forked from mirrors/linux
		
	 4d4b6d66db
			
		
	
	
		4d4b6d66db
		
	
	
	
	
		
			
			0Day/LKP reported a performance regression for commit7e12beb8ca("migrate_pages: batch flushing TLB"). In the commit, the TLB flushing during page migration is batched. So, in try_to_migrate_one(), ptep_clear_flush() is replaced with set_tlb_ubc_flush_pending(). In further investigation, it is found that the TLB flushing can be avoided in ptep_clear_flush() if the PTE is inaccessible. In fact, we can optimize in similar way for the batched TLB flushing too to improve the performance. So in this patch, we check pte_accessible() before set_tlb_ubc_flush_pending() in try_to_unmap/migrate_one(). Tests show that the benchmark score of the anon-cow-rand-mt test case of vm-scalability test suite can improve up to 2.1% with the patch on a Intel server machine. The TLB flushing IPI can reduce up to 44.3%. Link: https://lore.kernel.org/oe-lkp/202303192325.ecbaf968-yujie.liu@intel.com Link: https://lore.kernel.org/oe-lkp/ab92aaddf1b52ede15e2c608696c36765a2602c1.camel@intel.com/ Link: https://lkml.kernel.org/r/20230424065408.188498-1-ying.huang@intel.com Fixes:7e12beb8ca("migrate_pages: batch flushing TLB") Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reported-by: kernel test robot <yujie.liu@intel.com> Reviewed-by: Nadav Amit <namit@vmware.com> Reviewed-by: Xin Hao <xhao@linux.alibaba.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			2562 lines
		
	
	
	
		
			74 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2562 lines
		
	
	
	
		
			74 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * mm/rmap.c - physical to virtual reverse mappings
 | |
|  *
 | |
|  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
 | |
|  * Released under the General Public License (GPL).
 | |
|  *
 | |
|  * Simple, low overhead reverse mapping scheme.
 | |
|  * Please try to keep this thing as modular as possible.
 | |
|  *
 | |
|  * Provides methods for unmapping each kind of mapped page:
 | |
|  * the anon methods track anonymous pages, and
 | |
|  * the file methods track pages belonging to an inode.
 | |
|  *
 | |
|  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
 | |
|  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
 | |
|  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
 | |
|  * Contributions by Hugh Dickins 2003, 2004
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Lock ordering in mm:
 | |
|  *
 | |
|  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
 | |
|  *   mm->mmap_lock
 | |
|  *     mapping->invalidate_lock (in filemap_fault)
 | |
|  *       page->flags PG_locked (lock_page)
 | |
|  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
 | |
|  *           vma_start_write
 | |
|  *             mapping->i_mmap_rwsem
 | |
|  *               anon_vma->rwsem
 | |
|  *                 mm->page_table_lock or pte_lock
 | |
|  *                   swap_lock (in swap_duplicate, swap_info_get)
 | |
|  *                     mmlist_lock (in mmput, drain_mmlist and others)
 | |
|  *                     mapping->private_lock (in block_dirty_folio)
 | |
|  *                       folio_lock_memcg move_lock (in block_dirty_folio)
 | |
|  *                         i_pages lock (widely used)
 | |
|  *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
 | |
|  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
 | |
|  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
 | |
|  *                       sb_lock (within inode_lock in fs/fs-writeback.c)
 | |
|  *                       i_pages lock (widely used, in set_page_dirty,
 | |
|  *                                 in arch-dependent flush_dcache_mmap_lock,
 | |
|  *                                 within bdi.wb->list_lock in __sync_single_inode)
 | |
|  *
 | |
|  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
 | |
|  *   ->tasklist_lock
 | |
|  *     pte map lock
 | |
|  *
 | |
|  * hugetlbfs PageHuge() take locks in this order:
 | |
|  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
 | |
|  *     vma_lock (hugetlb specific lock for pmd_sharing)
 | |
|  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
 | |
|  *         page->flags PG_locked (lock_page)
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/ksm.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/mmu_notifier.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/huge_mm.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/page_idle.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/userfaultfd_k.h>
 | |
| #include <linux/mm_inline.h>
 | |
| 
 | |
| #include <asm/tlbflush.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/tlb.h>
 | |
| #include <trace/events/migrate.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| static struct kmem_cache *anon_vma_cachep;
 | |
| static struct kmem_cache *anon_vma_chain_cachep;
 | |
| 
 | |
| static inline struct anon_vma *anon_vma_alloc(void)
 | |
| {
 | |
| 	struct anon_vma *anon_vma;
 | |
| 
 | |
| 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
 | |
| 	if (anon_vma) {
 | |
| 		atomic_set(&anon_vma->refcount, 1);
 | |
| 		anon_vma->num_children = 0;
 | |
| 		anon_vma->num_active_vmas = 0;
 | |
| 		anon_vma->parent = anon_vma;
 | |
| 		/*
 | |
| 		 * Initialise the anon_vma root to point to itself. If called
 | |
| 		 * from fork, the root will be reset to the parents anon_vma.
 | |
| 		 */
 | |
| 		anon_vma->root = anon_vma;
 | |
| 	}
 | |
| 
 | |
| 	return anon_vma;
 | |
| }
 | |
| 
 | |
| static inline void anon_vma_free(struct anon_vma *anon_vma)
 | |
| {
 | |
| 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
 | |
| 
 | |
| 	/*
 | |
| 	 * Synchronize against folio_lock_anon_vma_read() such that
 | |
| 	 * we can safely hold the lock without the anon_vma getting
 | |
| 	 * freed.
 | |
| 	 *
 | |
| 	 * Relies on the full mb implied by the atomic_dec_and_test() from
 | |
| 	 * put_anon_vma() against the acquire barrier implied by
 | |
| 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
 | |
| 	 *
 | |
| 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
 | |
| 	 *   down_read_trylock()		  atomic_dec_and_test()
 | |
| 	 *   LOCK				  MB
 | |
| 	 *   atomic_read()			  rwsem_is_locked()
 | |
| 	 *
 | |
| 	 * LOCK should suffice since the actual taking of the lock must
 | |
| 	 * happen _before_ what follows.
 | |
| 	 */
 | |
| 	might_sleep();
 | |
| 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 | |
| 		anon_vma_lock_write(anon_vma);
 | |
| 		anon_vma_unlock_write(anon_vma);
 | |
| 	}
 | |
| 
 | |
| 	kmem_cache_free(anon_vma_cachep, anon_vma);
 | |
| }
 | |
| 
 | |
| static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 | |
| {
 | |
| 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 | |
| }
 | |
| 
 | |
| static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 | |
| {
 | |
| 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 | |
| }
 | |
| 
 | |
| static void anon_vma_chain_link(struct vm_area_struct *vma,
 | |
| 				struct anon_vma_chain *avc,
 | |
| 				struct anon_vma *anon_vma)
 | |
| {
 | |
| 	avc->vma = vma;
 | |
| 	avc->anon_vma = anon_vma;
 | |
| 	list_add(&avc->same_vma, &vma->anon_vma_chain);
 | |
| 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __anon_vma_prepare - attach an anon_vma to a memory region
 | |
|  * @vma: the memory region in question
 | |
|  *
 | |
|  * This makes sure the memory mapping described by 'vma' has
 | |
|  * an 'anon_vma' attached to it, so that we can associate the
 | |
|  * anonymous pages mapped into it with that anon_vma.
 | |
|  *
 | |
|  * The common case will be that we already have one, which
 | |
|  * is handled inline by anon_vma_prepare(). But if
 | |
|  * not we either need to find an adjacent mapping that we
 | |
|  * can re-use the anon_vma from (very common when the only
 | |
|  * reason for splitting a vma has been mprotect()), or we
 | |
|  * allocate a new one.
 | |
|  *
 | |
|  * Anon-vma allocations are very subtle, because we may have
 | |
|  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
 | |
|  * and that may actually touch the rwsem even in the newly
 | |
|  * allocated vma (it depends on RCU to make sure that the
 | |
|  * anon_vma isn't actually destroyed).
 | |
|  *
 | |
|  * As a result, we need to do proper anon_vma locking even
 | |
|  * for the new allocation. At the same time, we do not want
 | |
|  * to do any locking for the common case of already having
 | |
|  * an anon_vma.
 | |
|  *
 | |
|  * This must be called with the mmap_lock held for reading.
 | |
|  */
 | |
| int __anon_vma_prepare(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct anon_vma *anon_vma, *allocated;
 | |
| 	struct anon_vma_chain *avc;
 | |
| 
 | |
| 	might_sleep();
 | |
| 
 | |
| 	avc = anon_vma_chain_alloc(GFP_KERNEL);
 | |
| 	if (!avc)
 | |
| 		goto out_enomem;
 | |
| 
 | |
| 	anon_vma = find_mergeable_anon_vma(vma);
 | |
| 	allocated = NULL;
 | |
| 	if (!anon_vma) {
 | |
| 		anon_vma = anon_vma_alloc();
 | |
| 		if (unlikely(!anon_vma))
 | |
| 			goto out_enomem_free_avc;
 | |
| 		anon_vma->num_children++; /* self-parent link for new root */
 | |
| 		allocated = anon_vma;
 | |
| 	}
 | |
| 
 | |
| 	anon_vma_lock_write(anon_vma);
 | |
| 	/* page_table_lock to protect against threads */
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	if (likely(!vma->anon_vma)) {
 | |
| 		vma->anon_vma = anon_vma;
 | |
| 		anon_vma_chain_link(vma, avc, anon_vma);
 | |
| 		anon_vma->num_active_vmas++;
 | |
| 		allocated = NULL;
 | |
| 		avc = NULL;
 | |
| 	}
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 	anon_vma_unlock_write(anon_vma);
 | |
| 
 | |
| 	if (unlikely(allocated))
 | |
| 		put_anon_vma(allocated);
 | |
| 	if (unlikely(avc))
 | |
| 		anon_vma_chain_free(avc);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  out_enomem_free_avc:
 | |
| 	anon_vma_chain_free(avc);
 | |
|  out_enomem:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a useful helper function for locking the anon_vma root as
 | |
|  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 | |
|  * have the same vma.
 | |
|  *
 | |
|  * Such anon_vma's should have the same root, so you'd expect to see
 | |
|  * just a single mutex_lock for the whole traversal.
 | |
|  */
 | |
| static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 | |
| {
 | |
| 	struct anon_vma *new_root = anon_vma->root;
 | |
| 	if (new_root != root) {
 | |
| 		if (WARN_ON_ONCE(root))
 | |
| 			up_write(&root->rwsem);
 | |
| 		root = new_root;
 | |
| 		down_write(&root->rwsem);
 | |
| 	}
 | |
| 	return root;
 | |
| }
 | |
| 
 | |
| static inline void unlock_anon_vma_root(struct anon_vma *root)
 | |
| {
 | |
| 	if (root)
 | |
| 		up_write(&root->rwsem);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attach the anon_vmas from src to dst.
 | |
|  * Returns 0 on success, -ENOMEM on failure.
 | |
|  *
 | |
|  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
 | |
|  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
 | |
|  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
 | |
|  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
 | |
|  * call, we can identify this case by checking (!dst->anon_vma &&
 | |
|  * src->anon_vma).
 | |
|  *
 | |
|  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
 | |
|  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
 | |
|  * This prevents degradation of anon_vma hierarchy to endless linear chain in
 | |
|  * case of constantly forking task. On the other hand, an anon_vma with more
 | |
|  * than one child isn't reused even if there was no alive vma, thus rmap
 | |
|  * walker has a good chance of avoiding scanning the whole hierarchy when it
 | |
|  * searches where page is mapped.
 | |
|  */
 | |
| int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 | |
| {
 | |
| 	struct anon_vma_chain *avc, *pavc;
 | |
| 	struct anon_vma *root = NULL;
 | |
| 
 | |
| 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 | |
| 		struct anon_vma *anon_vma;
 | |
| 
 | |
| 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 | |
| 		if (unlikely(!avc)) {
 | |
| 			unlock_anon_vma_root(root);
 | |
| 			root = NULL;
 | |
| 			avc = anon_vma_chain_alloc(GFP_KERNEL);
 | |
| 			if (!avc)
 | |
| 				goto enomem_failure;
 | |
| 		}
 | |
| 		anon_vma = pavc->anon_vma;
 | |
| 		root = lock_anon_vma_root(root, anon_vma);
 | |
| 		anon_vma_chain_link(dst, avc, anon_vma);
 | |
| 
 | |
| 		/*
 | |
| 		 * Reuse existing anon_vma if it has no vma and only one
 | |
| 		 * anon_vma child.
 | |
| 		 *
 | |
| 		 * Root anon_vma is never reused:
 | |
| 		 * it has self-parent reference and at least one child.
 | |
| 		 */
 | |
| 		if (!dst->anon_vma && src->anon_vma &&
 | |
| 		    anon_vma->num_children < 2 &&
 | |
| 		    anon_vma->num_active_vmas == 0)
 | |
| 			dst->anon_vma = anon_vma;
 | |
| 	}
 | |
| 	if (dst->anon_vma)
 | |
| 		dst->anon_vma->num_active_vmas++;
 | |
| 	unlock_anon_vma_root(root);
 | |
| 	return 0;
 | |
| 
 | |
|  enomem_failure:
 | |
| 	/*
 | |
| 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
 | |
| 	 * be incorrectly decremented in unlink_anon_vmas().
 | |
| 	 * We can safely do this because callers of anon_vma_clone() don't care
 | |
| 	 * about dst->anon_vma if anon_vma_clone() failed.
 | |
| 	 */
 | |
| 	dst->anon_vma = NULL;
 | |
| 	unlink_anon_vmas(dst);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attach vma to its own anon_vma, as well as to the anon_vmas that
 | |
|  * the corresponding VMA in the parent process is attached to.
 | |
|  * Returns 0 on success, non-zero on failure.
 | |
|  */
 | |
| int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 | |
| {
 | |
| 	struct anon_vma_chain *avc;
 | |
| 	struct anon_vma *anon_vma;
 | |
| 	int error;
 | |
| 
 | |
| 	/* Don't bother if the parent process has no anon_vma here. */
 | |
| 	if (!pvma->anon_vma)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
 | |
| 	vma->anon_vma = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * First, attach the new VMA to the parent VMA's anon_vmas,
 | |
| 	 * so rmap can find non-COWed pages in child processes.
 | |
| 	 */
 | |
| 	error = anon_vma_clone(vma, pvma);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	/* An existing anon_vma has been reused, all done then. */
 | |
| 	if (vma->anon_vma)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Then add our own anon_vma. */
 | |
| 	anon_vma = anon_vma_alloc();
 | |
| 	if (!anon_vma)
 | |
| 		goto out_error;
 | |
| 	anon_vma->num_active_vmas++;
 | |
| 	avc = anon_vma_chain_alloc(GFP_KERNEL);
 | |
| 	if (!avc)
 | |
| 		goto out_error_free_anon_vma;
 | |
| 
 | |
| 	/*
 | |
| 	 * The root anon_vma's rwsem is the lock actually used when we
 | |
| 	 * lock any of the anon_vmas in this anon_vma tree.
 | |
| 	 */
 | |
| 	anon_vma->root = pvma->anon_vma->root;
 | |
| 	anon_vma->parent = pvma->anon_vma;
 | |
| 	/*
 | |
| 	 * With refcounts, an anon_vma can stay around longer than the
 | |
| 	 * process it belongs to. The root anon_vma needs to be pinned until
 | |
| 	 * this anon_vma is freed, because the lock lives in the root.
 | |
| 	 */
 | |
| 	get_anon_vma(anon_vma->root);
 | |
| 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
 | |
| 	vma->anon_vma = anon_vma;
 | |
| 	anon_vma_lock_write(anon_vma);
 | |
| 	anon_vma_chain_link(vma, avc, anon_vma);
 | |
| 	anon_vma->parent->num_children++;
 | |
| 	anon_vma_unlock_write(anon_vma);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  out_error_free_anon_vma:
 | |
| 	put_anon_vma(anon_vma);
 | |
|  out_error:
 | |
| 	unlink_anon_vmas(vma);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void unlink_anon_vmas(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct anon_vma_chain *avc, *next;
 | |
| 	struct anon_vma *root = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
 | |
| 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 | |
| 		struct anon_vma *anon_vma = avc->anon_vma;
 | |
| 
 | |
| 		root = lock_anon_vma_root(root, anon_vma);
 | |
| 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 | |
| 
 | |
| 		/*
 | |
| 		 * Leave empty anon_vmas on the list - we'll need
 | |
| 		 * to free them outside the lock.
 | |
| 		 */
 | |
| 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
 | |
| 			anon_vma->parent->num_children--;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		list_del(&avc->same_vma);
 | |
| 		anon_vma_chain_free(avc);
 | |
| 	}
 | |
| 	if (vma->anon_vma) {
 | |
| 		vma->anon_vma->num_active_vmas--;
 | |
| 
 | |
| 		/*
 | |
| 		 * vma would still be needed after unlink, and anon_vma will be prepared
 | |
| 		 * when handle fault.
 | |
| 		 */
 | |
| 		vma->anon_vma = NULL;
 | |
| 	}
 | |
| 	unlock_anon_vma_root(root);
 | |
| 
 | |
| 	/*
 | |
| 	 * Iterate the list once more, it now only contains empty and unlinked
 | |
| 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 | |
| 	 * needing to write-acquire the anon_vma->root->rwsem.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 | |
| 		struct anon_vma *anon_vma = avc->anon_vma;
 | |
| 
 | |
| 		VM_WARN_ON(anon_vma->num_children);
 | |
| 		VM_WARN_ON(anon_vma->num_active_vmas);
 | |
| 		put_anon_vma(anon_vma);
 | |
| 
 | |
| 		list_del(&avc->same_vma);
 | |
| 		anon_vma_chain_free(avc);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void anon_vma_ctor(void *data)
 | |
| {
 | |
| 	struct anon_vma *anon_vma = data;
 | |
| 
 | |
| 	init_rwsem(&anon_vma->rwsem);
 | |
| 	atomic_set(&anon_vma->refcount, 0);
 | |
| 	anon_vma->rb_root = RB_ROOT_CACHED;
 | |
| }
 | |
| 
 | |
| void __init anon_vma_init(void)
 | |
| {
 | |
| 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 | |
| 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
 | |
| 			anon_vma_ctor);
 | |
| 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
 | |
| 			SLAB_PANIC|SLAB_ACCOUNT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 | |
|  *
 | |
|  * Since there is no serialization what so ever against page_remove_rmap()
 | |
|  * the best this function can do is return a refcount increased anon_vma
 | |
|  * that might have been relevant to this page.
 | |
|  *
 | |
|  * The page might have been remapped to a different anon_vma or the anon_vma
 | |
|  * returned may already be freed (and even reused).
 | |
|  *
 | |
|  * In case it was remapped to a different anon_vma, the new anon_vma will be a
 | |
|  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 | |
|  * ensure that any anon_vma obtained from the page will still be valid for as
 | |
|  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 | |
|  *
 | |
|  * All users of this function must be very careful when walking the anon_vma
 | |
|  * chain and verify that the page in question is indeed mapped in it
 | |
|  * [ something equivalent to page_mapped_in_vma() ].
 | |
|  *
 | |
|  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
 | |
|  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
 | |
|  * if there is a mapcount, we can dereference the anon_vma after observing
 | |
|  * those.
 | |
|  */
 | |
| struct anon_vma *folio_get_anon_vma(struct folio *folio)
 | |
| {
 | |
| 	struct anon_vma *anon_vma = NULL;
 | |
| 	unsigned long anon_mapping;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
 | |
| 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 | |
| 		goto out;
 | |
| 	if (!folio_mapped(folio))
 | |
| 		goto out;
 | |
| 
 | |
| 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 | |
| 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 | |
| 		anon_vma = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this folio is still mapped, then its anon_vma cannot have been
 | |
| 	 * freed.  But if it has been unmapped, we have no security against the
 | |
| 	 * anon_vma structure being freed and reused (for another anon_vma:
 | |
| 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
 | |
| 	 * above cannot corrupt).
 | |
| 	 */
 | |
| 	if (!folio_mapped(folio)) {
 | |
| 		rcu_read_unlock();
 | |
| 		put_anon_vma(anon_vma);
 | |
| 		return NULL;
 | |
| 	}
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return anon_vma;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Similar to folio_get_anon_vma() except it locks the anon_vma.
 | |
|  *
 | |
|  * Its a little more complex as it tries to keep the fast path to a single
 | |
|  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 | |
|  * reference like with folio_get_anon_vma() and then block on the mutex
 | |
|  * on !rwc->try_lock case.
 | |
|  */
 | |
| struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
 | |
| 					  struct rmap_walk_control *rwc)
 | |
| {
 | |
| 	struct anon_vma *anon_vma = NULL;
 | |
| 	struct anon_vma *root_anon_vma;
 | |
| 	unsigned long anon_mapping;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
 | |
| 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 | |
| 		goto out;
 | |
| 	if (!folio_mapped(folio))
 | |
| 		goto out;
 | |
| 
 | |
| 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 | |
| 	root_anon_vma = READ_ONCE(anon_vma->root);
 | |
| 	if (down_read_trylock(&root_anon_vma->rwsem)) {
 | |
| 		/*
 | |
| 		 * If the folio is still mapped, then this anon_vma is still
 | |
| 		 * its anon_vma, and holding the mutex ensures that it will
 | |
| 		 * not go away, see anon_vma_free().
 | |
| 		 */
 | |
| 		if (!folio_mapped(folio)) {
 | |
| 			up_read(&root_anon_vma->rwsem);
 | |
| 			anon_vma = NULL;
 | |
| 		}
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (rwc && rwc->try_lock) {
 | |
| 		anon_vma = NULL;
 | |
| 		rwc->contended = true;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* trylock failed, we got to sleep */
 | |
| 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 | |
| 		anon_vma = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!folio_mapped(folio)) {
 | |
| 		rcu_read_unlock();
 | |
| 		put_anon_vma(anon_vma);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* we pinned the anon_vma, its safe to sleep */
 | |
| 	rcu_read_unlock();
 | |
| 	anon_vma_lock_read(anon_vma);
 | |
| 
 | |
| 	if (atomic_dec_and_test(&anon_vma->refcount)) {
 | |
| 		/*
 | |
| 		 * Oops, we held the last refcount, release the lock
 | |
| 		 * and bail -- can't simply use put_anon_vma() because
 | |
| 		 * we'll deadlock on the anon_vma_lock_write() recursion.
 | |
| 		 */
 | |
| 		anon_vma_unlock_read(anon_vma);
 | |
| 		__put_anon_vma(anon_vma);
 | |
| 		anon_vma = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return anon_vma;
 | |
| 
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	return anon_vma;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 | |
| /*
 | |
|  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
 | |
|  * important if a PTE was dirty when it was unmapped that it's flushed
 | |
|  * before any IO is initiated on the page to prevent lost writes. Similarly,
 | |
|  * it must be flushed before freeing to prevent data leakage.
 | |
|  */
 | |
| void try_to_unmap_flush(void)
 | |
| {
 | |
| 	struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
 | |
| 
 | |
| 	if (!tlb_ubc->flush_required)
 | |
| 		return;
 | |
| 
 | |
| 	arch_tlbbatch_flush(&tlb_ubc->arch);
 | |
| 	tlb_ubc->flush_required = false;
 | |
| 	tlb_ubc->writable = false;
 | |
| }
 | |
| 
 | |
| /* Flush iff there are potentially writable TLB entries that can race with IO */
 | |
| void try_to_unmap_flush_dirty(void)
 | |
| {
 | |
| 	struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
 | |
| 
 | |
| 	if (tlb_ubc->writable)
 | |
| 		try_to_unmap_flush();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
 | |
|  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
 | |
|  */
 | |
| #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
 | |
| #define TLB_FLUSH_BATCH_PENDING_MASK			\
 | |
| 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
 | |
| #define TLB_FLUSH_BATCH_PENDING_LARGE			\
 | |
| 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
 | |
| 
 | |
| static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval)
 | |
| {
 | |
| 	struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
 | |
| 	int batch;
 | |
| 	bool writable = pte_dirty(pteval);
 | |
| 
 | |
| 	if (!pte_accessible(mm, pteval))
 | |
| 		return;
 | |
| 
 | |
| 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
 | |
| 	tlb_ubc->flush_required = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
 | |
| 	 * before the PTE is cleared.
 | |
| 	 */
 | |
| 	barrier();
 | |
| 	batch = atomic_read(&mm->tlb_flush_batched);
 | |
| retry:
 | |
| 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
 | |
| 		/*
 | |
| 		 * Prevent `pending' from catching up with `flushed' because of
 | |
| 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
 | |
| 		 * `pending' becomes large.
 | |
| 		 */
 | |
| 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
 | |
| 			goto retry;
 | |
| 	} else {
 | |
| 		atomic_inc(&mm->tlb_flush_batched);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the PTE was dirty then it's best to assume it's writable. The
 | |
| 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
 | |
| 	 * before the page is queued for IO.
 | |
| 	 */
 | |
| 	if (writable)
 | |
| 		tlb_ubc->writable = true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if the TLB flush should be deferred to the end of a batch of
 | |
|  * unmap operations to reduce IPIs.
 | |
|  */
 | |
| static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 | |
| {
 | |
| 	bool should_defer = false;
 | |
| 
 | |
| 	if (!(flags & TTU_BATCH_FLUSH))
 | |
| 		return false;
 | |
| 
 | |
| 	/* If remote CPUs need to be flushed then defer batch the flush */
 | |
| 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
 | |
| 		should_defer = true;
 | |
| 	put_cpu();
 | |
| 
 | |
| 	return should_defer;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
 | |
|  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
 | |
|  * operation such as mprotect or munmap to race between reclaim unmapping
 | |
|  * the page and flushing the page. If this race occurs, it potentially allows
 | |
|  * access to data via a stale TLB entry. Tracking all mm's that have TLB
 | |
|  * batching in flight would be expensive during reclaim so instead track
 | |
|  * whether TLB batching occurred in the past and if so then do a flush here
 | |
|  * if required. This will cost one additional flush per reclaim cycle paid
 | |
|  * by the first operation at risk such as mprotect and mumap.
 | |
|  *
 | |
|  * This must be called under the PTL so that an access to tlb_flush_batched
 | |
|  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
 | |
|  * via the PTL.
 | |
|  */
 | |
| void flush_tlb_batched_pending(struct mm_struct *mm)
 | |
| {
 | |
| 	int batch = atomic_read(&mm->tlb_flush_batched);
 | |
| 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
 | |
| 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
 | |
| 
 | |
| 	if (pending != flushed) {
 | |
| 		flush_tlb_mm(mm);
 | |
| 		/*
 | |
| 		 * If the new TLB flushing is pending during flushing, leave
 | |
| 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
 | |
| 		 */
 | |
| 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
 | |
| 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval)
 | |
| {
 | |
| }
 | |
| 
 | |
| static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 | |
| 
 | |
| /*
 | |
|  * At what user virtual address is page expected in vma?
 | |
|  * Caller should check the page is actually part of the vma.
 | |
|  */
 | |
| unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	if (folio_test_anon(folio)) {
 | |
| 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
 | |
| 		/*
 | |
| 		 * Note: swapoff's unuse_vma() is more efficient with this
 | |
| 		 * check, and needs it to match anon_vma when KSM is active.
 | |
| 		 */
 | |
| 		if (!vma->anon_vma || !page__anon_vma ||
 | |
| 		    vma->anon_vma->root != page__anon_vma->root)
 | |
| 			return -EFAULT;
 | |
| 	} else if (!vma->vm_file) {
 | |
| 		return -EFAULT;
 | |
| 	} else if (vma->vm_file->f_mapping != folio->mapping) {
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return vma_address(page, vma);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
 | |
|  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
 | |
|  * represents.
 | |
|  */
 | |
| pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd = NULL;
 | |
| 
 | |
| 	pgd = pgd_offset(mm, address);
 | |
| 	if (!pgd_present(*pgd))
 | |
| 		goto out;
 | |
| 
 | |
| 	p4d = p4d_offset(pgd, address);
 | |
| 	if (!p4d_present(*p4d))
 | |
| 		goto out;
 | |
| 
 | |
| 	pud = pud_offset(p4d, address);
 | |
| 	if (!pud_present(*pud))
 | |
| 		goto out;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| out:
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| struct folio_referenced_arg {
 | |
| 	int mapcount;
 | |
| 	int referenced;
 | |
| 	unsigned long vm_flags;
 | |
| 	struct mem_cgroup *memcg;
 | |
| };
 | |
| /*
 | |
|  * arg: folio_referenced_arg will be passed
 | |
|  */
 | |
| static bool folio_referenced_one(struct folio *folio,
 | |
| 		struct vm_area_struct *vma, unsigned long address, void *arg)
 | |
| {
 | |
| 	struct folio_referenced_arg *pra = arg;
 | |
| 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
 | |
| 	int referenced = 0;
 | |
| 
 | |
| 	while (page_vma_mapped_walk(&pvmw)) {
 | |
| 		address = pvmw.address;
 | |
| 
 | |
| 		if ((vma->vm_flags & VM_LOCKED) &&
 | |
| 		    (!folio_test_large(folio) || !pvmw.pte)) {
 | |
| 			/* Restore the mlock which got missed */
 | |
| 			mlock_vma_folio(folio, vma, !pvmw.pte);
 | |
| 			page_vma_mapped_walk_done(&pvmw);
 | |
| 			pra->vm_flags |= VM_LOCKED;
 | |
| 			return false; /* To break the loop */
 | |
| 		}
 | |
| 
 | |
| 		if (pvmw.pte) {
 | |
| 			if (lru_gen_enabled() && pte_young(*pvmw.pte)) {
 | |
| 				lru_gen_look_around(&pvmw);
 | |
| 				referenced++;
 | |
| 			}
 | |
| 
 | |
| 			if (ptep_clear_flush_young_notify(vma, address,
 | |
| 						pvmw.pte))
 | |
| 				referenced++;
 | |
| 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 | |
| 			if (pmdp_clear_flush_young_notify(vma, address,
 | |
| 						pvmw.pmd))
 | |
| 				referenced++;
 | |
| 		} else {
 | |
| 			/* unexpected pmd-mapped folio? */
 | |
| 			WARN_ON_ONCE(1);
 | |
| 		}
 | |
| 
 | |
| 		pra->mapcount--;
 | |
| 	}
 | |
| 
 | |
| 	if (referenced)
 | |
| 		folio_clear_idle(folio);
 | |
| 	if (folio_test_clear_young(folio))
 | |
| 		referenced++;
 | |
| 
 | |
| 	if (referenced) {
 | |
| 		pra->referenced++;
 | |
| 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
 | |
| 	}
 | |
| 
 | |
| 	if (!pra->mapcount)
 | |
| 		return false; /* To break the loop */
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
 | |
| {
 | |
| 	struct folio_referenced_arg *pra = arg;
 | |
| 	struct mem_cgroup *memcg = pra->memcg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ignore references from this mapping if it has no recency. If the
 | |
| 	 * folio has been used in another mapping, we will catch it; if this
 | |
| 	 * other mapping is already gone, the unmap path will have set the
 | |
| 	 * referenced flag or activated the folio in zap_pte_range().
 | |
| 	 */
 | |
| 	if (!vma_has_recency(vma))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
 | |
| 	 * of references from different cgroups.
 | |
| 	 */
 | |
| 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_referenced() - Test if the folio was referenced.
 | |
|  * @folio: The folio to test.
 | |
|  * @is_locked: Caller holds lock on the folio.
 | |
|  * @memcg: target memory cgroup
 | |
|  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
 | |
|  *
 | |
|  * Quick test_and_clear_referenced for all mappings of a folio,
 | |
|  *
 | |
|  * Return: The number of mappings which referenced the folio. Return -1 if
 | |
|  * the function bailed out due to rmap lock contention.
 | |
|  */
 | |
| int folio_referenced(struct folio *folio, int is_locked,
 | |
| 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
 | |
| {
 | |
| 	int we_locked = 0;
 | |
| 	struct folio_referenced_arg pra = {
 | |
| 		.mapcount = folio_mapcount(folio),
 | |
| 		.memcg = memcg,
 | |
| 	};
 | |
| 	struct rmap_walk_control rwc = {
 | |
| 		.rmap_one = folio_referenced_one,
 | |
| 		.arg = (void *)&pra,
 | |
| 		.anon_lock = folio_lock_anon_vma_read,
 | |
| 		.try_lock = true,
 | |
| 		.invalid_vma = invalid_folio_referenced_vma,
 | |
| 	};
 | |
| 
 | |
| 	*vm_flags = 0;
 | |
| 	if (!pra.mapcount)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!folio_raw_mapping(folio))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
 | |
| 		we_locked = folio_trylock(folio);
 | |
| 		if (!we_locked)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	rmap_walk(folio, &rwc);
 | |
| 	*vm_flags = pra.vm_flags;
 | |
| 
 | |
| 	if (we_locked)
 | |
| 		folio_unlock(folio);
 | |
| 
 | |
| 	return rwc.contended ? -1 : pra.referenced;
 | |
| }
 | |
| 
 | |
| static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
 | |
| {
 | |
| 	int cleaned = 0;
 | |
| 	struct vm_area_struct *vma = pvmw->vma;
 | |
| 	struct mmu_notifier_range range;
 | |
| 	unsigned long address = pvmw->address;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to assume the worse case ie pmd for invalidation. Note that
 | |
| 	 * the folio can not be freed from this function.
 | |
| 	 */
 | |
| 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
 | |
| 				vma->vm_mm, address, vma_address_end(pvmw));
 | |
| 	mmu_notifier_invalidate_range_start(&range);
 | |
| 
 | |
| 	while (page_vma_mapped_walk(pvmw)) {
 | |
| 		int ret = 0;
 | |
| 
 | |
| 		address = pvmw->address;
 | |
| 		if (pvmw->pte) {
 | |
| 			pte_t entry;
 | |
| 			pte_t *pte = pvmw->pte;
 | |
| 
 | |
| 			if (!pte_dirty(*pte) && !pte_write(*pte))
 | |
| 				continue;
 | |
| 
 | |
| 			flush_cache_page(vma, address, pte_pfn(*pte));
 | |
| 			entry = ptep_clear_flush(vma, address, pte);
 | |
| 			entry = pte_wrprotect(entry);
 | |
| 			entry = pte_mkclean(entry);
 | |
| 			set_pte_at(vma->vm_mm, address, pte, entry);
 | |
| 			ret = 1;
 | |
| 		} else {
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 			pmd_t *pmd = pvmw->pmd;
 | |
| 			pmd_t entry;
 | |
| 
 | |
| 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
 | |
| 				continue;
 | |
| 
 | |
| 			flush_cache_range(vma, address,
 | |
| 					  address + HPAGE_PMD_SIZE);
 | |
| 			entry = pmdp_invalidate(vma, address, pmd);
 | |
| 			entry = pmd_wrprotect(entry);
 | |
| 			entry = pmd_mkclean(entry);
 | |
| 			set_pmd_at(vma->vm_mm, address, pmd, entry);
 | |
| 			ret = 1;
 | |
| #else
 | |
| 			/* unexpected pmd-mapped folio? */
 | |
| 			WARN_ON_ONCE(1);
 | |
| #endif
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * No need to call mmu_notifier_invalidate_range() as we are
 | |
| 		 * downgrading page table protection not changing it to point
 | |
| 		 * to a new page.
 | |
| 		 *
 | |
| 		 * See Documentation/mm/mmu_notifier.rst
 | |
| 		 */
 | |
| 		if (ret)
 | |
| 			cleaned++;
 | |
| 	}
 | |
| 
 | |
| 	mmu_notifier_invalidate_range_end(&range);
 | |
| 
 | |
| 	return cleaned;
 | |
| }
 | |
| 
 | |
| static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
 | |
| 			     unsigned long address, void *arg)
 | |
| {
 | |
| 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
 | |
| 	int *cleaned = arg;
 | |
| 
 | |
| 	*cleaned += page_vma_mkclean_one(&pvmw);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
 | |
| {
 | |
| 	if (vma->vm_flags & VM_SHARED)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| int folio_mkclean(struct folio *folio)
 | |
| {
 | |
| 	int cleaned = 0;
 | |
| 	struct address_space *mapping;
 | |
| 	struct rmap_walk_control rwc = {
 | |
| 		.arg = (void *)&cleaned,
 | |
| 		.rmap_one = page_mkclean_one,
 | |
| 		.invalid_vma = invalid_mkclean_vma,
 | |
| 	};
 | |
| 
 | |
| 	BUG_ON(!folio_test_locked(folio));
 | |
| 
 | |
| 	if (!folio_mapped(folio))
 | |
| 		return 0;
 | |
| 
 | |
| 	mapping = folio_mapping(folio);
 | |
| 	if (!mapping)
 | |
| 		return 0;
 | |
| 
 | |
| 	rmap_walk(folio, &rwc);
 | |
| 
 | |
| 	return cleaned;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(folio_mkclean);
 | |
| 
 | |
| /**
 | |
|  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
 | |
|  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
 | |
|  *                     within the @vma of shared mappings. And since clean PTEs
 | |
|  *                     should also be readonly, write protects them too.
 | |
|  * @pfn: start pfn.
 | |
|  * @nr_pages: number of physically contiguous pages srarting with @pfn.
 | |
|  * @pgoff: page offset that the @pfn mapped with.
 | |
|  * @vma: vma that @pfn mapped within.
 | |
|  *
 | |
|  * Returns the number of cleaned PTEs (including PMDs).
 | |
|  */
 | |
| int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
 | |
| 		      struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct page_vma_mapped_walk pvmw = {
 | |
| 		.pfn		= pfn,
 | |
| 		.nr_pages	= nr_pages,
 | |
| 		.pgoff		= pgoff,
 | |
| 		.vma		= vma,
 | |
| 		.flags		= PVMW_SYNC,
 | |
| 	};
 | |
| 
 | |
| 	if (invalid_mkclean_vma(vma, NULL))
 | |
| 		return 0;
 | |
| 
 | |
| 	pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma);
 | |
| 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
 | |
| 
 | |
| 	return page_vma_mkclean_one(&pvmw);
 | |
| }
 | |
| 
 | |
| int folio_total_mapcount(struct folio *folio)
 | |
| {
 | |
| 	int mapcount = folio_entire_mapcount(folio);
 | |
| 	int nr_pages;
 | |
| 	int i;
 | |
| 
 | |
| 	/* In the common case, avoid the loop when no pages mapped by PTE */
 | |
| 	if (folio_nr_pages_mapped(folio) == 0)
 | |
| 		return mapcount;
 | |
| 	/*
 | |
| 	 * Add all the PTE mappings of those pages mapped by PTE.
 | |
| 	 * Limit the loop to folio_nr_pages_mapped()?
 | |
| 	 * Perhaps: given all the raciness, that may be a good or a bad idea.
 | |
| 	 */
 | |
| 	nr_pages = folio_nr_pages(folio);
 | |
| 	for (i = 0; i < nr_pages; i++)
 | |
| 		mapcount += atomic_read(&folio_page(folio, i)->_mapcount);
 | |
| 
 | |
| 	/* But each of those _mapcounts was based on -1 */
 | |
| 	mapcount += nr_pages;
 | |
| 	return mapcount;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * page_move_anon_rmap - move a page to our anon_vma
 | |
|  * @page:	the page to move to our anon_vma
 | |
|  * @vma:	the vma the page belongs to
 | |
|  *
 | |
|  * When a page belongs exclusively to one process after a COW event,
 | |
|  * that page can be moved into the anon_vma that belongs to just that
 | |
|  * process, so the rmap code will not search the parent or sibling
 | |
|  * processes.
 | |
|  */
 | |
| void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
 | |
| {
 | |
| 	void *anon_vma = vma->anon_vma;
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 | |
| 	VM_BUG_ON_VMA(!anon_vma, vma);
 | |
| 
 | |
| 	anon_vma += PAGE_MAPPING_ANON;
 | |
| 	/*
 | |
| 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
 | |
| 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
 | |
| 	 * folio_test_anon()) will not see one without the other.
 | |
| 	 */
 | |
| 	WRITE_ONCE(folio->mapping, anon_vma);
 | |
| 	SetPageAnonExclusive(page);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __page_set_anon_rmap - set up new anonymous rmap
 | |
|  * @folio:	Folio which contains page.
 | |
|  * @page:	Page to add to rmap.
 | |
|  * @vma:	VM area to add page to.
 | |
|  * @address:	User virtual address of the mapping	
 | |
|  * @exclusive:	the page is exclusively owned by the current process
 | |
|  */
 | |
| static void __page_set_anon_rmap(struct folio *folio, struct page *page,
 | |
| 	struct vm_area_struct *vma, unsigned long address, int exclusive)
 | |
| {
 | |
| 	struct anon_vma *anon_vma = vma->anon_vma;
 | |
| 
 | |
| 	BUG_ON(!anon_vma);
 | |
| 
 | |
| 	if (folio_test_anon(folio))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the page isn't exclusively mapped into this vma,
 | |
| 	 * we must use the _oldest_ possible anon_vma for the
 | |
| 	 * page mapping!
 | |
| 	 */
 | |
| 	if (!exclusive)
 | |
| 		anon_vma = anon_vma->root;
 | |
| 
 | |
| 	/*
 | |
| 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
 | |
| 	 * Make sure the compiler doesn't split the stores of anon_vma and
 | |
| 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
 | |
| 	 * could mistake the mapping for a struct address_space and crash.
 | |
| 	 */
 | |
| 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
 | |
| 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
 | |
| 	folio->index = linear_page_index(vma, address);
 | |
| out:
 | |
| 	if (exclusive)
 | |
| 		SetPageAnonExclusive(page);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __page_check_anon_rmap - sanity check anonymous rmap addition
 | |
|  * @page:	the page to add the mapping to
 | |
|  * @vma:	the vm area in which the mapping is added
 | |
|  * @address:	the user virtual address mapped
 | |
|  */
 | |
| static void __page_check_anon_rmap(struct page *page,
 | |
| 	struct vm_area_struct *vma, unsigned long address)
 | |
| {
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	/*
 | |
| 	 * The page's anon-rmap details (mapping and index) are guaranteed to
 | |
| 	 * be set up correctly at this point.
 | |
| 	 *
 | |
| 	 * We have exclusion against page_add_anon_rmap because the caller
 | |
| 	 * always holds the page locked.
 | |
| 	 *
 | |
| 	 * We have exclusion against page_add_new_anon_rmap because those pages
 | |
| 	 * are initially only visible via the pagetables, and the pte is locked
 | |
| 	 * over the call to page_add_new_anon_rmap.
 | |
| 	 */
 | |
| 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
 | |
| 			folio);
 | |
| 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
 | |
| 		       page);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * page_add_anon_rmap - add pte mapping to an anonymous page
 | |
|  * @page:	the page to add the mapping to
 | |
|  * @vma:	the vm area in which the mapping is added
 | |
|  * @address:	the user virtual address mapped
 | |
|  * @flags:	the rmap flags
 | |
|  *
 | |
|  * The caller needs to hold the pte lock, and the page must be locked in
 | |
|  * the anon_vma case: to serialize mapping,index checking after setting,
 | |
|  * and to ensure that PageAnon is not being upgraded racily to PageKsm
 | |
|  * (but PageKsm is never downgraded to PageAnon).
 | |
|  */
 | |
| void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
 | |
| 		unsigned long address, rmap_t flags)
 | |
| {
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	atomic_t *mapped = &folio->_nr_pages_mapped;
 | |
| 	int nr = 0, nr_pmdmapped = 0;
 | |
| 	bool compound = flags & RMAP_COMPOUND;
 | |
| 	bool first = true;
 | |
| 
 | |
| 	/* Is page being mapped by PTE? Is this its first map to be added? */
 | |
| 	if (likely(!compound)) {
 | |
| 		first = atomic_inc_and_test(&page->_mapcount);
 | |
| 		nr = first;
 | |
| 		if (first && folio_test_large(folio)) {
 | |
| 			nr = atomic_inc_return_relaxed(mapped);
 | |
| 			nr = (nr < COMPOUND_MAPPED);
 | |
| 		}
 | |
| 	} else if (folio_test_pmd_mappable(folio)) {
 | |
| 		/* That test is redundant: it's for safety or to optimize out */
 | |
| 
 | |
| 		first = atomic_inc_and_test(&folio->_entire_mapcount);
 | |
| 		if (first) {
 | |
| 			nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
 | |
| 			if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
 | |
| 				nr_pmdmapped = folio_nr_pages(folio);
 | |
| 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
 | |
| 				/* Raced ahead of a remove and another add? */
 | |
| 				if (unlikely(nr < 0))
 | |
| 					nr = 0;
 | |
| 			} else {
 | |
| 				/* Raced ahead of a remove of COMPOUND_MAPPED */
 | |
| 				nr = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
 | |
| 	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
 | |
| 
 | |
| 	if (nr_pmdmapped)
 | |
| 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped);
 | |
| 	if (nr)
 | |
| 		__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
 | |
| 
 | |
| 	if (likely(!folio_test_ksm(folio))) {
 | |
| 		/* address might be in next vma when migration races vma_merge */
 | |
| 		if (first)
 | |
| 			__page_set_anon_rmap(folio, page, vma, address,
 | |
| 					     !!(flags & RMAP_EXCLUSIVE));
 | |
| 		else
 | |
| 			__page_check_anon_rmap(page, vma, address);
 | |
| 	}
 | |
| 
 | |
| 	mlock_vma_folio(folio, vma, compound);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
 | |
|  * @folio:	The folio to add the mapping to.
 | |
|  * @vma:	the vm area in which the mapping is added
 | |
|  * @address:	the user virtual address mapped
 | |
|  *
 | |
|  * Like page_add_anon_rmap() but must only be called on *new* folios.
 | |
|  * This means the inc-and-test can be bypassed.
 | |
|  * The folio does not have to be locked.
 | |
|  *
 | |
|  * If the folio is large, it is accounted as a THP.  As the folio
 | |
|  * is new, it's assumed to be mapped exclusively by a single process.
 | |
|  */
 | |
| void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
 | |
| 		unsigned long address)
 | |
| {
 | |
| 	int nr;
 | |
| 
 | |
| 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
 | |
| 	__folio_set_swapbacked(folio);
 | |
| 
 | |
| 	if (likely(!folio_test_pmd_mappable(folio))) {
 | |
| 		/* increment count (starts at -1) */
 | |
| 		atomic_set(&folio->_mapcount, 0);
 | |
| 		nr = 1;
 | |
| 	} else {
 | |
| 		/* increment count (starts at -1) */
 | |
| 		atomic_set(&folio->_entire_mapcount, 0);
 | |
| 		atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED);
 | |
| 		nr = folio_nr_pages(folio);
 | |
| 		__lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr);
 | |
| 	}
 | |
| 
 | |
| 	__lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr);
 | |
| 	__page_set_anon_rmap(folio, &folio->page, vma, address, 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * page_add_file_rmap - add pte mapping to a file page
 | |
|  * @page:	the page to add the mapping to
 | |
|  * @vma:	the vm area in which the mapping is added
 | |
|  * @compound:	charge the page as compound or small page
 | |
|  *
 | |
|  * The caller needs to hold the pte lock.
 | |
|  */
 | |
| void page_add_file_rmap(struct page *page, struct vm_area_struct *vma,
 | |
| 		bool compound)
 | |
| {
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	atomic_t *mapped = &folio->_nr_pages_mapped;
 | |
| 	int nr = 0, nr_pmdmapped = 0;
 | |
| 	bool first;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
 | |
| 
 | |
| 	/* Is page being mapped by PTE? Is this its first map to be added? */
 | |
| 	if (likely(!compound)) {
 | |
| 		first = atomic_inc_and_test(&page->_mapcount);
 | |
| 		nr = first;
 | |
| 		if (first && folio_test_large(folio)) {
 | |
| 			nr = atomic_inc_return_relaxed(mapped);
 | |
| 			nr = (nr < COMPOUND_MAPPED);
 | |
| 		}
 | |
| 	} else if (folio_test_pmd_mappable(folio)) {
 | |
| 		/* That test is redundant: it's for safety or to optimize out */
 | |
| 
 | |
| 		first = atomic_inc_and_test(&folio->_entire_mapcount);
 | |
| 		if (first) {
 | |
| 			nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped);
 | |
| 			if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) {
 | |
| 				nr_pmdmapped = folio_nr_pages(folio);
 | |
| 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
 | |
| 				/* Raced ahead of a remove and another add? */
 | |
| 				if (unlikely(nr < 0))
 | |
| 					nr = 0;
 | |
| 			} else {
 | |
| 				/* Raced ahead of a remove of COMPOUND_MAPPED */
 | |
| 				nr = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (nr_pmdmapped)
 | |
| 		__lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ?
 | |
| 			NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped);
 | |
| 	if (nr)
 | |
| 		__lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr);
 | |
| 
 | |
| 	mlock_vma_folio(folio, vma, compound);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * page_remove_rmap - take down pte mapping from a page
 | |
|  * @page:	page to remove mapping from
 | |
|  * @vma:	the vm area from which the mapping is removed
 | |
|  * @compound:	uncharge the page as compound or small page
 | |
|  *
 | |
|  * The caller needs to hold the pte lock.
 | |
|  */
 | |
| void page_remove_rmap(struct page *page, struct vm_area_struct *vma,
 | |
| 		bool compound)
 | |
| {
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	atomic_t *mapped = &folio->_nr_pages_mapped;
 | |
| 	int nr = 0, nr_pmdmapped = 0;
 | |
| 	bool last;
 | |
| 	enum node_stat_item idx;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
 | |
| 
 | |
| 	/* Hugetlb pages are not counted in NR_*MAPPED */
 | |
| 	if (unlikely(folio_test_hugetlb(folio))) {
 | |
| 		/* hugetlb pages are always mapped with pmds */
 | |
| 		atomic_dec(&folio->_entire_mapcount);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Is page being unmapped by PTE? Is this its last map to be removed? */
 | |
| 	if (likely(!compound)) {
 | |
| 		last = atomic_add_negative(-1, &page->_mapcount);
 | |
| 		nr = last;
 | |
| 		if (last && folio_test_large(folio)) {
 | |
| 			nr = atomic_dec_return_relaxed(mapped);
 | |
| 			nr = (nr < COMPOUND_MAPPED);
 | |
| 		}
 | |
| 	} else if (folio_test_pmd_mappable(folio)) {
 | |
| 		/* That test is redundant: it's for safety or to optimize out */
 | |
| 
 | |
| 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
 | |
| 		if (last) {
 | |
| 			nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped);
 | |
| 			if (likely(nr < COMPOUND_MAPPED)) {
 | |
| 				nr_pmdmapped = folio_nr_pages(folio);
 | |
| 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
 | |
| 				/* Raced ahead of another remove and an add? */
 | |
| 				if (unlikely(nr < 0))
 | |
| 					nr = 0;
 | |
| 			} else {
 | |
| 				/* An add of COMPOUND_MAPPED raced ahead */
 | |
| 				nr = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (nr_pmdmapped) {
 | |
| 		if (folio_test_anon(folio))
 | |
| 			idx = NR_ANON_THPS;
 | |
| 		else if (folio_test_swapbacked(folio))
 | |
| 			idx = NR_SHMEM_PMDMAPPED;
 | |
| 		else
 | |
| 			idx = NR_FILE_PMDMAPPED;
 | |
| 		__lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped);
 | |
| 	}
 | |
| 	if (nr) {
 | |
| 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
 | |
| 		__lruvec_stat_mod_folio(folio, idx, -nr);
 | |
| 
 | |
| 		/*
 | |
| 		 * Queue anon THP for deferred split if at least one
 | |
| 		 * page of the folio is unmapped and at least one page
 | |
| 		 * is still mapped.
 | |
| 		 */
 | |
| 		if (folio_test_pmd_mappable(folio) && folio_test_anon(folio))
 | |
| 			if (!compound || nr < nr_pmdmapped)
 | |
| 				deferred_split_folio(folio);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It would be tidy to reset folio_test_anon mapping when fully
 | |
| 	 * unmapped, but that might overwrite a racing page_add_anon_rmap
 | |
| 	 * which increments mapcount after us but sets mapping before us:
 | |
| 	 * so leave the reset to free_pages_prepare, and remember that
 | |
| 	 * it's only reliable while mapped.
 | |
| 	 */
 | |
| 
 | |
| 	munlock_vma_folio(folio, vma, compound);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @arg: enum ttu_flags will be passed to this argument
 | |
|  */
 | |
| static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
 | |
| 		     unsigned long address, void *arg)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
 | |
| 	pte_t pteval;
 | |
| 	struct page *subpage;
 | |
| 	bool anon_exclusive, ret = true;
 | |
| 	struct mmu_notifier_range range;
 | |
| 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
 | |
| 
 | |
| 	/*
 | |
| 	 * When racing against e.g. zap_pte_range() on another cpu,
 | |
| 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
 | |
| 	 * try_to_unmap() may return before page_mapped() has become false,
 | |
| 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
 | |
| 	 */
 | |
| 	if (flags & TTU_SYNC)
 | |
| 		pvmw.flags = PVMW_SYNC;
 | |
| 
 | |
| 	if (flags & TTU_SPLIT_HUGE_PMD)
 | |
| 		split_huge_pmd_address(vma, address, false, folio);
 | |
| 
 | |
| 	/*
 | |
| 	 * For THP, we have to assume the worse case ie pmd for invalidation.
 | |
| 	 * For hugetlb, it could be much worse if we need to do pud
 | |
| 	 * invalidation in the case of pmd sharing.
 | |
| 	 *
 | |
| 	 * Note that the folio can not be freed in this function as call of
 | |
| 	 * try_to_unmap() must hold a reference on the folio.
 | |
| 	 */
 | |
| 	range.end = vma_address_end(&pvmw);
 | |
| 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
 | |
| 				address, range.end);
 | |
| 	if (folio_test_hugetlb(folio)) {
 | |
| 		/*
 | |
| 		 * If sharing is possible, start and end will be adjusted
 | |
| 		 * accordingly.
 | |
| 		 */
 | |
| 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
 | |
| 						     &range.end);
 | |
| 	}
 | |
| 	mmu_notifier_invalidate_range_start(&range);
 | |
| 
 | |
| 	while (page_vma_mapped_walk(&pvmw)) {
 | |
| 		/* Unexpected PMD-mapped THP? */
 | |
| 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the folio is in an mlock()d vma, we must not swap it out.
 | |
| 		 */
 | |
| 		if (!(flags & TTU_IGNORE_MLOCK) &&
 | |
| 		    (vma->vm_flags & VM_LOCKED)) {
 | |
| 			/* Restore the mlock which got missed */
 | |
| 			mlock_vma_folio(folio, vma, false);
 | |
| 			page_vma_mapped_walk_done(&pvmw);
 | |
| 			ret = false;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		subpage = folio_page(folio,
 | |
| 					pte_pfn(*pvmw.pte) - folio_pfn(folio));
 | |
| 		address = pvmw.address;
 | |
| 		anon_exclusive = folio_test_anon(folio) &&
 | |
| 				 PageAnonExclusive(subpage);
 | |
| 
 | |
| 		if (folio_test_hugetlb(folio)) {
 | |
| 			bool anon = folio_test_anon(folio);
 | |
| 
 | |
| 			/*
 | |
| 			 * The try_to_unmap() is only passed a hugetlb page
 | |
| 			 * in the case where the hugetlb page is poisoned.
 | |
| 			 */
 | |
| 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
 | |
| 			/*
 | |
| 			 * huge_pmd_unshare may unmap an entire PMD page.
 | |
| 			 * There is no way of knowing exactly which PMDs may
 | |
| 			 * be cached for this mm, so we must flush them all.
 | |
| 			 * start/end were already adjusted above to cover this
 | |
| 			 * range.
 | |
| 			 */
 | |
| 			flush_cache_range(vma, range.start, range.end);
 | |
| 
 | |
| 			/*
 | |
| 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
 | |
| 			 * held in write mode.  Caller needs to explicitly
 | |
| 			 * do this outside rmap routines.
 | |
| 			 *
 | |
| 			 * We also must hold hugetlb vma_lock in write mode.
 | |
| 			 * Lock order dictates acquiring vma_lock BEFORE
 | |
| 			 * i_mmap_rwsem.  We can only try lock here and fail
 | |
| 			 * if unsuccessful.
 | |
| 			 */
 | |
| 			if (!anon) {
 | |
| 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
 | |
| 				if (!hugetlb_vma_trylock_write(vma)) {
 | |
| 					page_vma_mapped_walk_done(&pvmw);
 | |
| 					ret = false;
 | |
| 					break;
 | |
| 				}
 | |
| 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
 | |
| 					hugetlb_vma_unlock_write(vma);
 | |
| 					flush_tlb_range(vma,
 | |
| 						range.start, range.end);
 | |
| 					mmu_notifier_invalidate_range(mm,
 | |
| 						range.start, range.end);
 | |
| 					/*
 | |
| 					 * The ref count of the PMD page was
 | |
| 					 * dropped which is part of the way map
 | |
| 					 * counting is done for shared PMDs.
 | |
| 					 * Return 'true' here.  When there is
 | |
| 					 * no other sharing, huge_pmd_unshare
 | |
| 					 * returns false and we will unmap the
 | |
| 					 * actual page and drop map count
 | |
| 					 * to zero.
 | |
| 					 */
 | |
| 					page_vma_mapped_walk_done(&pvmw);
 | |
| 					break;
 | |
| 				}
 | |
| 				hugetlb_vma_unlock_write(vma);
 | |
| 			}
 | |
| 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
 | |
| 		} else {
 | |
| 			flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
 | |
| 			/* Nuke the page table entry. */
 | |
| 			if (should_defer_flush(mm, flags)) {
 | |
| 				/*
 | |
| 				 * We clear the PTE but do not flush so potentially
 | |
| 				 * a remote CPU could still be writing to the folio.
 | |
| 				 * If the entry was previously clean then the
 | |
| 				 * architecture must guarantee that a clear->dirty
 | |
| 				 * transition on a cached TLB entry is written through
 | |
| 				 * and traps if the PTE is unmapped.
 | |
| 				 */
 | |
| 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
 | |
| 
 | |
| 				set_tlb_ubc_flush_pending(mm, pteval);
 | |
| 			} else {
 | |
| 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Now the pte is cleared. If this pte was uffd-wp armed,
 | |
| 		 * we may want to replace a none pte with a marker pte if
 | |
| 		 * it's file-backed, so we don't lose the tracking info.
 | |
| 		 */
 | |
| 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
 | |
| 
 | |
| 		/* Set the dirty flag on the folio now the pte is gone. */
 | |
| 		if (pte_dirty(pteval))
 | |
| 			folio_mark_dirty(folio);
 | |
| 
 | |
| 		/* Update high watermark before we lower rss */
 | |
| 		update_hiwater_rss(mm);
 | |
| 
 | |
| 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
 | |
| 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
 | |
| 			if (folio_test_hugetlb(folio)) {
 | |
| 				hugetlb_count_sub(folio_nr_pages(folio), mm);
 | |
| 				set_huge_pte_at(mm, address, pvmw.pte, pteval);
 | |
| 			} else {
 | |
| 				dec_mm_counter(mm, mm_counter(&folio->page));
 | |
| 				set_pte_at(mm, address, pvmw.pte, pteval);
 | |
| 			}
 | |
| 
 | |
| 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
 | |
| 			/*
 | |
| 			 * The guest indicated that the page content is of no
 | |
| 			 * interest anymore. Simply discard the pte, vmscan
 | |
| 			 * will take care of the rest.
 | |
| 			 * A future reference will then fault in a new zero
 | |
| 			 * page. When userfaultfd is active, we must not drop
 | |
| 			 * this page though, as its main user (postcopy
 | |
| 			 * migration) will not expect userfaults on already
 | |
| 			 * copied pages.
 | |
| 			 */
 | |
| 			dec_mm_counter(mm, mm_counter(&folio->page));
 | |
| 			/* We have to invalidate as we cleared the pte */
 | |
| 			mmu_notifier_invalidate_range(mm, address,
 | |
| 						      address + PAGE_SIZE);
 | |
| 		} else if (folio_test_anon(folio)) {
 | |
| 			swp_entry_t entry = { .val = page_private(subpage) };
 | |
| 			pte_t swp_pte;
 | |
| 			/*
 | |
| 			 * Store the swap location in the pte.
 | |
| 			 * See handle_pte_fault() ...
 | |
| 			 */
 | |
| 			if (unlikely(folio_test_swapbacked(folio) !=
 | |
| 					folio_test_swapcache(folio))) {
 | |
| 				WARN_ON_ONCE(1);
 | |
| 				ret = false;
 | |
| 				/* We have to invalidate as we cleared the pte */
 | |
| 				mmu_notifier_invalidate_range(mm, address,
 | |
| 							address + PAGE_SIZE);
 | |
| 				page_vma_mapped_walk_done(&pvmw);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/* MADV_FREE page check */
 | |
| 			if (!folio_test_swapbacked(folio)) {
 | |
| 				int ref_count, map_count;
 | |
| 
 | |
| 				/*
 | |
| 				 * Synchronize with gup_pte_range():
 | |
| 				 * - clear PTE; barrier; read refcount
 | |
| 				 * - inc refcount; barrier; read PTE
 | |
| 				 */
 | |
| 				smp_mb();
 | |
| 
 | |
| 				ref_count = folio_ref_count(folio);
 | |
| 				map_count = folio_mapcount(folio);
 | |
| 
 | |
| 				/*
 | |
| 				 * Order reads for page refcount and dirty flag
 | |
| 				 * (see comments in __remove_mapping()).
 | |
| 				 */
 | |
| 				smp_rmb();
 | |
| 
 | |
| 				/*
 | |
| 				 * The only page refs must be one from isolation
 | |
| 				 * plus the rmap(s) (dropped by discard:).
 | |
| 				 */
 | |
| 				if (ref_count == 1 + map_count &&
 | |
| 				    !folio_test_dirty(folio)) {
 | |
| 					/* Invalidate as we cleared the pte */
 | |
| 					mmu_notifier_invalidate_range(mm,
 | |
| 						address, address + PAGE_SIZE);
 | |
| 					dec_mm_counter(mm, MM_ANONPAGES);
 | |
| 					goto discard;
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 				 * If the folio was redirtied, it cannot be
 | |
| 				 * discarded. Remap the page to page table.
 | |
| 				 */
 | |
| 				set_pte_at(mm, address, pvmw.pte, pteval);
 | |
| 				folio_set_swapbacked(folio);
 | |
| 				ret = false;
 | |
| 				page_vma_mapped_walk_done(&pvmw);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (swap_duplicate(entry) < 0) {
 | |
| 				set_pte_at(mm, address, pvmw.pte, pteval);
 | |
| 				ret = false;
 | |
| 				page_vma_mapped_walk_done(&pvmw);
 | |
| 				break;
 | |
| 			}
 | |
| 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
 | |
| 				swap_free(entry);
 | |
| 				set_pte_at(mm, address, pvmw.pte, pteval);
 | |
| 				ret = false;
 | |
| 				page_vma_mapped_walk_done(&pvmw);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/* See page_try_share_anon_rmap(): clear PTE first. */
 | |
| 			if (anon_exclusive &&
 | |
| 			    page_try_share_anon_rmap(subpage)) {
 | |
| 				swap_free(entry);
 | |
| 				set_pte_at(mm, address, pvmw.pte, pteval);
 | |
| 				ret = false;
 | |
| 				page_vma_mapped_walk_done(&pvmw);
 | |
| 				break;
 | |
| 			}
 | |
| 			if (list_empty(&mm->mmlist)) {
 | |
| 				spin_lock(&mmlist_lock);
 | |
| 				if (list_empty(&mm->mmlist))
 | |
| 					list_add(&mm->mmlist, &init_mm.mmlist);
 | |
| 				spin_unlock(&mmlist_lock);
 | |
| 			}
 | |
| 			dec_mm_counter(mm, MM_ANONPAGES);
 | |
| 			inc_mm_counter(mm, MM_SWAPENTS);
 | |
| 			swp_pte = swp_entry_to_pte(entry);
 | |
| 			if (anon_exclusive)
 | |
| 				swp_pte = pte_swp_mkexclusive(swp_pte);
 | |
| 			if (pte_soft_dirty(pteval))
 | |
| 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
 | |
| 			if (pte_uffd_wp(pteval))
 | |
| 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
 | |
| 			set_pte_at(mm, address, pvmw.pte, swp_pte);
 | |
| 			/* Invalidate as we cleared the pte */
 | |
| 			mmu_notifier_invalidate_range(mm, address,
 | |
| 						      address + PAGE_SIZE);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * This is a locked file-backed folio,
 | |
| 			 * so it cannot be removed from the page
 | |
| 			 * cache and replaced by a new folio before
 | |
| 			 * mmu_notifier_invalidate_range_end, so no
 | |
| 			 * concurrent thread might update its page table
 | |
| 			 * to point at a new folio while a device is
 | |
| 			 * still using this folio.
 | |
| 			 *
 | |
| 			 * See Documentation/mm/mmu_notifier.rst
 | |
| 			 */
 | |
| 			dec_mm_counter(mm, mm_counter_file(&folio->page));
 | |
| 		}
 | |
| discard:
 | |
| 		/*
 | |
| 		 * No need to call mmu_notifier_invalidate_range() it has be
 | |
| 		 * done above for all cases requiring it to happen under page
 | |
| 		 * table lock before mmu_notifier_invalidate_range_end()
 | |
| 		 *
 | |
| 		 * See Documentation/mm/mmu_notifier.rst
 | |
| 		 */
 | |
| 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
 | |
| 		if (vma->vm_flags & VM_LOCKED)
 | |
| 			mlock_drain_local();
 | |
| 		folio_put(folio);
 | |
| 	}
 | |
| 
 | |
| 	mmu_notifier_invalidate_range_end(&range);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
 | |
| {
 | |
| 	return vma_is_temporary_stack(vma);
 | |
| }
 | |
| 
 | |
| static int folio_not_mapped(struct folio *folio)
 | |
| {
 | |
| 	return !folio_mapped(folio);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * try_to_unmap - Try to remove all page table mappings to a folio.
 | |
|  * @folio: The folio to unmap.
 | |
|  * @flags: action and flags
 | |
|  *
 | |
|  * Tries to remove all the page table entries which are mapping this
 | |
|  * folio.  It is the caller's responsibility to check if the folio is
 | |
|  * still mapped if needed (use TTU_SYNC to prevent accounting races).
 | |
|  *
 | |
|  * Context: Caller must hold the folio lock.
 | |
|  */
 | |
| void try_to_unmap(struct folio *folio, enum ttu_flags flags)
 | |
| {
 | |
| 	struct rmap_walk_control rwc = {
 | |
| 		.rmap_one = try_to_unmap_one,
 | |
| 		.arg = (void *)flags,
 | |
| 		.done = folio_not_mapped,
 | |
| 		.anon_lock = folio_lock_anon_vma_read,
 | |
| 	};
 | |
| 
 | |
| 	if (flags & TTU_RMAP_LOCKED)
 | |
| 		rmap_walk_locked(folio, &rwc);
 | |
| 	else
 | |
| 		rmap_walk(folio, &rwc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @arg: enum ttu_flags will be passed to this argument.
 | |
|  *
 | |
|  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
 | |
|  * containing migration entries.
 | |
|  */
 | |
| static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
 | |
| 		     unsigned long address, void *arg)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
 | |
| 	pte_t pteval;
 | |
| 	struct page *subpage;
 | |
| 	bool anon_exclusive, ret = true;
 | |
| 	struct mmu_notifier_range range;
 | |
| 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
 | |
| 
 | |
| 	/*
 | |
| 	 * When racing against e.g. zap_pte_range() on another cpu,
 | |
| 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
 | |
| 	 * try_to_migrate() may return before page_mapped() has become false,
 | |
| 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
 | |
| 	 */
 | |
| 	if (flags & TTU_SYNC)
 | |
| 		pvmw.flags = PVMW_SYNC;
 | |
| 
 | |
| 	/*
 | |
| 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
 | |
| 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
 | |
| 	 */
 | |
| 	if (flags & TTU_SPLIT_HUGE_PMD)
 | |
| 		split_huge_pmd_address(vma, address, true, folio);
 | |
| 
 | |
| 	/*
 | |
| 	 * For THP, we have to assume the worse case ie pmd for invalidation.
 | |
| 	 * For hugetlb, it could be much worse if we need to do pud
 | |
| 	 * invalidation in the case of pmd sharing.
 | |
| 	 *
 | |
| 	 * Note that the page can not be free in this function as call of
 | |
| 	 * try_to_unmap() must hold a reference on the page.
 | |
| 	 */
 | |
| 	range.end = vma_address_end(&pvmw);
 | |
| 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
 | |
| 				address, range.end);
 | |
| 	if (folio_test_hugetlb(folio)) {
 | |
| 		/*
 | |
| 		 * If sharing is possible, start and end will be adjusted
 | |
| 		 * accordingly.
 | |
| 		 */
 | |
| 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
 | |
| 						     &range.end);
 | |
| 	}
 | |
| 	mmu_notifier_invalidate_range_start(&range);
 | |
| 
 | |
| 	while (page_vma_mapped_walk(&pvmw)) {
 | |
| #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 | |
| 		/* PMD-mapped THP migration entry */
 | |
| 		if (!pvmw.pte) {
 | |
| 			subpage = folio_page(folio,
 | |
| 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
 | |
| 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
 | |
| 					!folio_test_pmd_mappable(folio), folio);
 | |
| 
 | |
| 			if (set_pmd_migration_entry(&pvmw, subpage)) {
 | |
| 				ret = false;
 | |
| 				page_vma_mapped_walk_done(&pvmw);
 | |
| 				break;
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		/* Unexpected PMD-mapped THP? */
 | |
| 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
 | |
| 
 | |
| 		if (folio_is_zone_device(folio)) {
 | |
| 			/*
 | |
| 			 * Our PTE is a non-present device exclusive entry and
 | |
| 			 * calculating the subpage as for the common case would
 | |
| 			 * result in an invalid pointer.
 | |
| 			 *
 | |
| 			 * Since only PAGE_SIZE pages can currently be
 | |
| 			 * migrated, just set it to page. This will need to be
 | |
| 			 * changed when hugepage migrations to device private
 | |
| 			 * memory are supported.
 | |
| 			 */
 | |
| 			VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
 | |
| 			subpage = &folio->page;
 | |
| 		} else {
 | |
| 			subpage = folio_page(folio,
 | |
| 					pte_pfn(*pvmw.pte) - folio_pfn(folio));
 | |
| 		}
 | |
| 		address = pvmw.address;
 | |
| 		anon_exclusive = folio_test_anon(folio) &&
 | |
| 				 PageAnonExclusive(subpage);
 | |
| 
 | |
| 		if (folio_test_hugetlb(folio)) {
 | |
| 			bool anon = folio_test_anon(folio);
 | |
| 
 | |
| 			/*
 | |
| 			 * huge_pmd_unshare may unmap an entire PMD page.
 | |
| 			 * There is no way of knowing exactly which PMDs may
 | |
| 			 * be cached for this mm, so we must flush them all.
 | |
| 			 * start/end were already adjusted above to cover this
 | |
| 			 * range.
 | |
| 			 */
 | |
| 			flush_cache_range(vma, range.start, range.end);
 | |
| 
 | |
| 			/*
 | |
| 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
 | |
| 			 * held in write mode.  Caller needs to explicitly
 | |
| 			 * do this outside rmap routines.
 | |
| 			 *
 | |
| 			 * We also must hold hugetlb vma_lock in write mode.
 | |
| 			 * Lock order dictates acquiring vma_lock BEFORE
 | |
| 			 * i_mmap_rwsem.  We can only try lock here and
 | |
| 			 * fail if unsuccessful.
 | |
| 			 */
 | |
| 			if (!anon) {
 | |
| 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
 | |
| 				if (!hugetlb_vma_trylock_write(vma)) {
 | |
| 					page_vma_mapped_walk_done(&pvmw);
 | |
| 					ret = false;
 | |
| 					break;
 | |
| 				}
 | |
| 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
 | |
| 					hugetlb_vma_unlock_write(vma);
 | |
| 					flush_tlb_range(vma,
 | |
| 						range.start, range.end);
 | |
| 					mmu_notifier_invalidate_range(mm,
 | |
| 						range.start, range.end);
 | |
| 
 | |
| 					/*
 | |
| 					 * The ref count of the PMD page was
 | |
| 					 * dropped which is part of the way map
 | |
| 					 * counting is done for shared PMDs.
 | |
| 					 * Return 'true' here.  When there is
 | |
| 					 * no other sharing, huge_pmd_unshare
 | |
| 					 * returns false and we will unmap the
 | |
| 					 * actual page and drop map count
 | |
| 					 * to zero.
 | |
| 					 */
 | |
| 					page_vma_mapped_walk_done(&pvmw);
 | |
| 					break;
 | |
| 				}
 | |
| 				hugetlb_vma_unlock_write(vma);
 | |
| 			}
 | |
| 			/* Nuke the hugetlb page table entry */
 | |
| 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
 | |
| 		} else {
 | |
| 			flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
 | |
| 			/* Nuke the page table entry. */
 | |
| 			if (should_defer_flush(mm, flags)) {
 | |
| 				/*
 | |
| 				 * We clear the PTE but do not flush so potentially
 | |
| 				 * a remote CPU could still be writing to the folio.
 | |
| 				 * If the entry was previously clean then the
 | |
| 				 * architecture must guarantee that a clear->dirty
 | |
| 				 * transition on a cached TLB entry is written through
 | |
| 				 * and traps if the PTE is unmapped.
 | |
| 				 */
 | |
| 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
 | |
| 
 | |
| 				set_tlb_ubc_flush_pending(mm, pteval);
 | |
| 			} else {
 | |
| 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Set the dirty flag on the folio now the pte is gone. */
 | |
| 		if (pte_dirty(pteval))
 | |
| 			folio_mark_dirty(folio);
 | |
| 
 | |
| 		/* Update high watermark before we lower rss */
 | |
| 		update_hiwater_rss(mm);
 | |
| 
 | |
| 		if (folio_is_device_private(folio)) {
 | |
| 			unsigned long pfn = folio_pfn(folio);
 | |
| 			swp_entry_t entry;
 | |
| 			pte_t swp_pte;
 | |
| 
 | |
| 			if (anon_exclusive)
 | |
| 				BUG_ON(page_try_share_anon_rmap(subpage));
 | |
| 
 | |
| 			/*
 | |
| 			 * Store the pfn of the page in a special migration
 | |
| 			 * pte. do_swap_page() will wait until the migration
 | |
| 			 * pte is removed and then restart fault handling.
 | |
| 			 */
 | |
| 			entry = pte_to_swp_entry(pteval);
 | |
| 			if (is_writable_device_private_entry(entry))
 | |
| 				entry = make_writable_migration_entry(pfn);
 | |
| 			else if (anon_exclusive)
 | |
| 				entry = make_readable_exclusive_migration_entry(pfn);
 | |
| 			else
 | |
| 				entry = make_readable_migration_entry(pfn);
 | |
| 			swp_pte = swp_entry_to_pte(entry);
 | |
| 
 | |
| 			/*
 | |
| 			 * pteval maps a zone device page and is therefore
 | |
| 			 * a swap pte.
 | |
| 			 */
 | |
| 			if (pte_swp_soft_dirty(pteval))
 | |
| 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
 | |
| 			if (pte_swp_uffd_wp(pteval))
 | |
| 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
 | |
| 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
 | |
| 			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
 | |
| 						compound_order(&folio->page));
 | |
| 			/*
 | |
| 			 * No need to invalidate here it will synchronize on
 | |
| 			 * against the special swap migration pte.
 | |
| 			 */
 | |
| 		} else if (PageHWPoison(subpage)) {
 | |
| 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
 | |
| 			if (folio_test_hugetlb(folio)) {
 | |
| 				hugetlb_count_sub(folio_nr_pages(folio), mm);
 | |
| 				set_huge_pte_at(mm, address, pvmw.pte, pteval);
 | |
| 			} else {
 | |
| 				dec_mm_counter(mm, mm_counter(&folio->page));
 | |
| 				set_pte_at(mm, address, pvmw.pte, pteval);
 | |
| 			}
 | |
| 
 | |
| 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
 | |
| 			/*
 | |
| 			 * The guest indicated that the page content is of no
 | |
| 			 * interest anymore. Simply discard the pte, vmscan
 | |
| 			 * will take care of the rest.
 | |
| 			 * A future reference will then fault in a new zero
 | |
| 			 * page. When userfaultfd is active, we must not drop
 | |
| 			 * this page though, as its main user (postcopy
 | |
| 			 * migration) will not expect userfaults on already
 | |
| 			 * copied pages.
 | |
| 			 */
 | |
| 			dec_mm_counter(mm, mm_counter(&folio->page));
 | |
| 			/* We have to invalidate as we cleared the pte */
 | |
| 			mmu_notifier_invalidate_range(mm, address,
 | |
| 						      address + PAGE_SIZE);
 | |
| 		} else {
 | |
| 			swp_entry_t entry;
 | |
| 			pte_t swp_pte;
 | |
| 
 | |
| 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
 | |
| 				if (folio_test_hugetlb(folio))
 | |
| 					set_huge_pte_at(mm, address, pvmw.pte, pteval);
 | |
| 				else
 | |
| 					set_pte_at(mm, address, pvmw.pte, pteval);
 | |
| 				ret = false;
 | |
| 				page_vma_mapped_walk_done(&pvmw);
 | |
| 				break;
 | |
| 			}
 | |
| 			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
 | |
| 				       !anon_exclusive, subpage);
 | |
| 
 | |
| 			/* See page_try_share_anon_rmap(): clear PTE first. */
 | |
| 			if (anon_exclusive &&
 | |
| 			    page_try_share_anon_rmap(subpage)) {
 | |
| 				if (folio_test_hugetlb(folio))
 | |
| 					set_huge_pte_at(mm, address, pvmw.pte, pteval);
 | |
| 				else
 | |
| 					set_pte_at(mm, address, pvmw.pte, pteval);
 | |
| 				ret = false;
 | |
| 				page_vma_mapped_walk_done(&pvmw);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Store the pfn of the page in a special migration
 | |
| 			 * pte. do_swap_page() will wait until the migration
 | |
| 			 * pte is removed and then restart fault handling.
 | |
| 			 */
 | |
| 			if (pte_write(pteval))
 | |
| 				entry = make_writable_migration_entry(
 | |
| 							page_to_pfn(subpage));
 | |
| 			else if (anon_exclusive)
 | |
| 				entry = make_readable_exclusive_migration_entry(
 | |
| 							page_to_pfn(subpage));
 | |
| 			else
 | |
| 				entry = make_readable_migration_entry(
 | |
| 							page_to_pfn(subpage));
 | |
| 			if (pte_young(pteval))
 | |
| 				entry = make_migration_entry_young(entry);
 | |
| 			if (pte_dirty(pteval))
 | |
| 				entry = make_migration_entry_dirty(entry);
 | |
| 			swp_pte = swp_entry_to_pte(entry);
 | |
| 			if (pte_soft_dirty(pteval))
 | |
| 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
 | |
| 			if (pte_uffd_wp(pteval))
 | |
| 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
 | |
| 			if (folio_test_hugetlb(folio))
 | |
| 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte);
 | |
| 			else
 | |
| 				set_pte_at(mm, address, pvmw.pte, swp_pte);
 | |
| 			trace_set_migration_pte(address, pte_val(swp_pte),
 | |
| 						compound_order(&folio->page));
 | |
| 			/*
 | |
| 			 * No need to invalidate here it will synchronize on
 | |
| 			 * against the special swap migration pte.
 | |
| 			 */
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * No need to call mmu_notifier_invalidate_range() it has be
 | |
| 		 * done above for all cases requiring it to happen under page
 | |
| 		 * table lock before mmu_notifier_invalidate_range_end()
 | |
| 		 *
 | |
| 		 * See Documentation/mm/mmu_notifier.rst
 | |
| 		 */
 | |
| 		page_remove_rmap(subpage, vma, folio_test_hugetlb(folio));
 | |
| 		if (vma->vm_flags & VM_LOCKED)
 | |
| 			mlock_drain_local();
 | |
| 		folio_put(folio);
 | |
| 	}
 | |
| 
 | |
| 	mmu_notifier_invalidate_range_end(&range);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * try_to_migrate - try to replace all page table mappings with swap entries
 | |
|  * @folio: the folio to replace page table entries for
 | |
|  * @flags: action and flags
 | |
|  *
 | |
|  * Tries to remove all the page table entries which are mapping this folio and
 | |
|  * replace them with special swap entries. Caller must hold the folio lock.
 | |
|  */
 | |
| void try_to_migrate(struct folio *folio, enum ttu_flags flags)
 | |
| {
 | |
| 	struct rmap_walk_control rwc = {
 | |
| 		.rmap_one = try_to_migrate_one,
 | |
| 		.arg = (void *)flags,
 | |
| 		.done = folio_not_mapped,
 | |
| 		.anon_lock = folio_lock_anon_vma_read,
 | |
| 	};
 | |
| 
 | |
| 	/*
 | |
| 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
 | |
| 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
 | |
| 					TTU_SYNC | TTU_BATCH_FLUSH)))
 | |
| 		return;
 | |
| 
 | |
| 	if (folio_is_zone_device(folio) &&
 | |
| 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * During exec, a temporary VMA is setup and later moved.
 | |
| 	 * The VMA is moved under the anon_vma lock but not the
 | |
| 	 * page tables leading to a race where migration cannot
 | |
| 	 * find the migration ptes. Rather than increasing the
 | |
| 	 * locking requirements of exec(), migration skips
 | |
| 	 * temporary VMAs until after exec() completes.
 | |
| 	 */
 | |
| 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
 | |
| 		rwc.invalid_vma = invalid_migration_vma;
 | |
| 
 | |
| 	if (flags & TTU_RMAP_LOCKED)
 | |
| 		rmap_walk_locked(folio, &rwc);
 | |
| 	else
 | |
| 		rmap_walk(folio, &rwc);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEVICE_PRIVATE
 | |
| struct make_exclusive_args {
 | |
| 	struct mm_struct *mm;
 | |
| 	unsigned long address;
 | |
| 	void *owner;
 | |
| 	bool valid;
 | |
| };
 | |
| 
 | |
| static bool page_make_device_exclusive_one(struct folio *folio,
 | |
| 		struct vm_area_struct *vma, unsigned long address, void *priv)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
 | |
| 	struct make_exclusive_args *args = priv;
 | |
| 	pte_t pteval;
 | |
| 	struct page *subpage;
 | |
| 	bool ret = true;
 | |
| 	struct mmu_notifier_range range;
 | |
| 	swp_entry_t entry;
 | |
| 	pte_t swp_pte;
 | |
| 
 | |
| 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
 | |
| 				      vma->vm_mm, address, min(vma->vm_end,
 | |
| 				      address + folio_size(folio)),
 | |
| 				      args->owner);
 | |
| 	mmu_notifier_invalidate_range_start(&range);
 | |
| 
 | |
| 	while (page_vma_mapped_walk(&pvmw)) {
 | |
| 		/* Unexpected PMD-mapped THP? */
 | |
| 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
 | |
| 
 | |
| 		if (!pte_present(*pvmw.pte)) {
 | |
| 			ret = false;
 | |
| 			page_vma_mapped_walk_done(&pvmw);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		subpage = folio_page(folio,
 | |
| 				pte_pfn(*pvmw.pte) - folio_pfn(folio));
 | |
| 		address = pvmw.address;
 | |
| 
 | |
| 		/* Nuke the page table entry. */
 | |
| 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
 | |
| 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
 | |
| 
 | |
| 		/* Set the dirty flag on the folio now the pte is gone. */
 | |
| 		if (pte_dirty(pteval))
 | |
| 			folio_mark_dirty(folio);
 | |
| 
 | |
| 		/*
 | |
| 		 * Check that our target page is still mapped at the expected
 | |
| 		 * address.
 | |
| 		 */
 | |
| 		if (args->mm == mm && args->address == address &&
 | |
| 		    pte_write(pteval))
 | |
| 			args->valid = true;
 | |
| 
 | |
| 		/*
 | |
| 		 * Store the pfn of the page in a special migration
 | |
| 		 * pte. do_swap_page() will wait until the migration
 | |
| 		 * pte is removed and then restart fault handling.
 | |
| 		 */
 | |
| 		if (pte_write(pteval))
 | |
| 			entry = make_writable_device_exclusive_entry(
 | |
| 							page_to_pfn(subpage));
 | |
| 		else
 | |
| 			entry = make_readable_device_exclusive_entry(
 | |
| 							page_to_pfn(subpage));
 | |
| 		swp_pte = swp_entry_to_pte(entry);
 | |
| 		if (pte_soft_dirty(pteval))
 | |
| 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
 | |
| 		if (pte_uffd_wp(pteval))
 | |
| 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
 | |
| 
 | |
| 		set_pte_at(mm, address, pvmw.pte, swp_pte);
 | |
| 
 | |
| 		/*
 | |
| 		 * There is a reference on the page for the swap entry which has
 | |
| 		 * been removed, so shouldn't take another.
 | |
| 		 */
 | |
| 		page_remove_rmap(subpage, vma, false);
 | |
| 	}
 | |
| 
 | |
| 	mmu_notifier_invalidate_range_end(&range);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
 | |
|  * @folio: The folio to replace page table entries for.
 | |
|  * @mm: The mm_struct where the folio is expected to be mapped.
 | |
|  * @address: Address where the folio is expected to be mapped.
 | |
|  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
 | |
|  *
 | |
|  * Tries to remove all the page table entries which are mapping this
 | |
|  * folio and replace them with special device exclusive swap entries to
 | |
|  * grant a device exclusive access to the folio.
 | |
|  *
 | |
|  * Context: Caller must hold the folio lock.
 | |
|  * Return: false if the page is still mapped, or if it could not be unmapped
 | |
|  * from the expected address. Otherwise returns true (success).
 | |
|  */
 | |
| static bool folio_make_device_exclusive(struct folio *folio,
 | |
| 		struct mm_struct *mm, unsigned long address, void *owner)
 | |
| {
 | |
| 	struct make_exclusive_args args = {
 | |
| 		.mm = mm,
 | |
| 		.address = address,
 | |
| 		.owner = owner,
 | |
| 		.valid = false,
 | |
| 	};
 | |
| 	struct rmap_walk_control rwc = {
 | |
| 		.rmap_one = page_make_device_exclusive_one,
 | |
| 		.done = folio_not_mapped,
 | |
| 		.anon_lock = folio_lock_anon_vma_read,
 | |
| 		.arg = &args,
 | |
| 	};
 | |
| 
 | |
| 	/*
 | |
| 	 * Restrict to anonymous folios for now to avoid potential writeback
 | |
| 	 * issues.
 | |
| 	 */
 | |
| 	if (!folio_test_anon(folio))
 | |
| 		return false;
 | |
| 
 | |
| 	rmap_walk(folio, &rwc);
 | |
| 
 | |
| 	return args.valid && !folio_mapcount(folio);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * make_device_exclusive_range() - Mark a range for exclusive use by a device
 | |
|  * @mm: mm_struct of associated target process
 | |
|  * @start: start of the region to mark for exclusive device access
 | |
|  * @end: end address of region
 | |
|  * @pages: returns the pages which were successfully marked for exclusive access
 | |
|  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
 | |
|  *
 | |
|  * Returns: number of pages found in the range by GUP. A page is marked for
 | |
|  * exclusive access only if the page pointer is non-NULL.
 | |
|  *
 | |
|  * This function finds ptes mapping page(s) to the given address range, locks
 | |
|  * them and replaces mappings with special swap entries preventing userspace CPU
 | |
|  * access. On fault these entries are replaced with the original mapping after
 | |
|  * calling MMU notifiers.
 | |
|  *
 | |
|  * A driver using this to program access from a device must use a mmu notifier
 | |
|  * critical section to hold a device specific lock during programming. Once
 | |
|  * programming is complete it should drop the page lock and reference after
 | |
|  * which point CPU access to the page will revoke the exclusive access.
 | |
|  */
 | |
| int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
 | |
| 				unsigned long end, struct page **pages,
 | |
| 				void *owner)
 | |
| {
 | |
| 	long npages = (end - start) >> PAGE_SHIFT;
 | |
| 	long i;
 | |
| 
 | |
| 	npages = get_user_pages_remote(mm, start, npages,
 | |
| 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
 | |
| 				       pages, NULL, NULL);
 | |
| 	if (npages < 0)
 | |
| 		return npages;
 | |
| 
 | |
| 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
 | |
| 		struct folio *folio = page_folio(pages[i]);
 | |
| 		if (PageTail(pages[i]) || !folio_trylock(folio)) {
 | |
| 			folio_put(folio);
 | |
| 			pages[i] = NULL;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
 | |
| 			folio_unlock(folio);
 | |
| 			folio_put(folio);
 | |
| 			pages[i] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return npages;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(make_device_exclusive_range);
 | |
| #endif
 | |
| 
 | |
| void __put_anon_vma(struct anon_vma *anon_vma)
 | |
| {
 | |
| 	struct anon_vma *root = anon_vma->root;
 | |
| 
 | |
| 	anon_vma_free(anon_vma);
 | |
| 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
 | |
| 		anon_vma_free(root);
 | |
| }
 | |
| 
 | |
| static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
 | |
| 					    struct rmap_walk_control *rwc)
 | |
| {
 | |
| 	struct anon_vma *anon_vma;
 | |
| 
 | |
| 	if (rwc->anon_lock)
 | |
| 		return rwc->anon_lock(folio, rwc);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
 | |
| 	 * because that depends on page_mapped(); but not all its usages
 | |
| 	 * are holding mmap_lock. Users without mmap_lock are required to
 | |
| 	 * take a reference count to prevent the anon_vma disappearing
 | |
| 	 */
 | |
| 	anon_vma = folio_anon_vma(folio);
 | |
| 	if (!anon_vma)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (anon_vma_trylock_read(anon_vma))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (rwc->try_lock) {
 | |
| 		anon_vma = NULL;
 | |
| 		rwc->contended = true;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	anon_vma_lock_read(anon_vma);
 | |
| out:
 | |
| 	return anon_vma;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rmap_walk_anon - do something to anonymous page using the object-based
 | |
|  * rmap method
 | |
|  * @page: the page to be handled
 | |
|  * @rwc: control variable according to each walk type
 | |
|  *
 | |
|  * Find all the mappings of a page using the mapping pointer and the vma chains
 | |
|  * contained in the anon_vma struct it points to.
 | |
|  */
 | |
| static void rmap_walk_anon(struct folio *folio,
 | |
| 		struct rmap_walk_control *rwc, bool locked)
 | |
| {
 | |
| 	struct anon_vma *anon_vma;
 | |
| 	pgoff_t pgoff_start, pgoff_end;
 | |
| 	struct anon_vma_chain *avc;
 | |
| 
 | |
| 	if (locked) {
 | |
| 		anon_vma = folio_anon_vma(folio);
 | |
| 		/* anon_vma disappear under us? */
 | |
| 		VM_BUG_ON_FOLIO(!anon_vma, folio);
 | |
| 	} else {
 | |
| 		anon_vma = rmap_walk_anon_lock(folio, rwc);
 | |
| 	}
 | |
| 	if (!anon_vma)
 | |
| 		return;
 | |
| 
 | |
| 	pgoff_start = folio_pgoff(folio);
 | |
| 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
 | |
| 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
 | |
| 			pgoff_start, pgoff_end) {
 | |
| 		struct vm_area_struct *vma = avc->vma;
 | |
| 		unsigned long address = vma_address(&folio->page, vma);
 | |
| 
 | |
| 		VM_BUG_ON_VMA(address == -EFAULT, vma);
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
 | |
| 			break;
 | |
| 		if (rwc->done && rwc->done(folio))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (!locked)
 | |
| 		anon_vma_unlock_read(anon_vma);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rmap_walk_file - do something to file page using the object-based rmap method
 | |
|  * @page: the page to be handled
 | |
|  * @rwc: control variable according to each walk type
 | |
|  *
 | |
|  * Find all the mappings of a page using the mapping pointer and the vma chains
 | |
|  * contained in the address_space struct it points to.
 | |
|  */
 | |
| static void rmap_walk_file(struct folio *folio,
 | |
| 		struct rmap_walk_control *rwc, bool locked)
 | |
| {
 | |
| 	struct address_space *mapping = folio_mapping(folio);
 | |
| 	pgoff_t pgoff_start, pgoff_end;
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	/*
 | |
| 	 * The page lock not only makes sure that page->mapping cannot
 | |
| 	 * suddenly be NULLified by truncation, it makes sure that the
 | |
| 	 * structure at mapping cannot be freed and reused yet,
 | |
| 	 * so we can safely take mapping->i_mmap_rwsem.
 | |
| 	 */
 | |
| 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 | |
| 
 | |
| 	if (!mapping)
 | |
| 		return;
 | |
| 
 | |
| 	pgoff_start = folio_pgoff(folio);
 | |
| 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
 | |
| 	if (!locked) {
 | |
| 		if (i_mmap_trylock_read(mapping))
 | |
| 			goto lookup;
 | |
| 
 | |
| 		if (rwc->try_lock) {
 | |
| 			rwc->contended = true;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		i_mmap_lock_read(mapping);
 | |
| 	}
 | |
| lookup:
 | |
| 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
 | |
| 			pgoff_start, pgoff_end) {
 | |
| 		unsigned long address = vma_address(&folio->page, vma);
 | |
| 
 | |
| 		VM_BUG_ON_VMA(address == -EFAULT, vma);
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
 | |
| 			goto done;
 | |
| 		if (rwc->done && rwc->done(folio))
 | |
| 			goto done;
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	if (!locked)
 | |
| 		i_mmap_unlock_read(mapping);
 | |
| }
 | |
| 
 | |
| void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
 | |
| {
 | |
| 	if (unlikely(folio_test_ksm(folio)))
 | |
| 		rmap_walk_ksm(folio, rwc);
 | |
| 	else if (folio_test_anon(folio))
 | |
| 		rmap_walk_anon(folio, rwc, false);
 | |
| 	else
 | |
| 		rmap_walk_file(folio, rwc, false);
 | |
| }
 | |
| 
 | |
| /* Like rmap_walk, but caller holds relevant rmap lock */
 | |
| void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
 | |
| {
 | |
| 	/* no ksm support for now */
 | |
| 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
 | |
| 	if (folio_test_anon(folio))
 | |
| 		rmap_walk_anon(folio, rwc, true);
 | |
| 	else
 | |
| 		rmap_walk_file(folio, rwc, true);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| /*
 | |
|  * The following two functions are for anonymous (private mapped) hugepages.
 | |
|  * Unlike common anonymous pages, anonymous hugepages have no accounting code
 | |
|  * and no lru code, because we handle hugepages differently from common pages.
 | |
|  *
 | |
|  * RMAP_COMPOUND is ignored.
 | |
|  */
 | |
| void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma,
 | |
| 			    unsigned long address, rmap_t flags)
 | |
| {
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	struct anon_vma *anon_vma = vma->anon_vma;
 | |
| 	int first;
 | |
| 
 | |
| 	BUG_ON(!folio_test_locked(folio));
 | |
| 	BUG_ON(!anon_vma);
 | |
| 	/* address might be in next vma when migration races vma_merge */
 | |
| 	first = atomic_inc_and_test(&folio->_entire_mapcount);
 | |
| 	VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page);
 | |
| 	VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page);
 | |
| 	if (first)
 | |
| 		__page_set_anon_rmap(folio, page, vma, address,
 | |
| 				     !!(flags & RMAP_EXCLUSIVE));
 | |
| }
 | |
| 
 | |
| void hugepage_add_new_anon_rmap(struct folio *folio,
 | |
| 			struct vm_area_struct *vma, unsigned long address)
 | |
| {
 | |
| 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
 | |
| 	/* increment count (starts at -1) */
 | |
| 	atomic_set(&folio->_entire_mapcount, 0);
 | |
| 	folio_clear_hugetlb_restore_reserve(folio);
 | |
| 	__page_set_anon_rmap(folio, &folio->page, vma, address, 1);
 | |
| }
 | |
| #endif /* CONFIG_HUGETLB_PAGE */
 |