forked from mirrors/linux
		
	 a6640c8c2f
			
		
	
	
		a6640c8c2f
		
	
	
	
	
		
			
			- Introduce the generic section-based annotation
    infrastructure a.k.a. ASM_ANNOTATE/ANNOTATE (Peter Zijlstra)
 
  - Convert various facilities to ASM_ANNOTATE/ANNOTATE: (Peter Zijlstra)
 
     - ANNOTATE_NOENDBR
     - ANNOTATE_RETPOLINE_SAFE
     - instrumentation_{begin,end}()
     - VALIDATE_UNRET_BEGIN
     - ANNOTATE_IGNORE_ALTERNATIVE
     - ANNOTATE_INTRA_FUNCTION_CALL
     - {.UN}REACHABLE
 
  - Optimize the annotation-sections parsing code (Peter Zijlstra)
 
  - Centralize annotation definitions in <linux/objtool.h>
 
  - Unify & simplify the barrier_before_unreachable()/unreachable()
    definitions (Peter Zijlstra)
 
  - Convert unreachable() calls to BUG() in x86 code, as
    unreachable() has unreliable code generation (Peter Zijlstra)
 
  - Remove annotate_reachable() and annotate_unreachable(), as it's
    unreliable against compiler optimizations (Peter Zijlstra)
 
  - Fix non-standard ANNOTATE_REACHABLE annotation order (Peter Zijlstra)
 
  - Robustify the annotation code by warning about unknown annotation
    types (Peter Zijlstra)
 
  - Allow arch code to discover jump table size, in preparation of
    annotated jump table support (Ard Biesheuvel)
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmeOHiARHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1gATw/7Bn4A+Isqk9bKo6QgYEnKRoyf760ALQl6
 av/toEy1qCHT/CXCiEn1Hut1JEy4YyD6lIarC1scRl5xy7amRDEcCL0i2CKz3orn
 pf6Fk8/Pi68G2K50o4LTiq8t3uPBJXPlGyDlngh2hFTYRfPRT4m+cig784hmJEXG
 Xq2YzzUNG++U/4Uwe3JH7bX/vcZTYkZfM62FWfp3I4V0OqKU4c+Pkiv4u3Rs7L7b
 c3xk5/PktKZWV5TDsz0wU4SAGxYFGV47hhYM6cxdSYD3la7RVO+qZcqxsJByjpcL
 bvOmGKQ1SAXr08rV7TB+Fh8icaNE8Rbbmxf6slB0hdXBQb8STAZ810mZJFey6pnm
 kXgfhhfBOK5Sq+UbTfzF2JgquCGAbKK75bmNGgf2HaLnVLkFIw3AyMsuFqnxhI4X
 vXRHGnHCYpYUHTxzRYTFYR8XL8twA2kgjWkSe7hYrX/RQZV3XfyKOc2jyoJFMXeX
 LecfGJCE/pziZyj60SXT9WaUTvKc8gjWOEuAnW1pJQRM0zJqB9kjLh1cDYUseuwv
 gGkH59KEu0kcfOb5t/jWoqW3PTENJjEAhOmjun6Jv8wgbOxU88TMmSCWppj54O2X
 c2ibO407535u1SKBWZuaKFBLYftS2GM4WaGsdyTyh+ta48C8An90HMfYNKTHM9Nz
 F61Q7Zbn65E=
 =9nGt
 -----END PGP SIGNATURE-----
Merge tag 'objtool-core-2025-01-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Ingo Molnar:
 - Introduce the generic section-based annotation infrastructure a.k.a.
   ASM_ANNOTATE/ANNOTATE (Peter Zijlstra)
 - Convert various facilities to ASM_ANNOTATE/ANNOTATE: (Peter Zijlstra)
    - ANNOTATE_NOENDBR
    - ANNOTATE_RETPOLINE_SAFE
    - instrumentation_{begin,end}()
    - VALIDATE_UNRET_BEGIN
    - ANNOTATE_IGNORE_ALTERNATIVE
    - ANNOTATE_INTRA_FUNCTION_CALL
    - {.UN}REACHABLE
 - Optimize the annotation-sections parsing code (Peter Zijlstra)
 - Centralize annotation definitions in <linux/objtool.h>
 - Unify & simplify the barrier_before_unreachable()/unreachable()
   definitions (Peter Zijlstra)
 - Convert unreachable() calls to BUG() in x86 code, as unreachable()
   has unreliable code generation (Peter Zijlstra)
 - Remove annotate_reachable() and annotate_unreachable(), as it's
   unreliable against compiler optimizations (Peter Zijlstra)
 - Fix non-standard ANNOTATE_REACHABLE annotation order (Peter Zijlstra)
 - Robustify the annotation code by warning about unknown annotation
   types (Peter Zijlstra)
 - Allow arch code to discover jump table size, in preparation of
   annotated jump table support (Ard Biesheuvel)
* tag 'objtool-core-2025-01-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/mm: Convert unreachable() to BUG()
  objtool: Allow arch code to discover jump table size
  objtool: Warn about unknown annotation types
  objtool: Fix ANNOTATE_REACHABLE to be a normal annotation
  objtool: Convert {.UN}REACHABLE to ANNOTATE
  objtool: Remove annotate_{,un}reachable()
  loongarch: Use ASM_REACHABLE
  x86: Convert unreachable() to BUG()
  unreachable: Unify
  objtool: Collect more annotations in objtool.h
  objtool: Collapse annotate sequences
  objtool: Convert ANNOTATE_INTRA_FUNCTION_CALL to ANNOTATE
  objtool: Convert ANNOTATE_IGNORE_ALTERNATIVE to ANNOTATE
  objtool: Convert VALIDATE_UNRET_BEGIN to ANNOTATE
  objtool: Convert instrumentation_{begin,end}() to ANNOTATE
  objtool: Convert ANNOTATE_RETPOLINE_SAFE to ANNOTATE
  objtool: Convert ANNOTATE_NOENDBR to ANNOTATE
  objtool: Generic annotation infrastructure
		
	
			
		
			
				
	
	
		
			318 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			318 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef __LINUX_COMPILER_H
 | |
| #define __LINUX_COMPILER_H
 | |
| 
 | |
| #include <linux/compiler_types.h>
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| 
 | |
| #ifdef __KERNEL__
 | |
| 
 | |
| /*
 | |
|  * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
 | |
|  * to disable branch tracing on a per file basis.
 | |
|  */
 | |
| void ftrace_likely_update(struct ftrace_likely_data *f, int val,
 | |
| 			  int expect, int is_constant);
 | |
| #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
 | |
|     && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
 | |
| #define likely_notrace(x)	__builtin_expect(!!(x), 1)
 | |
| #define unlikely_notrace(x)	__builtin_expect(!!(x), 0)
 | |
| 
 | |
| #define __branch_check__(x, expect, is_constant) ({			\
 | |
| 			long ______r;					\
 | |
| 			static struct ftrace_likely_data		\
 | |
| 				__aligned(4)				\
 | |
| 				__section("_ftrace_annotated_branch")	\
 | |
| 				______f = {				\
 | |
| 				.data.func = __func__,			\
 | |
| 				.data.file = __FILE__,			\
 | |
| 				.data.line = __LINE__,			\
 | |
| 			};						\
 | |
| 			______r = __builtin_expect(!!(x), expect);	\
 | |
| 			ftrace_likely_update(&______f, ______r,		\
 | |
| 					     expect, is_constant);	\
 | |
| 			______r;					\
 | |
| 		})
 | |
| 
 | |
| /*
 | |
|  * Using __builtin_constant_p(x) to ignore cases where the return
 | |
|  * value is always the same.  This idea is taken from a similar patch
 | |
|  * written by Daniel Walker.
 | |
|  */
 | |
| # ifndef likely
 | |
| #  define likely(x)	(__branch_check__(x, 1, __builtin_constant_p(x)))
 | |
| # endif
 | |
| # ifndef unlikely
 | |
| #  define unlikely(x)	(__branch_check__(x, 0, __builtin_constant_p(x)))
 | |
| # endif
 | |
| 
 | |
| #ifdef CONFIG_PROFILE_ALL_BRANCHES
 | |
| /*
 | |
|  * "Define 'is'", Bill Clinton
 | |
|  * "Define 'if'", Steven Rostedt
 | |
|  */
 | |
| #define if(cond, ...) if ( __trace_if_var( !!(cond , ## __VA_ARGS__) ) )
 | |
| 
 | |
| #define __trace_if_var(cond) (__builtin_constant_p(cond) ? (cond) : __trace_if_value(cond))
 | |
| 
 | |
| #define __trace_if_value(cond) ({			\
 | |
| 	static struct ftrace_branch_data		\
 | |
| 		__aligned(4)				\
 | |
| 		__section("_ftrace_branch")		\
 | |
| 		__if_trace = {				\
 | |
| 			.func = __func__,		\
 | |
| 			.file = __FILE__,		\
 | |
| 			.line = __LINE__,		\
 | |
| 		};					\
 | |
| 	(cond) ?					\
 | |
| 		(__if_trace.miss_hit[1]++,1) :		\
 | |
| 		(__if_trace.miss_hit[0]++,0);		\
 | |
| })
 | |
| 
 | |
| #endif /* CONFIG_PROFILE_ALL_BRANCHES */
 | |
| 
 | |
| #else
 | |
| # define likely(x)	__builtin_expect(!!(x), 1)
 | |
| # define unlikely(x)	__builtin_expect(!!(x), 0)
 | |
| # define likely_notrace(x)	likely(x)
 | |
| # define unlikely_notrace(x)	unlikely(x)
 | |
| #endif
 | |
| 
 | |
| /* Optimization barrier */
 | |
| #ifndef barrier
 | |
| /* The "volatile" is due to gcc bugs */
 | |
| # define barrier() __asm__ __volatile__("": : :"memory")
 | |
| #endif
 | |
| 
 | |
| #ifndef barrier_data
 | |
| /*
 | |
|  * This version is i.e. to prevent dead stores elimination on @ptr
 | |
|  * where gcc and llvm may behave differently when otherwise using
 | |
|  * normal barrier(): while gcc behavior gets along with a normal
 | |
|  * barrier(), llvm needs an explicit input variable to be assumed
 | |
|  * clobbered. The issue is as follows: while the inline asm might
 | |
|  * access any memory it wants, the compiler could have fit all of
 | |
|  * @ptr into memory registers instead, and since @ptr never escaped
 | |
|  * from that, it proved that the inline asm wasn't touching any of
 | |
|  * it. This version works well with both compilers, i.e. we're telling
 | |
|  * the compiler that the inline asm absolutely may see the contents
 | |
|  * of @ptr. See also: https://llvm.org/bugs/show_bug.cgi?id=15495
 | |
|  */
 | |
| # define barrier_data(ptr) __asm__ __volatile__("": :"r"(ptr) :"memory")
 | |
| #endif
 | |
| 
 | |
| /* workaround for GCC PR82365 if needed */
 | |
| #ifndef barrier_before_unreachable
 | |
| # define barrier_before_unreachable() do { } while (0)
 | |
| #endif
 | |
| 
 | |
| /* Unreachable code */
 | |
| #ifdef CONFIG_OBJTOOL
 | |
| /* Annotate a C jump table to allow objtool to follow the code flow */
 | |
| #define __annotate_jump_table __section(".rodata..c_jump_table,\"a\",@progbits #")
 | |
| #else /* !CONFIG_OBJTOOL */
 | |
| #define __annotate_jump_table
 | |
| #endif /* CONFIG_OBJTOOL */
 | |
| 
 | |
| /*
 | |
|  * Mark a position in code as unreachable.  This can be used to
 | |
|  * suppress control flow warnings after asm blocks that transfer
 | |
|  * control elsewhere.
 | |
|  */
 | |
| #define unreachable() do {		\
 | |
| 	barrier_before_unreachable();	\
 | |
| 	__builtin_unreachable();	\
 | |
| } while (0)
 | |
| 
 | |
| /*
 | |
|  * KENTRY - kernel entry point
 | |
|  * This can be used to annotate symbols (functions or data) that are used
 | |
|  * without their linker symbol being referenced explicitly. For example,
 | |
|  * interrupt vector handlers, or functions in the kernel image that are found
 | |
|  * programatically.
 | |
|  *
 | |
|  * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
 | |
|  * are handled in their own way (with KEEP() in linker scripts).
 | |
|  *
 | |
|  * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
 | |
|  * linker script. For example an architecture could KEEP() its entire
 | |
|  * boot/exception vector code rather than annotate each function and data.
 | |
|  */
 | |
| #ifndef KENTRY
 | |
| # define KENTRY(sym)						\
 | |
| 	extern typeof(sym) sym;					\
 | |
| 	static const unsigned long __kentry_##sym		\
 | |
| 	__used							\
 | |
| 	__attribute__((__section__("___kentry+" #sym)))		\
 | |
| 	= (unsigned long)&sym;
 | |
| #endif
 | |
| 
 | |
| #ifndef RELOC_HIDE
 | |
| # define RELOC_HIDE(ptr, off)					\
 | |
|   ({ unsigned long __ptr;					\
 | |
|      __ptr = (unsigned long) (ptr);				\
 | |
|     (typeof(ptr)) (__ptr + (off)); })
 | |
| #endif
 | |
| 
 | |
| #define absolute_pointer(val)	RELOC_HIDE((void *)(val), 0)
 | |
| 
 | |
| #ifndef OPTIMIZER_HIDE_VAR
 | |
| /* Make the optimizer believe the variable can be manipulated arbitrarily. */
 | |
| #define OPTIMIZER_HIDE_VAR(var)						\
 | |
| 	__asm__ ("" : "=r" (var) : "0" (var))
 | |
| #endif
 | |
| 
 | |
| #define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __COUNTER__)
 | |
| 
 | |
| /**
 | |
|  * data_race - mark an expression as containing intentional data races
 | |
|  *
 | |
|  * This data_race() macro is useful for situations in which data races
 | |
|  * should be forgiven.  One example is diagnostic code that accesses
 | |
|  * shared variables but is not a part of the core synchronization design.
 | |
|  * For example, if accesses to a given variable are protected by a lock,
 | |
|  * except for diagnostic code, then the accesses under the lock should
 | |
|  * be plain C-language accesses and those in the diagnostic code should
 | |
|  * use data_race().  This way, KCSAN will complain if buggy lockless
 | |
|  * accesses to that variable are introduced, even if the buggy accesses
 | |
|  * are protected by READ_ONCE() or WRITE_ONCE().
 | |
|  *
 | |
|  * This macro *does not* affect normal code generation, but is a hint
 | |
|  * to tooling that data races here are to be ignored.  If the access must
 | |
|  * be atomic *and* KCSAN should ignore the access, use both data_race()
 | |
|  * and READ_ONCE(), for example, data_race(READ_ONCE(x)).
 | |
|  */
 | |
| #define data_race(expr)							\
 | |
| ({									\
 | |
| 	__kcsan_disable_current();					\
 | |
| 	__auto_type __v = (expr);					\
 | |
| 	__kcsan_enable_current();					\
 | |
| 	__v;								\
 | |
| })
 | |
| 
 | |
| #endif /* __KERNEL__ */
 | |
| 
 | |
| /**
 | |
|  * offset_to_ptr - convert a relative memory offset to an absolute pointer
 | |
|  * @off:	the address of the 32-bit offset value
 | |
|  */
 | |
| static inline void *offset_to_ptr(const int *off)
 | |
| {
 | |
| 	return (void *)((unsigned long)off + *off);
 | |
| }
 | |
| 
 | |
| #endif /* __ASSEMBLY__ */
 | |
| 
 | |
| #ifdef CONFIG_64BIT
 | |
| #define ARCH_SEL(a,b) a
 | |
| #else
 | |
| #define ARCH_SEL(a,b) b
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Force the compiler to emit 'sym' as a symbol, so that we can reference
 | |
|  * it from inline assembler. Necessary in case 'sym' could be inlined
 | |
|  * otherwise, or eliminated entirely due to lack of references that are
 | |
|  * visible to the compiler.
 | |
|  */
 | |
| #define ___ADDRESSABLE(sym, __attrs)						\
 | |
| 	static void * __used __attrs						\
 | |
| 	__UNIQUE_ID(__PASTE(__addressable_,sym)) = (void *)(uintptr_t)&sym;
 | |
| 
 | |
| #define __ADDRESSABLE(sym) \
 | |
| 	___ADDRESSABLE(sym, __section(".discard.addressable"))
 | |
| 
 | |
| #define __ADDRESSABLE_ASM(sym)						\
 | |
| 	.pushsection .discard.addressable,"aw";				\
 | |
| 	.align ARCH_SEL(8,4);						\
 | |
| 	ARCH_SEL(.quad, .long) __stringify(sym);			\
 | |
| 	.popsection;
 | |
| 
 | |
| #define __ADDRESSABLE_ASM_STR(sym) __stringify(__ADDRESSABLE_ASM(sym))
 | |
| 
 | |
| #ifdef __CHECKER__
 | |
| #define __BUILD_BUG_ON_ZERO_MSG(e, msg) (0)
 | |
| #else /* __CHECKER__ */
 | |
| #define __BUILD_BUG_ON_ZERO_MSG(e, msg) ((int)sizeof(struct {_Static_assert(!(e), msg);}))
 | |
| #endif /* __CHECKER__ */
 | |
| 
 | |
| /* &a[0] degrades to a pointer: a different type from an array */
 | |
| #define __must_be_array(a)	__BUILD_BUG_ON_ZERO_MSG(__same_type((a), &(a)[0]), "must be array")
 | |
| 
 | |
| /* Require C Strings (i.e. NUL-terminated) lack the "nonstring" attribute. */
 | |
| #define __must_be_cstr(p) \
 | |
| 	__BUILD_BUG_ON_ZERO_MSG(__annotated(p, nonstring), "must be cstr (NUL-terminated)")
 | |
| 
 | |
| /*
 | |
|  * This returns a constant expression while determining if an argument is
 | |
|  * a constant expression, most importantly without evaluating the argument.
 | |
|  * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
 | |
|  *
 | |
|  * Details:
 | |
|  * - sizeof() return an integer constant expression, and does not evaluate
 | |
|  *   the value of its operand; it only examines the type of its operand.
 | |
|  * - The results of comparing two integer constant expressions is also
 | |
|  *   an integer constant expression.
 | |
|  * - The first literal "8" isn't important. It could be any literal value.
 | |
|  * - The second literal "8" is to avoid warnings about unaligned pointers;
 | |
|  *   this could otherwise just be "1".
 | |
|  * - (long)(x) is used to avoid warnings about 64-bit types on 32-bit
 | |
|  *   architectures.
 | |
|  * - The C Standard defines "null pointer constant", "(void *)0", as
 | |
|  *   distinct from other void pointers.
 | |
|  * - If (x) is an integer constant expression, then the "* 0l" resolves
 | |
|  *   it into an integer constant expression of value 0. Since it is cast to
 | |
|  *   "void *", this makes the second operand a null pointer constant.
 | |
|  * - If (x) is not an integer constant expression, then the second operand
 | |
|  *   resolves to a void pointer (but not a null pointer constant: the value
 | |
|  *   is not an integer constant 0).
 | |
|  * - The conditional operator's third operand, "(int *)8", is an object
 | |
|  *   pointer (to type "int").
 | |
|  * - The behavior (including the return type) of the conditional operator
 | |
|  *   ("operand1 ? operand2 : operand3") depends on the kind of expressions
 | |
|  *   given for the second and third operands. This is the central mechanism
 | |
|  *   of the macro:
 | |
|  *   - When one operand is a null pointer constant (i.e. when x is an integer
 | |
|  *     constant expression) and the other is an object pointer (i.e. our
 | |
|  *     third operand), the conditional operator returns the type of the
 | |
|  *     object pointer operand (i.e. "int *"). Here, within the sizeof(), we
 | |
|  *     would then get:
 | |
|  *       sizeof(*((int *)(...))  == sizeof(int)  == 4
 | |
|  *   - When one operand is a void pointer (i.e. when x is not an integer
 | |
|  *     constant expression) and the other is an object pointer (i.e. our
 | |
|  *     third operand), the conditional operator returns a "void *" type.
 | |
|  *     Here, within the sizeof(), we would then get:
 | |
|  *       sizeof(*((void *)(...)) == sizeof(void) == 1
 | |
|  * - The equality comparison to "sizeof(int)" therefore depends on (x):
 | |
|  *     sizeof(int) == sizeof(int)     (x) was a constant expression
 | |
|  *     sizeof(int) != sizeof(void)    (x) was not a constant expression
 | |
|  */
 | |
| #define __is_constexpr(x) \
 | |
| 	(sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
 | |
| 
 | |
| /*
 | |
|  * Whether 'type' is a signed type or an unsigned type. Supports scalar types,
 | |
|  * bool and also pointer types.
 | |
|  */
 | |
| #define is_signed_type(type) (((type)(-1)) < (__force type)1)
 | |
| #define is_unsigned_type(type) (!is_signed_type(type))
 | |
| 
 | |
| /*
 | |
|  * Useful shorthand for "is this condition known at compile-time?"
 | |
|  *
 | |
|  * Note that the condition may involve non-constant values,
 | |
|  * but the compiler may know enough about the details of the
 | |
|  * values to determine that the condition is statically true.
 | |
|  */
 | |
| #define statically_true(x) (__builtin_constant_p(x) && (x))
 | |
| 
 | |
| /*
 | |
|  * This is needed in functions which generate the stack canary, see
 | |
|  * arch/x86/kernel/smpboot.c::start_secondary() for an example.
 | |
|  */
 | |
| #define prevent_tail_call_optimization()	mb()
 | |
| 
 | |
| #include <asm/rwonce.h>
 | |
| 
 | |
| #endif /* __LINUX_COMPILER_H */
 |