | |
|  *
 | |
|  * Ensures that the page_ext will remain valid until page_ext_put()
 | |
|  * is called.
 | |
|  *
 | |
|  * Return: NULL if no page_ext exists for this page.
 | |
|  * Context: Any context.  Caller may not sleep until they have called
 | |
|  * page_ext_put().
 | |
|  */
 | |
| struct page_ext *page_ext_get(struct page *page)
 | |
| {
 | |
| 	struct page_ext *page_ext;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	page_ext = lookup_page_ext(page);
 | |
| 	if (!page_ext) {
 | |
| 		rcu_read_unlock();
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return page_ext;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * page_ext_put() - Working with page extended information is done.
 | |
|  * @page_ext: Page extended information received from page_ext_get().
 | |
|  *
 | |
|  * The page extended information of the page may not be valid after this
 | |
|  * function is called.
 | |
|  *
 | |
|  * Return: None.
 | |
|  * Context: Any context with corresponding page_ext_get() is called.
 | |
|  */
 | |
| void page_ext_put(struct page_ext *page_ext)
 | |
| {
 | |
| 	if (unlikely(!page_ext))
 | |
| 		return;
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| #ifndef CONFIG_SPARSEMEM
 | |
| 
 | |
| 
 | |
| void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
 | |
| {
 | |
| 	pgdat->node_page_ext = NULL;
 | |
| }
 | |
| 
 | |
| static struct page_ext *lookup_page_ext(const struct page *page)
 | |
| {
 | |
| 	unsigned long pfn = page_to_pfn(page);
 | |
| 	unsigned long index;
 | |
| 	struct page_ext *base;
 | |
| 
 | |
| 	WARN_ON_ONCE(!rcu_read_lock_held());
 | |
| 	base = NODE_DATA(page_to_nid(page))->node_page_ext;
 | |
| 	/*
 | |
| 	 * The sanity checks the page allocator does upon freeing a
 | |
| 	 * page can reach here before the page_ext arrays are
 | |
| 	 * allocated when feeding a range of pages to the allocator
 | |
| 	 * for the first time during bootup or memory hotplug.
 | |
| 	 */
 | |
| 	if (unlikely(!base))
 | |
| 		return NULL;
 | |
| 	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
 | |
| 					MAX_ORDER_NR_PAGES);
 | |
| 	return get_entry(base, index);
 | |
| }
 | |
| 
 | |
| static int __init alloc_node_page_ext(int nid)
 | |
| {
 | |
| 	struct page_ext *base;
 | |
| 	unsigned long table_size;
 | |
| 	unsigned long nr_pages;
 | |
| 
 | |
| 	nr_pages = NODE_DATA(nid)->node_spanned_pages;
 | |
| 	if (!nr_pages)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Need extra space if node range is not aligned with
 | |
| 	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
 | |
| 	 * checks buddy's status, range could be out of exact node range.
 | |
| 	 */
 | |
| 	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
 | |
| 		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
 | |
| 		nr_pages += MAX_ORDER_NR_PAGES;
 | |
| 
 | |
| 	table_size = page_ext_size * nr_pages;
 | |
| 
 | |
| 	base = memblock_alloc_try_nid(
 | |
| 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
 | |
| 			MEMBLOCK_ALLOC_ACCESSIBLE, nid);
 | |
| 	if (!base)
 | |
| 		return -ENOMEM;
 | |
| 	NODE_DATA(nid)->node_page_ext = base;
 | |
| 	total_usage += table_size;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __init page_ext_init_flatmem(void)
 | |
| {
 | |
| 
 | |
| 	int nid, fail;
 | |
| 
 | |
| 	if (!invoke_need_callbacks())
 | |
| 		return;
 | |
| 
 | |
| 	for_each_online_node(nid)  {
 | |
| 		fail = alloc_node_page_ext(nid);
 | |
| 		if (fail)
 | |
| 			goto fail;
 | |
| 	}
 | |
| 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
 | |
| 	return;
 | |
| 
 | |
| fail:
 | |
| 	pr_crit("allocation of page_ext failed.\n");
 | |
| 	panic("Out of memory");
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_SPARSEMEM */
 | |
| static bool page_ext_invalid(struct page_ext *page_ext)
 | |
| {
 | |
| 	return !page_ext || (((unsigned long)page_ext & PAGE_EXT_INVALID) == PAGE_EXT_INVALID);
 | |
| }
 | |
| 
 | |
| static struct page_ext *lookup_page_ext(const struct page *page)
 | |
| {
 | |
| 	unsigned long pfn = page_to_pfn(page);
 | |
| 	struct mem_section *section = __pfn_to_section(pfn);
 | |
| 	struct page_ext *page_ext = READ_ONCE(section->page_ext);
 | |
| 
 | |
| 	WARN_ON_ONCE(!rcu_read_lock_held());
 | |
| 	/*
 | |
| 	 * The sanity checks the page allocator does upon freeing a
 | |
| 	 * page can reach here before the page_ext arrays are
 | |
| 	 * allocated when feeding a range of pages to the allocator
 | |
| 	 * for the first time during bootup or memory hotplug.
 | |
| 	 */
 | |
| 	if (page_ext_invalid(page_ext))
 | |
| 		return NULL;
 | |
| 	return get_entry(page_ext, pfn);
 | |
| }
 | |
| 
 | |
| static void *__meminit alloc_page_ext(size_t size, int nid)
 | |
| {
 | |
| 	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
 | |
| 	void *addr = NULL;
 | |
| 
 | |
| 	addr = alloc_pages_exact_nid(nid, size, flags);
 | |
| 	if (addr) {
 | |
| 		kmemleak_alloc(addr, size, 1, flags);
 | |
| 		return addr;
 | |
| 	}
 | |
| 
 | |
| 	addr = vzalloc_node(size, nid);
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| static int __meminit init_section_page_ext(unsigned long pfn, int nid)
 | |
| {
 | |
| 	struct mem_section *section;
 | |
| 	struct page_ext *base;
 | |
| 	unsigned long table_size;
 | |
| 
 | |
| 	section = __pfn_to_section(pfn);
 | |
| 
 | |
| 	if (section->page_ext)
 | |
| 		return 0;
 | |
| 
 | |
| 	table_size = page_ext_size * PAGES_PER_SECTION;
 | |
| 	base = alloc_page_ext(table_size, nid);
 | |
| 
 | |
| 	/*
 | |
| 	 * The value stored in section->page_ext is (base - pfn)
 | |
| 	 * and it does not point to the memory block allocated above,
 | |
| 	 * causing kmemleak false positives.
 | |
| 	 */
 | |
| 	kmemleak_not_leak(base);
 | |
| 
 | |
| 	if (!base) {
 | |
| 		pr_err("page ext allocation failure\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
 | |
| 	 * we need to apply a mask.
 | |
| 	 */
 | |
| 	pfn &= PAGE_SECTION_MASK;
 | |
| 	section->page_ext = (void *)base - page_ext_size * pfn;
 | |
| 	total_usage += table_size;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void free_page_ext(void *addr)
 | |
| {
 | |
| 	if (is_vmalloc_addr(addr)) {
 | |
| 		vfree(addr);
 | |
| 	} else {
 | |
| 		struct page *page = virt_to_page(addr);
 | |
| 		size_t table_size;
 | |
| 
 | |
| 		table_size = page_ext_size * PAGES_PER_SECTION;
 | |
| 
 | |
| 		BUG_ON(PageReserved(page));
 | |
| 		kmemleak_free(addr);
 | |
| 		free_pages_exact(addr, table_size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __free_page_ext(unsigned long pfn)
 | |
| {
 | |
| 	struct mem_section *ms;
 | |
| 	struct page_ext *base;
 | |
| 
 | |
| 	ms = __pfn_to_section(pfn);
 | |
| 	if (!ms || !ms->page_ext)
 | |
| 		return;
 | |
| 
 | |
| 	base = READ_ONCE(ms->page_ext);
 | |
| 	/*
 | |
| 	 * page_ext here can be valid while doing the roll back
 | |
| 	 * operation in online_page_ext().
 | |
| 	 */
 | |
| 	if (page_ext_invalid(base))
 | |
| 		base = (void *)base - PAGE_EXT_INVALID;
 | |
| 	WRITE_ONCE(ms->page_ext, NULL);
 | |
| 
 | |
| 	base = get_entry(base, pfn);
 | |
| 	free_page_ext(base);
 | |
| }
 | |
| 
 | |
| static void __invalidate_page_ext(unsigned long pfn)
 | |
| {
 | |
| 	struct mem_section *ms;
 | |
| 	void *val;
 | |
| 
 | |
| 	ms = __pfn_to_section(pfn);
 | |
| 	if (!ms || !ms->page_ext)
 | |
| 		return;
 | |
| 	val = (void *)ms->page_ext + PAGE_EXT_INVALID;
 | |
| 	WRITE_ONCE(ms->page_ext, val);
 | |
| }
 | |
| 
 | |
| static int __meminit online_page_ext(unsigned long start_pfn,
 | |
| 				unsigned long nr_pages,
 | |
| 				int nid)
 | |
| {
 | |
| 	unsigned long start, end, pfn;
 | |
| 	int fail = 0;
 | |
| 
 | |
| 	start = SECTION_ALIGN_DOWN(start_pfn);
 | |
| 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
 | |
| 
 | |
| 	if (nid == NUMA_NO_NODE) {
 | |
| 		/*
 | |
| 		 * In this case, "nid" already exists and contains valid memory.
 | |
| 		 * "start_pfn" passed to us is a pfn which is an arg for
 | |
| 		 * online__pages(), and start_pfn should exist.
 | |
| 		 */
 | |
| 		nid = pfn_to_nid(start_pfn);
 | |
| 		VM_BUG_ON(!node_online(nid));
 | |
| 	}
 | |
| 
 | |
| 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
 | |
| 		fail = init_section_page_ext(pfn, nid);
 | |
| 	if (!fail)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* rollback */
 | |
| 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
 | |
| 		__free_page_ext(pfn);
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static int __meminit offline_page_ext(unsigned long start_pfn,
 | |
| 				unsigned long nr_pages)
 | |
| {
 | |
| 	unsigned long start, end, pfn;
 | |
| 
 | |
| 	start = SECTION_ALIGN_DOWN(start_pfn);
 | |
| 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
 | |
| 
 | |
| 	/*
 | |
| 	 * Freeing of page_ext is done in 3 steps to avoid
 | |
| 	 * use-after-free of it:
 | |
| 	 * 1) Traverse all the sections and mark their page_ext
 | |
| 	 *    as invalid.
 | |
| 	 * 2) Wait for all the existing users of page_ext who
 | |
| 	 *    started before invalidation to finish.
 | |
| 	 * 3) Free the page_ext.
 | |
| 	 */
 | |
| 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
 | |
| 		__invalidate_page_ext(pfn);
 | |
| 
 | |
| 	synchronize_rcu();
 | |
| 
 | |
| 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
 | |
| 		__free_page_ext(pfn);
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| static int __meminit page_ext_callback(struct notifier_block *self,
 | |
| 			       unsigned long action, void *arg)
 | |
| {
 | |
| 	struct memory_notify *mn = arg;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case MEM_GOING_ONLINE:
 | |
| 		ret = online_page_ext(mn->start_pfn,
 | |
| 				   mn->nr_pages, mn->status_change_nid);
 | |
| 		break;
 | |
| 	case MEM_OFFLINE:
 | |
| 		offline_page_ext(mn->start_pfn,
 | |
| 				mn->nr_pages);
 | |
| 		break;
 | |
| 	case MEM_CANCEL_ONLINE:
 | |
| 		offline_page_ext(mn->start_pfn,
 | |
| 				mn->nr_pages);
 | |
| 		break;
 | |
| 	case MEM_GOING_OFFLINE:
 | |
| 		break;
 | |
| 	case MEM_ONLINE:
 | |
| 	case MEM_CANCEL_OFFLINE:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return notifier_from_errno(ret);
 | |
| }
 | |
| 
 | |
| void __init page_ext_init(void)
 | |
| {
 | |
| 	unsigned long pfn;
 | |
| 	int nid;
 | |
| 
 | |
| 	if (!invoke_need_callbacks())
 | |
| 		return;
 | |
| 
 | |
| 	for_each_node_state(nid, N_MEMORY) {
 | |
| 		unsigned long start_pfn, end_pfn;
 | |
| 
 | |
| 		start_pfn = node_start_pfn(nid);
 | |
| 		end_pfn = node_end_pfn(nid);
 | |
| 		/*
 | |
| 		 * start_pfn and end_pfn may not be aligned to SECTION and the
 | |
| 		 * page->flags of out of node pages are not initialized.  So we
 | |
| 		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
 | |
| 		 */
 | |
| 		for (pfn = start_pfn; pfn < end_pfn;
 | |
| 			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
 | |
| 
 | |
| 			if (!pfn_valid(pfn))
 | |
| 				continue;
 | |
| 			/*
 | |
| 			 * Nodes's pfns can be overlapping.
 | |
| 			 * We know some arch can have a nodes layout such as
 | |
| 			 * -------------pfn-------------->
 | |
| 			 * N0 | N1 | N2 | N0 | N1 | N2|....
 | |
| 			 */
 | |
| 			if (pfn_to_nid(pfn) != nid)
 | |
| 				continue;
 | |
| 			if (init_section_page_ext(pfn, nid))
 | |
| 				goto oom;
 | |
| 			cond_resched();
 | |
| 		}
 | |
| 	}
 | |
| 	hotplug_memory_notifier(page_ext_callback, DEFAULT_CALLBACK_PRI);
 | |
| 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
 | |
| 	invoke_init_callbacks();
 | |
| 	return;
 | |
| 
 | |
| oom:
 | |
| 	panic("Out of memory");
 | |
| }
 | |
| 
 | |
| void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif
 |