forked from mirrors/linux
		
	 66dabbb65d
			
		
	
	
		66dabbb65d
		
	
	
	
	
		
			
			Instead of returning NULL for all errors, distinguish between: - no entry found and not asked to allocated (-ENOENT) - failed to allocate memory (-ENOMEM) - would block (-EAGAIN) so that callers don't have to guess the error based on the passed in flags. Also pass through the error through the direct callers: filemap_get_folio, filemap_lock_folio filemap_grab_folio and filemap_get_incore_folio. [hch@lst.de: fix null-pointer deref] Link: https://lkml.kernel.org/r/20230310070023.GA13563@lst.de Link: https://lkml.kernel.org/r/20230310043137.GA1624890@u2004 Link: https://lkml.kernel.org/r/20230307143410.28031-8-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> [nilfs2] Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			860 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			860 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * mm/truncate.c - code for taking down pages from address_spaces
 | |
|  *
 | |
|  * Copyright (C) 2002, Linus Torvalds
 | |
|  *
 | |
|  * 10Sep2002	Andrew Morton
 | |
|  *		Initial version.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/dax.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/task_io_accounting_ops.h>
 | |
| #include <linux/buffer_head.h>	/* grr. try_to_release_page */
 | |
| #include <linux/shmem_fs.h>
 | |
| #include <linux/rmap.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| /*
 | |
|  * Regular page slots are stabilized by the page lock even without the tree
 | |
|  * itself locked.  These unlocked entries need verification under the tree
 | |
|  * lock.
 | |
|  */
 | |
| static inline void __clear_shadow_entry(struct address_space *mapping,
 | |
| 				pgoff_t index, void *entry)
 | |
| {
 | |
| 	XA_STATE(xas, &mapping->i_pages, index);
 | |
| 
 | |
| 	xas_set_update(&xas, workingset_update_node);
 | |
| 	if (xas_load(&xas) != entry)
 | |
| 		return;
 | |
| 	xas_store(&xas, NULL);
 | |
| }
 | |
| 
 | |
| static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
 | |
| 			       void *entry)
 | |
| {
 | |
| 	spin_lock(&mapping->host->i_lock);
 | |
| 	xa_lock_irq(&mapping->i_pages);
 | |
| 	__clear_shadow_entry(mapping, index, entry);
 | |
| 	xa_unlock_irq(&mapping->i_pages);
 | |
| 	if (mapping_shrinkable(mapping))
 | |
| 		inode_add_lru(mapping->host);
 | |
| 	spin_unlock(&mapping->host->i_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unconditionally remove exceptional entries. Usually called from truncate
 | |
|  * path. Note that the folio_batch may be altered by this function by removing
 | |
|  * exceptional entries similar to what folio_batch_remove_exceptionals() does.
 | |
|  */
 | |
| static void truncate_folio_batch_exceptionals(struct address_space *mapping,
 | |
| 				struct folio_batch *fbatch, pgoff_t *indices)
 | |
| {
 | |
| 	int i, j;
 | |
| 	bool dax;
 | |
| 
 | |
| 	/* Handled by shmem itself */
 | |
| 	if (shmem_mapping(mapping))
 | |
| 		return;
 | |
| 
 | |
| 	for (j = 0; j < folio_batch_count(fbatch); j++)
 | |
| 		if (xa_is_value(fbatch->folios[j]))
 | |
| 			break;
 | |
| 
 | |
| 	if (j == folio_batch_count(fbatch))
 | |
| 		return;
 | |
| 
 | |
| 	dax = dax_mapping(mapping);
 | |
| 	if (!dax) {
 | |
| 		spin_lock(&mapping->host->i_lock);
 | |
| 		xa_lock_irq(&mapping->i_pages);
 | |
| 	}
 | |
| 
 | |
| 	for (i = j; i < folio_batch_count(fbatch); i++) {
 | |
| 		struct folio *folio = fbatch->folios[i];
 | |
| 		pgoff_t index = indices[i];
 | |
| 
 | |
| 		if (!xa_is_value(folio)) {
 | |
| 			fbatch->folios[j++] = folio;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(dax)) {
 | |
| 			dax_delete_mapping_entry(mapping, index);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		__clear_shadow_entry(mapping, index, folio);
 | |
| 	}
 | |
| 
 | |
| 	if (!dax) {
 | |
| 		xa_unlock_irq(&mapping->i_pages);
 | |
| 		if (mapping_shrinkable(mapping))
 | |
| 			inode_add_lru(mapping->host);
 | |
| 		spin_unlock(&mapping->host->i_lock);
 | |
| 	}
 | |
| 	fbatch->nr = j;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invalidate exceptional entry if easily possible. This handles exceptional
 | |
|  * entries for invalidate_inode_pages().
 | |
|  */
 | |
| static int invalidate_exceptional_entry(struct address_space *mapping,
 | |
| 					pgoff_t index, void *entry)
 | |
| {
 | |
| 	/* Handled by shmem itself, or for DAX we do nothing. */
 | |
| 	if (shmem_mapping(mapping) || dax_mapping(mapping))
 | |
| 		return 1;
 | |
| 	clear_shadow_entry(mapping, index, entry);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invalidate exceptional entry if clean. This handles exceptional entries for
 | |
|  * invalidate_inode_pages2() so for DAX it evicts only clean entries.
 | |
|  */
 | |
| static int invalidate_exceptional_entry2(struct address_space *mapping,
 | |
| 					 pgoff_t index, void *entry)
 | |
| {
 | |
| 	/* Handled by shmem itself */
 | |
| 	if (shmem_mapping(mapping))
 | |
| 		return 1;
 | |
| 	if (dax_mapping(mapping))
 | |
| 		return dax_invalidate_mapping_entry_sync(mapping, index);
 | |
| 	clear_shadow_entry(mapping, index, entry);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * folio_invalidate - Invalidate part or all of a folio.
 | |
|  * @folio: The folio which is affected.
 | |
|  * @offset: start of the range to invalidate
 | |
|  * @length: length of the range to invalidate
 | |
|  *
 | |
|  * folio_invalidate() is called when all or part of the folio has become
 | |
|  * invalidated by a truncate operation.
 | |
|  *
 | |
|  * folio_invalidate() does not have to release all buffers, but it must
 | |
|  * ensure that no dirty buffer is left outside @offset and that no I/O
 | |
|  * is underway against any of the blocks which are outside the truncation
 | |
|  * point.  Because the caller is about to free (and possibly reuse) those
 | |
|  * blocks on-disk.
 | |
|  */
 | |
| void folio_invalidate(struct folio *folio, size_t offset, size_t length)
 | |
| {
 | |
| 	const struct address_space_operations *aops = folio->mapping->a_ops;
 | |
| 
 | |
| 	if (aops->invalidate_folio)
 | |
| 		aops->invalidate_folio(folio, offset, length);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(folio_invalidate);
 | |
| 
 | |
| /*
 | |
|  * If truncate cannot remove the fs-private metadata from the page, the page
 | |
|  * becomes orphaned.  It will be left on the LRU and may even be mapped into
 | |
|  * user pagetables if we're racing with filemap_fault().
 | |
|  *
 | |
|  * We need to bail out if page->mapping is no longer equal to the original
 | |
|  * mapping.  This happens a) when the VM reclaimed the page while we waited on
 | |
|  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
 | |
|  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
 | |
|  */
 | |
| static void truncate_cleanup_folio(struct folio *folio)
 | |
| {
 | |
| 	if (folio_mapped(folio))
 | |
| 		unmap_mapping_folio(folio);
 | |
| 
 | |
| 	if (folio_has_private(folio))
 | |
| 		folio_invalidate(folio, 0, folio_size(folio));
 | |
| 
 | |
| 	/*
 | |
| 	 * Some filesystems seem to re-dirty the page even after
 | |
| 	 * the VM has canceled the dirty bit (eg ext3 journaling).
 | |
| 	 * Hence dirty accounting check is placed after invalidation.
 | |
| 	 */
 | |
| 	folio_cancel_dirty(folio);
 | |
| 	folio_clear_mappedtodisk(folio);
 | |
| }
 | |
| 
 | |
| int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
 | |
| {
 | |
| 	if (folio->mapping != mapping)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	truncate_cleanup_folio(folio);
 | |
| 	filemap_remove_folio(folio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle partial folios.  The folio may be entirely within the
 | |
|  * range if a split has raced with us.  If not, we zero the part of the
 | |
|  * folio that's within the [start, end] range, and then split the folio if
 | |
|  * it's large.  split_page_range() will discard pages which now lie beyond
 | |
|  * i_size, and we rely on the caller to discard pages which lie within a
 | |
|  * newly created hole.
 | |
|  *
 | |
|  * Returns false if splitting failed so the caller can avoid
 | |
|  * discarding the entire folio which is stubbornly unsplit.
 | |
|  */
 | |
| bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
 | |
| {
 | |
| 	loff_t pos = folio_pos(folio);
 | |
| 	unsigned int offset, length;
 | |
| 
 | |
| 	if (pos < start)
 | |
| 		offset = start - pos;
 | |
| 	else
 | |
| 		offset = 0;
 | |
| 	length = folio_size(folio);
 | |
| 	if (pos + length <= (u64)end)
 | |
| 		length = length - offset;
 | |
| 	else
 | |
| 		length = end + 1 - pos - offset;
 | |
| 
 | |
| 	folio_wait_writeback(folio);
 | |
| 	if (length == folio_size(folio)) {
 | |
| 		truncate_inode_folio(folio->mapping, folio);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We may be zeroing pages we're about to discard, but it avoids
 | |
| 	 * doing a complex calculation here, and then doing the zeroing
 | |
| 	 * anyway if the page split fails.
 | |
| 	 */
 | |
| 	folio_zero_range(folio, offset, length);
 | |
| 
 | |
| 	if (folio_has_private(folio))
 | |
| 		folio_invalidate(folio, offset, length);
 | |
| 	if (!folio_test_large(folio))
 | |
| 		return true;
 | |
| 	if (split_folio(folio) == 0)
 | |
| 		return true;
 | |
| 	if (folio_test_dirty(folio))
 | |
| 		return false;
 | |
| 	truncate_inode_folio(folio->mapping, folio);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used to get rid of pages on hardware memory corruption.
 | |
|  */
 | |
| int generic_error_remove_page(struct address_space *mapping, struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(PageTail(page), page);
 | |
| 
 | |
| 	if (!mapping)
 | |
| 		return -EINVAL;
 | |
| 	/*
 | |
| 	 * Only punch for normal data pages for now.
 | |
| 	 * Handling other types like directories would need more auditing.
 | |
| 	 */
 | |
| 	if (!S_ISREG(mapping->host->i_mode))
 | |
| 		return -EIO;
 | |
| 	return truncate_inode_folio(mapping, page_folio(page));
 | |
| }
 | |
| EXPORT_SYMBOL(generic_error_remove_page);
 | |
| 
 | |
| static long mapping_evict_folio(struct address_space *mapping,
 | |
| 		struct folio *folio)
 | |
| {
 | |
| 	if (folio_test_dirty(folio) || folio_test_writeback(folio))
 | |
| 		return 0;
 | |
| 	/* The refcount will be elevated if any page in the folio is mapped */
 | |
| 	if (folio_ref_count(folio) >
 | |
| 			folio_nr_pages(folio) + folio_has_private(folio) + 1)
 | |
| 		return 0;
 | |
| 	if (folio_has_private(folio) && !filemap_release_folio(folio, 0))
 | |
| 		return 0;
 | |
| 
 | |
| 	return remove_mapping(mapping, folio);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * invalidate_inode_page() - Remove an unused page from the pagecache.
 | |
|  * @page: The page to remove.
 | |
|  *
 | |
|  * Safely invalidate one page from its pagecache mapping.
 | |
|  * It only drops clean, unused pages.
 | |
|  *
 | |
|  * Context: Page must be locked.
 | |
|  * Return: The number of pages successfully removed.
 | |
|  */
 | |
| long invalidate_inode_page(struct page *page)
 | |
| {
 | |
| 	struct folio *folio = page_folio(page);
 | |
| 	struct address_space *mapping = folio_mapping(folio);
 | |
| 
 | |
| 	/* The page may have been truncated before it was locked */
 | |
| 	if (!mapping)
 | |
| 		return 0;
 | |
| 	return mapping_evict_folio(mapping, folio);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
 | |
|  * @mapping: mapping to truncate
 | |
|  * @lstart: offset from which to truncate
 | |
|  * @lend: offset to which to truncate (inclusive)
 | |
|  *
 | |
|  * Truncate the page cache, removing the pages that are between
 | |
|  * specified offsets (and zeroing out partial pages
 | |
|  * if lstart or lend + 1 is not page aligned).
 | |
|  *
 | |
|  * Truncate takes two passes - the first pass is nonblocking.  It will not
 | |
|  * block on page locks and it will not block on writeback.  The second pass
 | |
|  * will wait.  This is to prevent as much IO as possible in the affected region.
 | |
|  * The first pass will remove most pages, so the search cost of the second pass
 | |
|  * is low.
 | |
|  *
 | |
|  * We pass down the cache-hot hint to the page freeing code.  Even if the
 | |
|  * mapping is large, it is probably the case that the final pages are the most
 | |
|  * recently touched, and freeing happens in ascending file offset order.
 | |
|  *
 | |
|  * Note that since ->invalidate_folio() accepts range to invalidate
 | |
|  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
 | |
|  * page aligned properly.
 | |
|  */
 | |
| void truncate_inode_pages_range(struct address_space *mapping,
 | |
| 				loff_t lstart, loff_t lend)
 | |
| {
 | |
| 	pgoff_t		start;		/* inclusive */
 | |
| 	pgoff_t		end;		/* exclusive */
 | |
| 	struct folio_batch fbatch;
 | |
| 	pgoff_t		indices[PAGEVEC_SIZE];
 | |
| 	pgoff_t		index;
 | |
| 	int		i;
 | |
| 	struct folio	*folio;
 | |
| 	bool		same_folio;
 | |
| 
 | |
| 	if (mapping_empty(mapping))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * 'start' and 'end' always covers the range of pages to be fully
 | |
| 	 * truncated. Partial pages are covered with 'partial_start' at the
 | |
| 	 * start of the range and 'partial_end' at the end of the range.
 | |
| 	 * Note that 'end' is exclusive while 'lend' is inclusive.
 | |
| 	 */
 | |
| 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | |
| 	if (lend == -1)
 | |
| 		/*
 | |
| 		 * lend == -1 indicates end-of-file so we have to set 'end'
 | |
| 		 * to the highest possible pgoff_t and since the type is
 | |
| 		 * unsigned we're using -1.
 | |
| 		 */
 | |
| 		end = -1;
 | |
| 	else
 | |
| 		end = (lend + 1) >> PAGE_SHIFT;
 | |
| 
 | |
| 	folio_batch_init(&fbatch);
 | |
| 	index = start;
 | |
| 	while (index < end && find_lock_entries(mapping, &index, end - 1,
 | |
| 			&fbatch, indices)) {
 | |
| 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
 | |
| 		for (i = 0; i < folio_batch_count(&fbatch); i++)
 | |
| 			truncate_cleanup_folio(fbatch.folios[i]);
 | |
| 		delete_from_page_cache_batch(mapping, &fbatch);
 | |
| 		for (i = 0; i < folio_batch_count(&fbatch); i++)
 | |
| 			folio_unlock(fbatch.folios[i]);
 | |
| 		folio_batch_release(&fbatch);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
 | |
| 	folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
 | |
| 	if (!IS_ERR(folio)) {
 | |
| 		same_folio = lend < folio_pos(folio) + folio_size(folio);
 | |
| 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
 | |
| 			start = folio->index + folio_nr_pages(folio);
 | |
| 			if (same_folio)
 | |
| 				end = folio->index;
 | |
| 		}
 | |
| 		folio_unlock(folio);
 | |
| 		folio_put(folio);
 | |
| 		folio = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (!same_folio) {
 | |
| 		folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
 | |
| 						FGP_LOCK, 0);
 | |
| 		if (!IS_ERR(folio)) {
 | |
| 			if (!truncate_inode_partial_folio(folio, lstart, lend))
 | |
| 				end = folio->index;
 | |
| 			folio_unlock(folio);
 | |
| 			folio_put(folio);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	index = start;
 | |
| 	while (index < end) {
 | |
| 		cond_resched();
 | |
| 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
 | |
| 				indices)) {
 | |
| 			/* If all gone from start onwards, we're done */
 | |
| 			if (index == start)
 | |
| 				break;
 | |
| 			/* Otherwise restart to make sure all gone */
 | |
| 			index = start;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
 | |
| 			struct folio *folio = fbatch.folios[i];
 | |
| 
 | |
| 			/* We rely upon deletion not changing page->index */
 | |
| 
 | |
| 			if (xa_is_value(folio))
 | |
| 				continue;
 | |
| 
 | |
| 			folio_lock(folio);
 | |
| 			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
 | |
| 			folio_wait_writeback(folio);
 | |
| 			truncate_inode_folio(mapping, folio);
 | |
| 			folio_unlock(folio);
 | |
| 		}
 | |
| 		truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
 | |
| 		folio_batch_release(&fbatch);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(truncate_inode_pages_range);
 | |
| 
 | |
| /**
 | |
|  * truncate_inode_pages - truncate *all* the pages from an offset
 | |
|  * @mapping: mapping to truncate
 | |
|  * @lstart: offset from which to truncate
 | |
|  *
 | |
|  * Called under (and serialised by) inode->i_rwsem and
 | |
|  * mapping->invalidate_lock.
 | |
|  *
 | |
|  * Note: When this function returns, there can be a page in the process of
 | |
|  * deletion (inside __filemap_remove_folio()) in the specified range.  Thus
 | |
|  * mapping->nrpages can be non-zero when this function returns even after
 | |
|  * truncation of the whole mapping.
 | |
|  */
 | |
| void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
 | |
| {
 | |
| 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
 | |
| }
 | |
| EXPORT_SYMBOL(truncate_inode_pages);
 | |
| 
 | |
| /**
 | |
|  * truncate_inode_pages_final - truncate *all* pages before inode dies
 | |
|  * @mapping: mapping to truncate
 | |
|  *
 | |
|  * Called under (and serialized by) inode->i_rwsem.
 | |
|  *
 | |
|  * Filesystems have to use this in the .evict_inode path to inform the
 | |
|  * VM that this is the final truncate and the inode is going away.
 | |
|  */
 | |
| void truncate_inode_pages_final(struct address_space *mapping)
 | |
| {
 | |
| 	/*
 | |
| 	 * Page reclaim can not participate in regular inode lifetime
 | |
| 	 * management (can't call iput()) and thus can race with the
 | |
| 	 * inode teardown.  Tell it when the address space is exiting,
 | |
| 	 * so that it does not install eviction information after the
 | |
| 	 * final truncate has begun.
 | |
| 	 */
 | |
| 	mapping_set_exiting(mapping);
 | |
| 
 | |
| 	if (!mapping_empty(mapping)) {
 | |
| 		/*
 | |
| 		 * As truncation uses a lockless tree lookup, cycle
 | |
| 		 * the tree lock to make sure any ongoing tree
 | |
| 		 * modification that does not see AS_EXITING is
 | |
| 		 * completed before starting the final truncate.
 | |
| 		 */
 | |
| 		xa_lock_irq(&mapping->i_pages);
 | |
| 		xa_unlock_irq(&mapping->i_pages);
 | |
| 	}
 | |
| 
 | |
| 	truncate_inode_pages(mapping, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(truncate_inode_pages_final);
 | |
| 
 | |
| /**
 | |
|  * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode
 | |
|  * @mapping: the address_space which holds the pages to invalidate
 | |
|  * @start: the offset 'from' which to invalidate
 | |
|  * @end: the offset 'to' which to invalidate (inclusive)
 | |
|  * @nr_pagevec: invalidate failed page number for caller
 | |
|  *
 | |
|  * This helper is similar to invalidate_mapping_pages(), except that it accounts
 | |
|  * for pages that are likely on a pagevec and counts them in @nr_pagevec, which
 | |
|  * will be used by the caller.
 | |
|  */
 | |
| unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
 | |
| 		pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
 | |
| {
 | |
| 	pgoff_t indices[PAGEVEC_SIZE];
 | |
| 	struct folio_batch fbatch;
 | |
| 	pgoff_t index = start;
 | |
| 	unsigned long ret;
 | |
| 	unsigned long count = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	folio_batch_init(&fbatch);
 | |
| 	while (find_lock_entries(mapping, &index, end, &fbatch, indices)) {
 | |
| 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
 | |
| 			struct folio *folio = fbatch.folios[i];
 | |
| 
 | |
| 			/* We rely upon deletion not changing folio->index */
 | |
| 
 | |
| 			if (xa_is_value(folio)) {
 | |
| 				count += invalidate_exceptional_entry(mapping,
 | |
| 							     indices[i], folio);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			ret = mapping_evict_folio(mapping, folio);
 | |
| 			folio_unlock(folio);
 | |
| 			/*
 | |
| 			 * Invalidation is a hint that the folio is no longer
 | |
| 			 * of interest and try to speed up its reclaim.
 | |
| 			 */
 | |
| 			if (!ret) {
 | |
| 				deactivate_file_folio(folio);
 | |
| 				/* It is likely on the pagevec of a remote CPU */
 | |
| 				if (nr_pagevec)
 | |
| 					(*nr_pagevec)++;
 | |
| 			}
 | |
| 			count += ret;
 | |
| 		}
 | |
| 		folio_batch_remove_exceptionals(&fbatch);
 | |
| 		folio_batch_release(&fbatch);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
 | |
|  * @mapping: the address_space which holds the cache to invalidate
 | |
|  * @start: the offset 'from' which to invalidate
 | |
|  * @end: the offset 'to' which to invalidate (inclusive)
 | |
|  *
 | |
|  * This function removes pages that are clean, unmapped and unlocked,
 | |
|  * as well as shadow entries. It will not block on IO activity.
 | |
|  *
 | |
|  * If you want to remove all the pages of one inode, regardless of
 | |
|  * their use and writeback state, use truncate_inode_pages().
 | |
|  *
 | |
|  * Return: the number of the cache entries that were invalidated
 | |
|  */
 | |
| unsigned long invalidate_mapping_pages(struct address_space *mapping,
 | |
| 		pgoff_t start, pgoff_t end)
 | |
| {
 | |
| 	return invalidate_mapping_pagevec(mapping, start, end, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL(invalidate_mapping_pages);
 | |
| 
 | |
| /*
 | |
|  * This is like invalidate_inode_page(), except it ignores the page's
 | |
|  * refcount.  We do this because invalidate_inode_pages2() needs stronger
 | |
|  * invalidation guarantees, and cannot afford to leave pages behind because
 | |
|  * shrink_page_list() has a temp ref on them, or because they're transiently
 | |
|  * sitting in the folio_add_lru() pagevecs.
 | |
|  */
 | |
| static int invalidate_complete_folio2(struct address_space *mapping,
 | |
| 					struct folio *folio)
 | |
| {
 | |
| 	if (folio->mapping != mapping)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (folio_has_private(folio) &&
 | |
| 	    !filemap_release_folio(folio, GFP_KERNEL))
 | |
| 		return 0;
 | |
| 
 | |
| 	spin_lock(&mapping->host->i_lock);
 | |
| 	xa_lock_irq(&mapping->i_pages);
 | |
| 	if (folio_test_dirty(folio))
 | |
| 		goto failed;
 | |
| 
 | |
| 	BUG_ON(folio_has_private(folio));
 | |
| 	__filemap_remove_folio(folio, NULL);
 | |
| 	xa_unlock_irq(&mapping->i_pages);
 | |
| 	if (mapping_shrinkable(mapping))
 | |
| 		inode_add_lru(mapping->host);
 | |
| 	spin_unlock(&mapping->host->i_lock);
 | |
| 
 | |
| 	filemap_free_folio(mapping, folio);
 | |
| 	return 1;
 | |
| failed:
 | |
| 	xa_unlock_irq(&mapping->i_pages);
 | |
| 	spin_unlock(&mapping->host->i_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int folio_launder(struct address_space *mapping, struct folio *folio)
 | |
| {
 | |
| 	if (!folio_test_dirty(folio))
 | |
| 		return 0;
 | |
| 	if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
 | |
| 		return 0;
 | |
| 	return mapping->a_ops->launder_folio(folio);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * invalidate_inode_pages2_range - remove range of pages from an address_space
 | |
|  * @mapping: the address_space
 | |
|  * @start: the page offset 'from' which to invalidate
 | |
|  * @end: the page offset 'to' which to invalidate (inclusive)
 | |
|  *
 | |
|  * Any pages which are found to be mapped into pagetables are unmapped prior to
 | |
|  * invalidation.
 | |
|  *
 | |
|  * Return: -EBUSY if any pages could not be invalidated.
 | |
|  */
 | |
| int invalidate_inode_pages2_range(struct address_space *mapping,
 | |
| 				  pgoff_t start, pgoff_t end)
 | |
| {
 | |
| 	pgoff_t indices[PAGEVEC_SIZE];
 | |
| 	struct folio_batch fbatch;
 | |
| 	pgoff_t index;
 | |
| 	int i;
 | |
| 	int ret = 0;
 | |
| 	int ret2 = 0;
 | |
| 	int did_range_unmap = 0;
 | |
| 
 | |
| 	if (mapping_empty(mapping))
 | |
| 		return 0;
 | |
| 
 | |
| 	folio_batch_init(&fbatch);
 | |
| 	index = start;
 | |
| 	while (find_get_entries(mapping, &index, end, &fbatch, indices)) {
 | |
| 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
 | |
| 			struct folio *folio = fbatch.folios[i];
 | |
| 
 | |
| 			/* We rely upon deletion not changing folio->index */
 | |
| 
 | |
| 			if (xa_is_value(folio)) {
 | |
| 				if (!invalidate_exceptional_entry2(mapping,
 | |
| 						indices[i], folio))
 | |
| 					ret = -EBUSY;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (!did_range_unmap && folio_mapped(folio)) {
 | |
| 				/*
 | |
| 				 * If folio is mapped, before taking its lock,
 | |
| 				 * zap the rest of the file in one hit.
 | |
| 				 */
 | |
| 				unmap_mapping_pages(mapping, indices[i],
 | |
| 						(1 + end - indices[i]), false);
 | |
| 				did_range_unmap = 1;
 | |
| 			}
 | |
| 
 | |
| 			folio_lock(folio);
 | |
| 			VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
 | |
| 			if (folio->mapping != mapping) {
 | |
| 				folio_unlock(folio);
 | |
| 				continue;
 | |
| 			}
 | |
| 			folio_wait_writeback(folio);
 | |
| 
 | |
| 			if (folio_mapped(folio))
 | |
| 				unmap_mapping_folio(folio);
 | |
| 			BUG_ON(folio_mapped(folio));
 | |
| 
 | |
| 			ret2 = folio_launder(mapping, folio);
 | |
| 			if (ret2 == 0) {
 | |
| 				if (!invalidate_complete_folio2(mapping, folio))
 | |
| 					ret2 = -EBUSY;
 | |
| 			}
 | |
| 			if (ret2 < 0)
 | |
| 				ret = ret2;
 | |
| 			folio_unlock(folio);
 | |
| 		}
 | |
| 		folio_batch_remove_exceptionals(&fbatch);
 | |
| 		folio_batch_release(&fbatch);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	/*
 | |
| 	 * For DAX we invalidate page tables after invalidating page cache.  We
 | |
| 	 * could invalidate page tables while invalidating each entry however
 | |
| 	 * that would be expensive. And doing range unmapping before doesn't
 | |
| 	 * work as we have no cheap way to find whether page cache entry didn't
 | |
| 	 * get remapped later.
 | |
| 	 */
 | |
| 	if (dax_mapping(mapping)) {
 | |
| 		unmap_mapping_pages(mapping, start, end - start + 1, false);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
 | |
| 
 | |
| /**
 | |
|  * invalidate_inode_pages2 - remove all pages from an address_space
 | |
|  * @mapping: the address_space
 | |
|  *
 | |
|  * Any pages which are found to be mapped into pagetables are unmapped prior to
 | |
|  * invalidation.
 | |
|  *
 | |
|  * Return: -EBUSY if any pages could not be invalidated.
 | |
|  */
 | |
| int invalidate_inode_pages2(struct address_space *mapping)
 | |
| {
 | |
| 	return invalidate_inode_pages2_range(mapping, 0, -1);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
 | |
| 
 | |
| /**
 | |
|  * truncate_pagecache - unmap and remove pagecache that has been truncated
 | |
|  * @inode: inode
 | |
|  * @newsize: new file size
 | |
|  *
 | |
|  * inode's new i_size must already be written before truncate_pagecache
 | |
|  * is called.
 | |
|  *
 | |
|  * This function should typically be called before the filesystem
 | |
|  * releases resources associated with the freed range (eg. deallocates
 | |
|  * blocks). This way, pagecache will always stay logically coherent
 | |
|  * with on-disk format, and the filesystem would not have to deal with
 | |
|  * situations such as writepage being called for a page that has already
 | |
|  * had its underlying blocks deallocated.
 | |
|  */
 | |
| void truncate_pagecache(struct inode *inode, loff_t newsize)
 | |
| {
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * unmap_mapping_range is called twice, first simply for
 | |
| 	 * efficiency so that truncate_inode_pages does fewer
 | |
| 	 * single-page unmaps.  However after this first call, and
 | |
| 	 * before truncate_inode_pages finishes, it is possible for
 | |
| 	 * private pages to be COWed, which remain after
 | |
| 	 * truncate_inode_pages finishes, hence the second
 | |
| 	 * unmap_mapping_range call must be made for correctness.
 | |
| 	 */
 | |
| 	unmap_mapping_range(mapping, holebegin, 0, 1);
 | |
| 	truncate_inode_pages(mapping, newsize);
 | |
| 	unmap_mapping_range(mapping, holebegin, 0, 1);
 | |
| }
 | |
| EXPORT_SYMBOL(truncate_pagecache);
 | |
| 
 | |
| /**
 | |
|  * truncate_setsize - update inode and pagecache for a new file size
 | |
|  * @inode: inode
 | |
|  * @newsize: new file size
 | |
|  *
 | |
|  * truncate_setsize updates i_size and performs pagecache truncation (if
 | |
|  * necessary) to @newsize. It will be typically be called from the filesystem's
 | |
|  * setattr function when ATTR_SIZE is passed in.
 | |
|  *
 | |
|  * Must be called with a lock serializing truncates and writes (generally
 | |
|  * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
 | |
|  * specific block truncation has been performed.
 | |
|  */
 | |
| void truncate_setsize(struct inode *inode, loff_t newsize)
 | |
| {
 | |
| 	loff_t oldsize = inode->i_size;
 | |
| 
 | |
| 	i_size_write(inode, newsize);
 | |
| 	if (newsize > oldsize)
 | |
| 		pagecache_isize_extended(inode, oldsize, newsize);
 | |
| 	truncate_pagecache(inode, newsize);
 | |
| }
 | |
| EXPORT_SYMBOL(truncate_setsize);
 | |
| 
 | |
| /**
 | |
|  * pagecache_isize_extended - update pagecache after extension of i_size
 | |
|  * @inode:	inode for which i_size was extended
 | |
|  * @from:	original inode size
 | |
|  * @to:		new inode size
 | |
|  *
 | |
|  * Handle extension of inode size either caused by extending truncate or by
 | |
|  * write starting after current i_size. We mark the page straddling current
 | |
|  * i_size RO so that page_mkwrite() is called on the nearest write access to
 | |
|  * the page.  This way filesystem can be sure that page_mkwrite() is called on
 | |
|  * the page before user writes to the page via mmap after the i_size has been
 | |
|  * changed.
 | |
|  *
 | |
|  * The function must be called after i_size is updated so that page fault
 | |
|  * coming after we unlock the page will already see the new i_size.
 | |
|  * The function must be called while we still hold i_rwsem - this not only
 | |
|  * makes sure i_size is stable but also that userspace cannot observe new
 | |
|  * i_size value before we are prepared to store mmap writes at new inode size.
 | |
|  */
 | |
| void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
 | |
| {
 | |
| 	int bsize = i_blocksize(inode);
 | |
| 	loff_t rounded_from;
 | |
| 	struct page *page;
 | |
| 	pgoff_t index;
 | |
| 
 | |
| 	WARN_ON(to > inode->i_size);
 | |
| 
 | |
| 	if (from >= to || bsize == PAGE_SIZE)
 | |
| 		return;
 | |
| 	/* Page straddling @from will not have any hole block created? */
 | |
| 	rounded_from = round_up(from, bsize);
 | |
| 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
 | |
| 		return;
 | |
| 
 | |
| 	index = from >> PAGE_SHIFT;
 | |
| 	page = find_lock_page(inode->i_mapping, index);
 | |
| 	/* Page not cached? Nothing to do */
 | |
| 	if (!page)
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
 | |
| 	 * is needed.
 | |
| 	 */
 | |
| 	if (page_mkclean(page))
 | |
| 		set_page_dirty(page);
 | |
| 	unlock_page(page);
 | |
| 	put_page(page);
 | |
| }
 | |
| EXPORT_SYMBOL(pagecache_isize_extended);
 | |
| 
 | |
| /**
 | |
|  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
 | |
|  * @inode: inode
 | |
|  * @lstart: offset of beginning of hole
 | |
|  * @lend: offset of last byte of hole
 | |
|  *
 | |
|  * This function should typically be called before the filesystem
 | |
|  * releases resources associated with the freed range (eg. deallocates
 | |
|  * blocks). This way, pagecache will always stay logically coherent
 | |
|  * with on-disk format, and the filesystem would not have to deal with
 | |
|  * situations such as writepage being called for a page that has already
 | |
|  * had its underlying blocks deallocated.
 | |
|  */
 | |
| void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
 | |
| {
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
 | |
| 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
 | |
| 	/*
 | |
| 	 * This rounding is currently just for example: unmap_mapping_range
 | |
| 	 * expands its hole outwards, whereas we want it to contract the hole
 | |
| 	 * inwards.  However, existing callers of truncate_pagecache_range are
 | |
| 	 * doing their own page rounding first.  Note that unmap_mapping_range
 | |
| 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
 | |
| 	 * once (before truncating pagecache), and without "even_cows" flag:
 | |
| 	 * hole-punching should not remove private COWed pages from the hole.
 | |
| 	 */
 | |
| 	if ((u64)unmap_end > (u64)unmap_start)
 | |
| 		unmap_mapping_range(mapping, unmap_start,
 | |
| 				    1 + unmap_end - unmap_start, 0);
 | |
| 	truncate_inode_pages_range(mapping, lstart, lend);
 | |
| }
 | |
| EXPORT_SYMBOL(truncate_pagecache_range);
 |