forked from mirrors/linux
		
	 61307b7be4
			
		
	
	
		61307b7be4
		
	
	
	
	
		
			
			documented (hopefully adequately) in the respective changelogs.  Notable
 series include:
 
 - Lucas Stach has provided some page-mapping
   cleanup/consolidation/maintainability work in the series "mm/treewide:
   Remove pXd_huge() API".
 
 - In the series "Allow migrate on protnone reference with
   MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
   MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one
   test.
 
 - In their series "Memory allocation profiling" Kent Overstreet and
   Suren Baghdasaryan have contributed a means of determining (via
   /proc/allocinfo) whereabouts in the kernel memory is being allocated:
   number of calls and amount of memory.
 
 - Matthew Wilcox has provided the series "Various significant MM
   patches" which does a number of rather unrelated things, but in largely
   similar code sites.
 
 - In his series "mm: page_alloc: freelist migratetype hygiene" Johannes
   Weiner has fixed the page allocator's handling of migratetype requests,
   with resulting improvements in compaction efficiency.
 
 - In the series "make the hugetlb migration strategy consistent" Baolin
   Wang has fixed a hugetlb migration issue, which should improve hugetlb
   allocation reliability.
 
 - Liu Shixin has hit an I/O meltdown caused by readahead in a
   memory-tight memcg.  Addressed in the series "Fix I/O high when memory
   almost met memcg limit".
 
 - In the series "mm/filemap: optimize folio adding and splitting" Kairui
   Song has optimized pagecache insertion, yielding ~10% performance
   improvement in one test.
 
 - Baoquan He has cleaned up and consolidated the early zone
   initialization code in the series "mm/mm_init.c: refactor
   free_area_init_core()".
 
 - Baoquan has also redone some MM initializatio code in the series
   "mm/init: minor clean up and improvement".
 
 - MM helper cleanups from Christoph Hellwig in his series "remove
   follow_pfn".
 
 - More cleanups from Matthew Wilcox in the series "Various page->flags
   cleanups".
 
 - Vlastimil Babka has contributed maintainability improvements in the
   series "memcg_kmem hooks refactoring".
 
 - More folio conversions and cleanups in Matthew Wilcox's series
 
 	"Convert huge_zero_page to huge_zero_folio"
 	"khugepaged folio conversions"
 	"Remove page_idle and page_young wrappers"
 	"Use folio APIs in procfs"
 	"Clean up __folio_put()"
 	"Some cleanups for memory-failure"
 	"Remove page_mapping()"
 	"More folio compat code removal"
 
 - David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb
   functions to work on folis".
 
 - Code consolidation and cleanup work related to GUP's handling of
   hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
 
 - Rick Edgecombe has developed some fixes to stack guard gaps in the
   series "Cover a guard gap corner case".
 
 - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series
   "mm/ksm: fix ksm exec support for prctl".
 
 - Baolin Wang has implemented NUMA balancing for multi-size THPs.  This
   is a simple first-cut implementation for now.  The series is "support
   multi-size THP numa balancing".
 
 - Cleanups to vma handling helper functions from Matthew Wilcox in the
   series "Unify vma_address and vma_pgoff_address".
 
 - Some selftests maintenance work from Dev Jain in the series
   "selftests/mm: mremap_test: Optimizations and style fixes".
 
 - Improvements to the swapping of multi-size THPs from Ryan Roberts in
   the series "Swap-out mTHP without splitting".
 
 - Kefeng Wang has significantly optimized the handling of arm64's
   permission page faults in the series
 
 	"arch/mm/fault: accelerate pagefault when badaccess"
 	"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
 
 - GUP cleanups from David Hildenbrand in "mm/gup: consistently call it
   GUP-fast".
 
 - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to
   use struct vm_fault".
 
 - selftests build fixes from John Hubbard in the series "Fix
   selftests/mm build without requiring "make headers"".
 
 - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
   series "Improved Memory Tier Creation for CPUless NUMA Nodes".  Fixes
   the initialization code so that migration between different memory types
   works as intended.
 
 - David Hildenbrand has improved follow_pte() and fixed an errant driver
   in the series "mm: follow_pte() improvements and acrn follow_pte()
   fixes".
 
 - David also did some cleanup work on large folio mapcounts in his
   series "mm: mapcount for large folios + page_mapcount() cleanups".
 
 - Folio conversions in KSM in Alex Shi's series "transfer page to folio
   in KSM".
 
 - Barry Song has added some sysfs stats for monitoring multi-size THP's
   in the series "mm: add per-order mTHP alloc and swpout counters".
 
 - Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled
   and limit checking cleanups".
 
 - Matthew Wilcox has been looking at buffer_head code and found the
   documentation to be lacking.  The series is "Improve buffer head
   documentation".
 
 - Multi-size THPs get more work, this time from Lance Yang.  His series
   "mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes
   the freeing of these things.
 
 - Kemeng Shi has added more userspace-visible writeback instrumentation
   in the series "Improve visibility of writeback".
 
 - Kemeng Shi then sent some maintenance work on top in the series "Fix
   and cleanups to page-writeback".
 
 - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the
   series "Improve anon_vma scalability for anon VMAs".  Intel's test bot
   reported an improbable 3x improvement in one test.
 
 - SeongJae Park adds some DAMON feature work in the series
 
 	"mm/damon: add a DAMOS filter type for page granularity access recheck"
 	"selftests/damon: add DAMOS quota goal test"
 
 - Also some maintenance work in the series
 
 	"mm/damon/paddr: simplify page level access re-check for pageout"
 	"mm/damon: misc fixes and improvements"
 
 - David Hildenbrand has disabled some known-to-fail selftests ni the
   series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL".
 
 - memcg metadata storage optimizations from Shakeel Butt in "memcg:
   reduce memory consumption by memcg stats".
 
 - DAX fixes and maintenance work from Vishal Verma in the series
   "dax/bus.c: Fixups for dax-bus locking".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZkgQYwAKCRDdBJ7gKXxA
 jrdKAP9WVJdpEcXxpoub/vVE0UWGtffr8foifi9bCwrQrGh5mgEAx7Yf0+d/oBZB
 nvA4E0DcPrUAFy144FNM0NTCb7u9vAw=
 =V3R/
 -----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull mm updates from Andrew Morton:
 "The usual shower of singleton fixes and minor series all over MM,
  documented (hopefully adequately) in the respective changelogs.
  Notable series include:
   - Lucas Stach has provided some page-mapping cleanup/consolidation/
     maintainability work in the series "mm/treewide: Remove pXd_huge()
     API".
   - In the series "Allow migrate on protnone reference with
     MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
     MPOL_PREFERRED_MANY mode, yielding almost doubled performance in
     one test.
   - In their series "Memory allocation profiling" Kent Overstreet and
     Suren Baghdasaryan have contributed a means of determining (via
     /proc/allocinfo) whereabouts in the kernel memory is being
     allocated: number of calls and amount of memory.
   - Matthew Wilcox has provided the series "Various significant MM
     patches" which does a number of rather unrelated things, but in
     largely similar code sites.
   - In his series "mm: page_alloc: freelist migratetype hygiene"
     Johannes Weiner has fixed the page allocator's handling of
     migratetype requests, with resulting improvements in compaction
     efficiency.
   - In the series "make the hugetlb migration strategy consistent"
     Baolin Wang has fixed a hugetlb migration issue, which should
     improve hugetlb allocation reliability.
   - Liu Shixin has hit an I/O meltdown caused by readahead in a
     memory-tight memcg. Addressed in the series "Fix I/O high when
     memory almost met memcg limit".
   - In the series "mm/filemap: optimize folio adding and splitting"
     Kairui Song has optimized pagecache insertion, yielding ~10%
     performance improvement in one test.
   - Baoquan He has cleaned up and consolidated the early zone
     initialization code in the series "mm/mm_init.c: refactor
     free_area_init_core()".
   - Baoquan has also redone some MM initializatio code in the series
     "mm/init: minor clean up and improvement".
   - MM helper cleanups from Christoph Hellwig in his series "remove
     follow_pfn".
   - More cleanups from Matthew Wilcox in the series "Various
     page->flags cleanups".
   - Vlastimil Babka has contributed maintainability improvements in the
     series "memcg_kmem hooks refactoring".
   - More folio conversions and cleanups in Matthew Wilcox's series:
	"Convert huge_zero_page to huge_zero_folio"
	"khugepaged folio conversions"
	"Remove page_idle and page_young wrappers"
	"Use folio APIs in procfs"
	"Clean up __folio_put()"
	"Some cleanups for memory-failure"
	"Remove page_mapping()"
	"More folio compat code removal"
   - David Hildenbrand chipped in with "fs/proc/task_mmu: convert
     hugetlb functions to work on folis".
   - Code consolidation and cleanup work related to GUP's handling of
     hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
   - Rick Edgecombe has developed some fixes to stack guard gaps in the
     series "Cover a guard gap corner case".
   - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the
     series "mm/ksm: fix ksm exec support for prctl".
   - Baolin Wang has implemented NUMA balancing for multi-size THPs.
     This is a simple first-cut implementation for now. The series is
     "support multi-size THP numa balancing".
   - Cleanups to vma handling helper functions from Matthew Wilcox in
     the series "Unify vma_address and vma_pgoff_address".
   - Some selftests maintenance work from Dev Jain in the series
     "selftests/mm: mremap_test: Optimizations and style fixes".
   - Improvements to the swapping of multi-size THPs from Ryan Roberts
     in the series "Swap-out mTHP without splitting".
   - Kefeng Wang has significantly optimized the handling of arm64's
     permission page faults in the series
	"arch/mm/fault: accelerate pagefault when badaccess"
	"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
   - GUP cleanups from David Hildenbrand in "mm/gup: consistently call
     it GUP-fast".
   - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault
     path to use struct vm_fault".
   - selftests build fixes from John Hubbard in the series "Fix
     selftests/mm build without requiring "make headers"".
   - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
     series "Improved Memory Tier Creation for CPUless NUMA Nodes".
     Fixes the initialization code so that migration between different
     memory types works as intended.
   - David Hildenbrand has improved follow_pte() and fixed an errant
     driver in the series "mm: follow_pte() improvements and acrn
     follow_pte() fixes".
   - David also did some cleanup work on large folio mapcounts in his
     series "mm: mapcount for large folios + page_mapcount() cleanups".
   - Folio conversions in KSM in Alex Shi's series "transfer page to
     folio in KSM".
   - Barry Song has added some sysfs stats for monitoring multi-size
     THP's in the series "mm: add per-order mTHP alloc and swpout
     counters".
   - Some zswap cleanups from Yosry Ahmed in the series "zswap
     same-filled and limit checking cleanups".
   - Matthew Wilcox has been looking at buffer_head code and found the
     documentation to be lacking. The series is "Improve buffer head
     documentation".
   - Multi-size THPs get more work, this time from Lance Yang. His
     series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free"
     optimizes the freeing of these things.
   - Kemeng Shi has added more userspace-visible writeback
     instrumentation in the series "Improve visibility of writeback".
   - Kemeng Shi then sent some maintenance work on top in the series
     "Fix and cleanups to page-writeback".
   - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in
     the series "Improve anon_vma scalability for anon VMAs". Intel's
     test bot reported an improbable 3x improvement in one test.
   - SeongJae Park adds some DAMON feature work in the series
	"mm/damon: add a DAMOS filter type for page granularity access recheck"
	"selftests/damon: add DAMOS quota goal test"
   - Also some maintenance work in the series
	"mm/damon/paddr: simplify page level access re-check for pageout"
	"mm/damon: misc fixes and improvements"
   - David Hildenbrand has disabled some known-to-fail selftests ni the
     series "selftests: mm: cow: flag vmsplice() hugetlb tests as
     XFAIL".
   - memcg metadata storage optimizations from Shakeel Butt in "memcg:
     reduce memory consumption by memcg stats".
   - DAX fixes and maintenance work from Vishal Verma in the series
     "dax/bus.c: Fixups for dax-bus locking""
* tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits)
  memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order
  selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime
  mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp
  mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault
  selftests: cgroup: add tests to verify the zswap writeback path
  mm: memcg: make alloc_mem_cgroup_per_node_info() return bool
  mm/damon/core: fix return value from damos_wmark_metric_value
  mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED
  selftests: cgroup: remove redundant enabling of memory controller
  Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree
  Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT
  Docs/mm/damon/design: use a list for supported filters
  Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command
  Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file
  selftests/damon: classify tests for functionalities and regressions
  selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None'
  selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts
  selftests/damon/_damon_sysfs: check errors from nr_schemes file reads
  mm/damon/core: initialize ->esz_bp from damos_quota_init_priv()
  selftests/damon: add a test for DAMOS quota goal
  ...
		
	
			
		
			
				
	
	
		
			2213 lines
		
	
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2213 lines
		
	
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef _LINUX_SCHED_H
 | |
| #define _LINUX_SCHED_H
 | |
| 
 | |
| /*
 | |
|  * Define 'struct task_struct' and provide the main scheduler
 | |
|  * APIs (schedule(), wakeup variants, etc.)
 | |
|  */
 | |
| 
 | |
| #include <uapi/linux/sched.h>
 | |
| 
 | |
| #include <asm/current.h>
 | |
| #include <asm/processor.h>
 | |
| #include <linux/thread_info.h>
 | |
| #include <linux/preempt.h>
 | |
| #include <linux/cpumask.h>
 | |
| 
 | |
| #include <linux/cache.h>
 | |
| #include <linux/irqflags_types.h>
 | |
| #include <linux/smp_types.h>
 | |
| #include <linux/pid_types.h>
 | |
| #include <linux/sem_types.h>
 | |
| #include <linux/shm.h>
 | |
| #include <linux/kmsan_types.h>
 | |
| #include <linux/mutex_types.h>
 | |
| #include <linux/plist_types.h>
 | |
| #include <linux/hrtimer_types.h>
 | |
| #include <linux/timer_types.h>
 | |
| #include <linux/seccomp_types.h>
 | |
| #include <linux/nodemask_types.h>
 | |
| #include <linux/refcount_types.h>
 | |
| #include <linux/resource.h>
 | |
| #include <linux/latencytop.h>
 | |
| #include <linux/sched/prio.h>
 | |
| #include <linux/sched/types.h>
 | |
| #include <linux/signal_types.h>
 | |
| #include <linux/syscall_user_dispatch_types.h>
 | |
| #include <linux/mm_types_task.h>
 | |
| #include <linux/task_io_accounting.h>
 | |
| #include <linux/posix-timers_types.h>
 | |
| #include <linux/restart_block.h>
 | |
| #include <uapi/linux/rseq.h>
 | |
| #include <linux/seqlock_types.h>
 | |
| #include <linux/kcsan.h>
 | |
| #include <linux/rv.h>
 | |
| #include <linux/livepatch_sched.h>
 | |
| #include <linux/uidgid_types.h>
 | |
| #include <asm/kmap_size.h>
 | |
| 
 | |
| /* task_struct member predeclarations (sorted alphabetically): */
 | |
| struct audit_context;
 | |
| struct bio_list;
 | |
| struct blk_plug;
 | |
| struct bpf_local_storage;
 | |
| struct bpf_run_ctx;
 | |
| struct capture_control;
 | |
| struct cfs_rq;
 | |
| struct fs_struct;
 | |
| struct futex_pi_state;
 | |
| struct io_context;
 | |
| struct io_uring_task;
 | |
| struct mempolicy;
 | |
| struct nameidata;
 | |
| struct nsproxy;
 | |
| struct perf_event_context;
 | |
| struct pid_namespace;
 | |
| struct pipe_inode_info;
 | |
| struct rcu_node;
 | |
| struct reclaim_state;
 | |
| struct robust_list_head;
 | |
| struct root_domain;
 | |
| struct rq;
 | |
| struct sched_attr;
 | |
| struct sched_dl_entity;
 | |
| struct seq_file;
 | |
| struct sighand_struct;
 | |
| struct signal_struct;
 | |
| struct task_delay_info;
 | |
| struct task_group;
 | |
| struct task_struct;
 | |
| struct user_event_mm;
 | |
| 
 | |
| /*
 | |
|  * Task state bitmask. NOTE! These bits are also
 | |
|  * encoded in fs/proc/array.c: get_task_state().
 | |
|  *
 | |
|  * We have two separate sets of flags: task->__state
 | |
|  * is about runnability, while task->exit_state are
 | |
|  * about the task exiting. Confusing, but this way
 | |
|  * modifying one set can't modify the other one by
 | |
|  * mistake.
 | |
|  */
 | |
| 
 | |
| /* Used in tsk->__state: */
 | |
| #define TASK_RUNNING			0x00000000
 | |
| #define TASK_INTERRUPTIBLE		0x00000001
 | |
| #define TASK_UNINTERRUPTIBLE		0x00000002
 | |
| #define __TASK_STOPPED			0x00000004
 | |
| #define __TASK_TRACED			0x00000008
 | |
| /* Used in tsk->exit_state: */
 | |
| #define EXIT_DEAD			0x00000010
 | |
| #define EXIT_ZOMBIE			0x00000020
 | |
| #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
 | |
| /* Used in tsk->__state again: */
 | |
| #define TASK_PARKED			0x00000040
 | |
| #define TASK_DEAD			0x00000080
 | |
| #define TASK_WAKEKILL			0x00000100
 | |
| #define TASK_WAKING			0x00000200
 | |
| #define TASK_NOLOAD			0x00000400
 | |
| #define TASK_NEW			0x00000800
 | |
| #define TASK_RTLOCK_WAIT		0x00001000
 | |
| #define TASK_FREEZABLE			0x00002000
 | |
| #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
 | |
| #define TASK_FROZEN			0x00008000
 | |
| #define TASK_STATE_MAX			0x00010000
 | |
| 
 | |
| #define TASK_ANY			(TASK_STATE_MAX-1)
 | |
| 
 | |
| /*
 | |
|  * DO NOT ADD ANY NEW USERS !
 | |
|  */
 | |
| #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
 | |
| 
 | |
| /* Convenience macros for the sake of set_current_state: */
 | |
| #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 | |
| #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
 | |
| #define TASK_TRACED			__TASK_TRACED
 | |
| 
 | |
| #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
 | |
| 
 | |
| /* Convenience macros for the sake of wake_up(): */
 | |
| #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 | |
| 
 | |
| /* get_task_state(): */
 | |
| #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
 | |
| 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 | |
| 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
 | |
| 					 TASK_PARKED)
 | |
| 
 | |
| #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
 | |
| 
 | |
| #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
 | |
| #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
 | |
| #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
 | |
| 
 | |
| /*
 | |
|  * Special states are those that do not use the normal wait-loop pattern. See
 | |
|  * the comment with set_special_state().
 | |
|  */
 | |
| #define is_special_task_state(state)				\
 | |
| 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 | |
| # define debug_normal_state_change(state_value)				\
 | |
| 	do {								\
 | |
| 		WARN_ON_ONCE(is_special_task_state(state_value));	\
 | |
| 		current->task_state_change = _THIS_IP_;			\
 | |
| 	} while (0)
 | |
| 
 | |
| # define debug_special_state_change(state_value)			\
 | |
| 	do {								\
 | |
| 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
 | |
| 		current->task_state_change = _THIS_IP_;			\
 | |
| 	} while (0)
 | |
| 
 | |
| # define debug_rtlock_wait_set_state()					\
 | |
| 	do {								 \
 | |
| 		current->saved_state_change = current->task_state_change;\
 | |
| 		current->task_state_change = _THIS_IP_;			 \
 | |
| 	} while (0)
 | |
| 
 | |
| # define debug_rtlock_wait_restore_state()				\
 | |
| 	do {								 \
 | |
| 		current->task_state_change = current->saved_state_change;\
 | |
| 	} while (0)
 | |
| 
 | |
| #else
 | |
| # define debug_normal_state_change(cond)	do { } while (0)
 | |
| # define debug_special_state_change(cond)	do { } while (0)
 | |
| # define debug_rtlock_wait_set_state()		do { } while (0)
 | |
| # define debug_rtlock_wait_restore_state()	do { } while (0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * set_current_state() includes a barrier so that the write of current->__state
 | |
|  * is correctly serialised wrt the caller's subsequent test of whether to
 | |
|  * actually sleep:
 | |
|  *
 | |
|  *   for (;;) {
 | |
|  *	set_current_state(TASK_UNINTERRUPTIBLE);
 | |
|  *	if (CONDITION)
 | |
|  *	   break;
 | |
|  *
 | |
|  *	schedule();
 | |
|  *   }
 | |
|  *   __set_current_state(TASK_RUNNING);
 | |
|  *
 | |
|  * If the caller does not need such serialisation (because, for instance, the
 | |
|  * CONDITION test and condition change and wakeup are under the same lock) then
 | |
|  * use __set_current_state().
 | |
|  *
 | |
|  * The above is typically ordered against the wakeup, which does:
 | |
|  *
 | |
|  *   CONDITION = 1;
 | |
|  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
 | |
|  *
 | |
|  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
 | |
|  * accessing p->__state.
 | |
|  *
 | |
|  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
 | |
|  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 | |
|  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
 | |
|  *
 | |
|  * However, with slightly different timing the wakeup TASK_RUNNING store can
 | |
|  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
 | |
|  * a problem either because that will result in one extra go around the loop
 | |
|  * and our @cond test will save the day.
 | |
|  *
 | |
|  * Also see the comments of try_to_wake_up().
 | |
|  */
 | |
| #define __set_current_state(state_value)				\
 | |
| 	do {								\
 | |
| 		debug_normal_state_change((state_value));		\
 | |
| 		WRITE_ONCE(current->__state, (state_value));		\
 | |
| 	} while (0)
 | |
| 
 | |
| #define set_current_state(state_value)					\
 | |
| 	do {								\
 | |
| 		debug_normal_state_change((state_value));		\
 | |
| 		smp_store_mb(current->__state, (state_value));		\
 | |
| 	} while (0)
 | |
| 
 | |
| /*
 | |
|  * set_special_state() should be used for those states when the blocking task
 | |
|  * can not use the regular condition based wait-loop. In that case we must
 | |
|  * serialize against wakeups such that any possible in-flight TASK_RUNNING
 | |
|  * stores will not collide with our state change.
 | |
|  */
 | |
| #define set_special_state(state_value)					\
 | |
| 	do {								\
 | |
| 		unsigned long flags; /* may shadow */			\
 | |
| 									\
 | |
| 		raw_spin_lock_irqsave(¤t->pi_lock, flags);	\
 | |
| 		debug_special_state_change((state_value));		\
 | |
| 		WRITE_ONCE(current->__state, (state_value));		\
 | |
| 		raw_spin_unlock_irqrestore(¤t->pi_lock, flags);	\
 | |
| 	} while (0)
 | |
| 
 | |
| /*
 | |
|  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
 | |
|  *
 | |
|  * RT's spin/rwlock substitutions are state preserving. The state of the
 | |
|  * task when blocking on the lock is saved in task_struct::saved_state and
 | |
|  * restored after the lock has been acquired.  These operations are
 | |
|  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
 | |
|  * lock related wakeups while the task is blocked on the lock are
 | |
|  * redirected to operate on task_struct::saved_state to ensure that these
 | |
|  * are not dropped. On restore task_struct::saved_state is set to
 | |
|  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
 | |
|  *
 | |
|  * The lock operation looks like this:
 | |
|  *
 | |
|  *	current_save_and_set_rtlock_wait_state();
 | |
|  *	for (;;) {
 | |
|  *		if (try_lock())
 | |
|  *			break;
 | |
|  *		raw_spin_unlock_irq(&lock->wait_lock);
 | |
|  *		schedule_rtlock();
 | |
|  *		raw_spin_lock_irq(&lock->wait_lock);
 | |
|  *		set_current_state(TASK_RTLOCK_WAIT);
 | |
|  *	}
 | |
|  *	current_restore_rtlock_saved_state();
 | |
|  */
 | |
| #define current_save_and_set_rtlock_wait_state()			\
 | |
| 	do {								\
 | |
| 		lockdep_assert_irqs_disabled();				\
 | |
| 		raw_spin_lock(¤t->pi_lock);			\
 | |
| 		current->saved_state = current->__state;		\
 | |
| 		debug_rtlock_wait_set_state();				\
 | |
| 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
 | |
| 		raw_spin_unlock(¤t->pi_lock);			\
 | |
| 	} while (0);
 | |
| 
 | |
| #define current_restore_rtlock_saved_state()				\
 | |
| 	do {								\
 | |
| 		lockdep_assert_irqs_disabled();				\
 | |
| 		raw_spin_lock(¤t->pi_lock);			\
 | |
| 		debug_rtlock_wait_restore_state();			\
 | |
| 		WRITE_ONCE(current->__state, current->saved_state);	\
 | |
| 		current->saved_state = TASK_RUNNING;			\
 | |
| 		raw_spin_unlock(¤t->pi_lock);			\
 | |
| 	} while (0);
 | |
| 
 | |
| #define get_current_state()	READ_ONCE(current->__state)
 | |
| 
 | |
| /*
 | |
|  * Define the task command name length as enum, then it can be visible to
 | |
|  * BPF programs.
 | |
|  */
 | |
| enum {
 | |
| 	TASK_COMM_LEN = 16,
 | |
| };
 | |
| 
 | |
| extern void sched_tick(void);
 | |
| 
 | |
| #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
 | |
| 
 | |
| extern long schedule_timeout(long timeout);
 | |
| extern long schedule_timeout_interruptible(long timeout);
 | |
| extern long schedule_timeout_killable(long timeout);
 | |
| extern long schedule_timeout_uninterruptible(long timeout);
 | |
| extern long schedule_timeout_idle(long timeout);
 | |
| asmlinkage void schedule(void);
 | |
| extern void schedule_preempt_disabled(void);
 | |
| asmlinkage void preempt_schedule_irq(void);
 | |
| #ifdef CONFIG_PREEMPT_RT
 | |
|  extern void schedule_rtlock(void);
 | |
| #endif
 | |
| 
 | |
| extern int __must_check io_schedule_prepare(void);
 | |
| extern void io_schedule_finish(int token);
 | |
| extern long io_schedule_timeout(long timeout);
 | |
| extern void io_schedule(void);
 | |
| 
 | |
| /**
 | |
|  * struct prev_cputime - snapshot of system and user cputime
 | |
|  * @utime: time spent in user mode
 | |
|  * @stime: time spent in system mode
 | |
|  * @lock: protects the above two fields
 | |
|  *
 | |
|  * Stores previous user/system time values such that we can guarantee
 | |
|  * monotonicity.
 | |
|  */
 | |
| struct prev_cputime {
 | |
| #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 | |
| 	u64				utime;
 | |
| 	u64				stime;
 | |
| 	raw_spinlock_t			lock;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| enum vtime_state {
 | |
| 	/* Task is sleeping or running in a CPU with VTIME inactive: */
 | |
| 	VTIME_INACTIVE = 0,
 | |
| 	/* Task is idle */
 | |
| 	VTIME_IDLE,
 | |
| 	/* Task runs in kernelspace in a CPU with VTIME active: */
 | |
| 	VTIME_SYS,
 | |
| 	/* Task runs in userspace in a CPU with VTIME active: */
 | |
| 	VTIME_USER,
 | |
| 	/* Task runs as guests in a CPU with VTIME active: */
 | |
| 	VTIME_GUEST,
 | |
| };
 | |
| 
 | |
| struct vtime {
 | |
| 	seqcount_t		seqcount;
 | |
| 	unsigned long long	starttime;
 | |
| 	enum vtime_state	state;
 | |
| 	unsigned int		cpu;
 | |
| 	u64			utime;
 | |
| 	u64			stime;
 | |
| 	u64			gtime;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Utilization clamp constraints.
 | |
|  * @UCLAMP_MIN:	Minimum utilization
 | |
|  * @UCLAMP_MAX:	Maximum utilization
 | |
|  * @UCLAMP_CNT:	Utilization clamp constraints count
 | |
|  */
 | |
| enum uclamp_id {
 | |
| 	UCLAMP_MIN = 0,
 | |
| 	UCLAMP_MAX,
 | |
| 	UCLAMP_CNT
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| extern struct root_domain def_root_domain;
 | |
| extern struct mutex sched_domains_mutex;
 | |
| #endif
 | |
| 
 | |
| struct sched_param {
 | |
| 	int sched_priority;
 | |
| };
 | |
| 
 | |
| struct sched_info {
 | |
| #ifdef CONFIG_SCHED_INFO
 | |
| 	/* Cumulative counters: */
 | |
| 
 | |
| 	/* # of times we have run on this CPU: */
 | |
| 	unsigned long			pcount;
 | |
| 
 | |
| 	/* Time spent waiting on a runqueue: */
 | |
| 	unsigned long long		run_delay;
 | |
| 
 | |
| 	/* Timestamps: */
 | |
| 
 | |
| 	/* When did we last run on a CPU? */
 | |
| 	unsigned long long		last_arrival;
 | |
| 
 | |
| 	/* When were we last queued to run? */
 | |
| 	unsigned long long		last_queued;
 | |
| 
 | |
| #endif /* CONFIG_SCHED_INFO */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Integer metrics need fixed point arithmetic, e.g., sched/fair
 | |
|  * has a few: load, load_avg, util_avg, freq, and capacity.
 | |
|  *
 | |
|  * We define a basic fixed point arithmetic range, and then formalize
 | |
|  * all these metrics based on that basic range.
 | |
|  */
 | |
| # define SCHED_FIXEDPOINT_SHIFT		10
 | |
| # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
 | |
| 
 | |
| /* Increase resolution of cpu_capacity calculations */
 | |
| # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
 | |
| # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
 | |
| 
 | |
| struct load_weight {
 | |
| 	unsigned long			weight;
 | |
| 	u32				inv_weight;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The load/runnable/util_avg accumulates an infinite geometric series
 | |
|  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
 | |
|  *
 | |
|  * [load_avg definition]
 | |
|  *
 | |
|  *   load_avg = runnable% * scale_load_down(load)
 | |
|  *
 | |
|  * [runnable_avg definition]
 | |
|  *
 | |
|  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
 | |
|  *
 | |
|  * [util_avg definition]
 | |
|  *
 | |
|  *   util_avg = running% * SCHED_CAPACITY_SCALE
 | |
|  *
 | |
|  * where runnable% is the time ratio that a sched_entity is runnable and
 | |
|  * running% the time ratio that a sched_entity is running.
 | |
|  *
 | |
|  * For cfs_rq, they are the aggregated values of all runnable and blocked
 | |
|  * sched_entities.
 | |
|  *
 | |
|  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
 | |
|  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
 | |
|  * for computing those signals (see update_rq_clock_pelt())
 | |
|  *
 | |
|  * N.B., the above ratios (runnable% and running%) themselves are in the
 | |
|  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 | |
|  * to as large a range as necessary. This is for example reflected by
 | |
|  * util_avg's SCHED_CAPACITY_SCALE.
 | |
|  *
 | |
|  * [Overflow issue]
 | |
|  *
 | |
|  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 | |
|  * with the highest load (=88761), always runnable on a single cfs_rq,
 | |
|  * and should not overflow as the number already hits PID_MAX_LIMIT.
 | |
|  *
 | |
|  * For all other cases (including 32-bit kernels), struct load_weight's
 | |
|  * weight will overflow first before we do, because:
 | |
|  *
 | |
|  *    Max(load_avg) <= Max(load.weight)
 | |
|  *
 | |
|  * Then it is the load_weight's responsibility to consider overflow
 | |
|  * issues.
 | |
|  */
 | |
| struct sched_avg {
 | |
| 	u64				last_update_time;
 | |
| 	u64				load_sum;
 | |
| 	u64				runnable_sum;
 | |
| 	u32				util_sum;
 | |
| 	u32				period_contrib;
 | |
| 	unsigned long			load_avg;
 | |
| 	unsigned long			runnable_avg;
 | |
| 	unsigned long			util_avg;
 | |
| 	unsigned int			util_est;
 | |
| } ____cacheline_aligned;
 | |
| 
 | |
| /*
 | |
|  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
 | |
|  * updates. When a task is dequeued, its util_est should not be updated if its
 | |
|  * util_avg has not been updated in the meantime.
 | |
|  * This information is mapped into the MSB bit of util_est at dequeue time.
 | |
|  * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
 | |
|  * it is safe to use MSB.
 | |
|  */
 | |
| #define UTIL_EST_WEIGHT_SHIFT		2
 | |
| #define UTIL_AVG_UNCHANGED		0x80000000
 | |
| 
 | |
| struct sched_statistics {
 | |
| #ifdef CONFIG_SCHEDSTATS
 | |
| 	u64				wait_start;
 | |
| 	u64				wait_max;
 | |
| 	u64				wait_count;
 | |
| 	u64				wait_sum;
 | |
| 	u64				iowait_count;
 | |
| 	u64				iowait_sum;
 | |
| 
 | |
| 	u64				sleep_start;
 | |
| 	u64				sleep_max;
 | |
| 	s64				sum_sleep_runtime;
 | |
| 
 | |
| 	u64				block_start;
 | |
| 	u64				block_max;
 | |
| 	s64				sum_block_runtime;
 | |
| 
 | |
| 	s64				exec_max;
 | |
| 	u64				slice_max;
 | |
| 
 | |
| 	u64				nr_migrations_cold;
 | |
| 	u64				nr_failed_migrations_affine;
 | |
| 	u64				nr_failed_migrations_running;
 | |
| 	u64				nr_failed_migrations_hot;
 | |
| 	u64				nr_forced_migrations;
 | |
| 
 | |
| 	u64				nr_wakeups;
 | |
| 	u64				nr_wakeups_sync;
 | |
| 	u64				nr_wakeups_migrate;
 | |
| 	u64				nr_wakeups_local;
 | |
| 	u64				nr_wakeups_remote;
 | |
| 	u64				nr_wakeups_affine;
 | |
| 	u64				nr_wakeups_affine_attempts;
 | |
| 	u64				nr_wakeups_passive;
 | |
| 	u64				nr_wakeups_idle;
 | |
| 
 | |
| #ifdef CONFIG_SCHED_CORE
 | |
| 	u64				core_forceidle_sum;
 | |
| #endif
 | |
| #endif /* CONFIG_SCHEDSTATS */
 | |
| } ____cacheline_aligned;
 | |
| 
 | |
| struct sched_entity {
 | |
| 	/* For load-balancing: */
 | |
| 	struct load_weight		load;
 | |
| 	struct rb_node			run_node;
 | |
| 	u64				deadline;
 | |
| 	u64				min_vruntime;
 | |
| 
 | |
| 	struct list_head		group_node;
 | |
| 	unsigned int			on_rq;
 | |
| 
 | |
| 	u64				exec_start;
 | |
| 	u64				sum_exec_runtime;
 | |
| 	u64				prev_sum_exec_runtime;
 | |
| 	u64				vruntime;
 | |
| 	s64				vlag;
 | |
| 	u64				slice;
 | |
| 
 | |
| 	u64				nr_migrations;
 | |
| 
 | |
| #ifdef CONFIG_FAIR_GROUP_SCHED
 | |
| 	int				depth;
 | |
| 	struct sched_entity		*parent;
 | |
| 	/* rq on which this entity is (to be) queued: */
 | |
| 	struct cfs_rq			*cfs_rq;
 | |
| 	/* rq "owned" by this entity/group: */
 | |
| 	struct cfs_rq			*my_q;
 | |
| 	/* cached value of my_q->h_nr_running */
 | |
| 	unsigned long			runnable_weight;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/*
 | |
| 	 * Per entity load average tracking.
 | |
| 	 *
 | |
| 	 * Put into separate cache line so it does not
 | |
| 	 * collide with read-mostly values above.
 | |
| 	 */
 | |
| 	struct sched_avg		avg;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| struct sched_rt_entity {
 | |
| 	struct list_head		run_list;
 | |
| 	unsigned long			timeout;
 | |
| 	unsigned long			watchdog_stamp;
 | |
| 	unsigned int			time_slice;
 | |
| 	unsigned short			on_rq;
 | |
| 	unsigned short			on_list;
 | |
| 
 | |
| 	struct sched_rt_entity		*back;
 | |
| #ifdef CONFIG_RT_GROUP_SCHED
 | |
| 	struct sched_rt_entity		*parent;
 | |
| 	/* rq on which this entity is (to be) queued: */
 | |
| 	struct rt_rq			*rt_rq;
 | |
| 	/* rq "owned" by this entity/group: */
 | |
| 	struct rt_rq			*my_q;
 | |
| #endif
 | |
| } __randomize_layout;
 | |
| 
 | |
| typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
 | |
| typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
 | |
| 
 | |
| struct sched_dl_entity {
 | |
| 	struct rb_node			rb_node;
 | |
| 
 | |
| 	/*
 | |
| 	 * Original scheduling parameters. Copied here from sched_attr
 | |
| 	 * during sched_setattr(), they will remain the same until
 | |
| 	 * the next sched_setattr().
 | |
| 	 */
 | |
| 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
 | |
| 	u64				dl_deadline;	/* Relative deadline of each instance	*/
 | |
| 	u64				dl_period;	/* Separation of two instances (period) */
 | |
| 	u64				dl_bw;		/* dl_runtime / dl_period		*/
 | |
| 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
 | |
| 
 | |
| 	/*
 | |
| 	 * Actual scheduling parameters. Initialized with the values above,
 | |
| 	 * they are continuously updated during task execution. Note that
 | |
| 	 * the remaining runtime could be < 0 in case we are in overrun.
 | |
| 	 */
 | |
| 	s64				runtime;	/* Remaining runtime for this instance	*/
 | |
| 	u64				deadline;	/* Absolute deadline for this instance	*/
 | |
| 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
 | |
| 
 | |
| 	/*
 | |
| 	 * Some bool flags:
 | |
| 	 *
 | |
| 	 * @dl_throttled tells if we exhausted the runtime. If so, the
 | |
| 	 * task has to wait for a replenishment to be performed at the
 | |
| 	 * next firing of dl_timer.
 | |
| 	 *
 | |
| 	 * @dl_yielded tells if task gave up the CPU before consuming
 | |
| 	 * all its available runtime during the last job.
 | |
| 	 *
 | |
| 	 * @dl_non_contending tells if the task is inactive while still
 | |
| 	 * contributing to the active utilization. In other words, it
 | |
| 	 * indicates if the inactive timer has been armed and its handler
 | |
| 	 * has not been executed yet. This flag is useful to avoid race
 | |
| 	 * conditions between the inactive timer handler and the wakeup
 | |
| 	 * code.
 | |
| 	 *
 | |
| 	 * @dl_overrun tells if the task asked to be informed about runtime
 | |
| 	 * overruns.
 | |
| 	 */
 | |
| 	unsigned int			dl_throttled      : 1;
 | |
| 	unsigned int			dl_yielded        : 1;
 | |
| 	unsigned int			dl_non_contending : 1;
 | |
| 	unsigned int			dl_overrun	  : 1;
 | |
| 	unsigned int			dl_server         : 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Bandwidth enforcement timer. Each -deadline task has its
 | |
| 	 * own bandwidth to be enforced, thus we need one timer per task.
 | |
| 	 */
 | |
| 	struct hrtimer			dl_timer;
 | |
| 
 | |
| 	/*
 | |
| 	 * Inactive timer, responsible for decreasing the active utilization
 | |
| 	 * at the "0-lag time". When a -deadline task blocks, it contributes
 | |
| 	 * to GRUB's active utilization until the "0-lag time", hence a
 | |
| 	 * timer is needed to decrease the active utilization at the correct
 | |
| 	 * time.
 | |
| 	 */
 | |
| 	struct hrtimer			inactive_timer;
 | |
| 
 | |
| 	/*
 | |
| 	 * Bits for DL-server functionality. Also see the comment near
 | |
| 	 * dl_server_update().
 | |
| 	 *
 | |
| 	 * @rq the runqueue this server is for
 | |
| 	 *
 | |
| 	 * @server_has_tasks() returns true if @server_pick return a
 | |
| 	 * runnable task.
 | |
| 	 */
 | |
| 	struct rq			*rq;
 | |
| 	dl_server_has_tasks_f		server_has_tasks;
 | |
| 	dl_server_pick_f		server_pick;
 | |
| 
 | |
| #ifdef CONFIG_RT_MUTEXES
 | |
| 	/*
 | |
| 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
 | |
| 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
 | |
| 	 * to (the original one/itself).
 | |
| 	 */
 | |
| 	struct sched_dl_entity *pi_se;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_UCLAMP_TASK
 | |
| /* Number of utilization clamp buckets (shorter alias) */
 | |
| #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
 | |
| 
 | |
| /*
 | |
|  * Utilization clamp for a scheduling entity
 | |
|  * @value:		clamp value "assigned" to a se
 | |
|  * @bucket_id:		bucket index corresponding to the "assigned" value
 | |
|  * @active:		the se is currently refcounted in a rq's bucket
 | |
|  * @user_defined:	the requested clamp value comes from user-space
 | |
|  *
 | |
|  * The bucket_id is the index of the clamp bucket matching the clamp value
 | |
|  * which is pre-computed and stored to avoid expensive integer divisions from
 | |
|  * the fast path.
 | |
|  *
 | |
|  * The active bit is set whenever a task has got an "effective" value assigned,
 | |
|  * which can be different from the clamp value "requested" from user-space.
 | |
|  * This allows to know a task is refcounted in the rq's bucket corresponding
 | |
|  * to the "effective" bucket_id.
 | |
|  *
 | |
|  * The user_defined bit is set whenever a task has got a task-specific clamp
 | |
|  * value requested from userspace, i.e. the system defaults apply to this task
 | |
|  * just as a restriction. This allows to relax default clamps when a less
 | |
|  * restrictive task-specific value has been requested, thus allowing to
 | |
|  * implement a "nice" semantic. For example, a task running with a 20%
 | |
|  * default boost can still drop its own boosting to 0%.
 | |
|  */
 | |
| struct uclamp_se {
 | |
| 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
 | |
| 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
 | |
| 	unsigned int active		: 1;
 | |
| 	unsigned int user_defined	: 1;
 | |
| };
 | |
| #endif /* CONFIG_UCLAMP_TASK */
 | |
| 
 | |
| union rcu_special {
 | |
| 	struct {
 | |
| 		u8			blocked;
 | |
| 		u8			need_qs;
 | |
| 		u8			exp_hint; /* Hint for performance. */
 | |
| 		u8			need_mb; /* Readers need smp_mb(). */
 | |
| 	} b; /* Bits. */
 | |
| 	u32 s; /* Set of bits. */
 | |
| };
 | |
| 
 | |
| enum perf_event_task_context {
 | |
| 	perf_invalid_context = -1,
 | |
| 	perf_hw_context = 0,
 | |
| 	perf_sw_context,
 | |
| 	perf_nr_task_contexts,
 | |
| };
 | |
| 
 | |
| struct wake_q_node {
 | |
| 	struct wake_q_node *next;
 | |
| };
 | |
| 
 | |
| struct kmap_ctrl {
 | |
| #ifdef CONFIG_KMAP_LOCAL
 | |
| 	int				idx;
 | |
| 	pte_t				pteval[KM_MAX_IDX];
 | |
| #endif
 | |
| };
 | |
| 
 | |
| struct task_struct {
 | |
| #ifdef CONFIG_THREAD_INFO_IN_TASK
 | |
| 	/*
 | |
| 	 * For reasons of header soup (see current_thread_info()), this
 | |
| 	 * must be the first element of task_struct.
 | |
| 	 */
 | |
| 	struct thread_info		thread_info;
 | |
| #endif
 | |
| 	unsigned int			__state;
 | |
| 
 | |
| 	/* saved state for "spinlock sleepers" */
 | |
| 	unsigned int			saved_state;
 | |
| 
 | |
| 	/*
 | |
| 	 * This begins the randomizable portion of task_struct. Only
 | |
| 	 * scheduling-critical items should be added above here.
 | |
| 	 */
 | |
| 	randomized_struct_fields_start
 | |
| 
 | |
| 	void				*stack;
 | |
| 	refcount_t			usage;
 | |
| 	/* Per task flags (PF_*), defined further below: */
 | |
| 	unsigned int			flags;
 | |
| 	unsigned int			ptrace;
 | |
| 
 | |
| #ifdef CONFIG_MEM_ALLOC_PROFILING
 | |
| 	struct alloc_tag		*alloc_tag;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	int				on_cpu;
 | |
| 	struct __call_single_node	wake_entry;
 | |
| 	unsigned int			wakee_flips;
 | |
| 	unsigned long			wakee_flip_decay_ts;
 | |
| 	struct task_struct		*last_wakee;
 | |
| 
 | |
| 	/*
 | |
| 	 * recent_used_cpu is initially set as the last CPU used by a task
 | |
| 	 * that wakes affine another task. Waker/wakee relationships can
 | |
| 	 * push tasks around a CPU where each wakeup moves to the next one.
 | |
| 	 * Tracking a recently used CPU allows a quick search for a recently
 | |
| 	 * used CPU that may be idle.
 | |
| 	 */
 | |
| 	int				recent_used_cpu;
 | |
| 	int				wake_cpu;
 | |
| #endif
 | |
| 	int				on_rq;
 | |
| 
 | |
| 	int				prio;
 | |
| 	int				static_prio;
 | |
| 	int				normal_prio;
 | |
| 	unsigned int			rt_priority;
 | |
| 
 | |
| 	struct sched_entity		se;
 | |
| 	struct sched_rt_entity		rt;
 | |
| 	struct sched_dl_entity		dl;
 | |
| 	struct sched_dl_entity		*dl_server;
 | |
| 	const struct sched_class	*sched_class;
 | |
| 
 | |
| #ifdef CONFIG_SCHED_CORE
 | |
| 	struct rb_node			core_node;
 | |
| 	unsigned long			core_cookie;
 | |
| 	unsigned int			core_occupation;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_CGROUP_SCHED
 | |
| 	struct task_group		*sched_task_group;
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_UCLAMP_TASK
 | |
| 	/*
 | |
| 	 * Clamp values requested for a scheduling entity.
 | |
| 	 * Must be updated with task_rq_lock() held.
 | |
| 	 */
 | |
| 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
 | |
| 	/*
 | |
| 	 * Effective clamp values used for a scheduling entity.
 | |
| 	 * Must be updated with task_rq_lock() held.
 | |
| 	 */
 | |
| 	struct uclamp_se		uclamp[UCLAMP_CNT];
 | |
| #endif
 | |
| 
 | |
| 	struct sched_statistics         stats;
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT_NOTIFIERS
 | |
| 	/* List of struct preempt_notifier: */
 | |
| 	struct hlist_head		preempt_notifiers;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_IO_TRACE
 | |
| 	unsigned int			btrace_seq;
 | |
| #endif
 | |
| 
 | |
| 	unsigned int			policy;
 | |
| 	unsigned long			max_allowed_capacity;
 | |
| 	int				nr_cpus_allowed;
 | |
| 	const cpumask_t			*cpus_ptr;
 | |
| 	cpumask_t			*user_cpus_ptr;
 | |
| 	cpumask_t			cpus_mask;
 | |
| 	void				*migration_pending;
 | |
| #ifdef CONFIG_SMP
 | |
| 	unsigned short			migration_disabled;
 | |
| #endif
 | |
| 	unsigned short			migration_flags;
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT_RCU
 | |
| 	int				rcu_read_lock_nesting;
 | |
| 	union rcu_special		rcu_read_unlock_special;
 | |
| 	struct list_head		rcu_node_entry;
 | |
| 	struct rcu_node			*rcu_blocked_node;
 | |
| #endif /* #ifdef CONFIG_PREEMPT_RCU */
 | |
| 
 | |
| #ifdef CONFIG_TASKS_RCU
 | |
| 	unsigned long			rcu_tasks_nvcsw;
 | |
| 	u8				rcu_tasks_holdout;
 | |
| 	u8				rcu_tasks_idx;
 | |
| 	int				rcu_tasks_idle_cpu;
 | |
| 	struct list_head		rcu_tasks_holdout_list;
 | |
| 	int				rcu_tasks_exit_cpu;
 | |
| 	struct list_head		rcu_tasks_exit_list;
 | |
| #endif /* #ifdef CONFIG_TASKS_RCU */
 | |
| 
 | |
| #ifdef CONFIG_TASKS_TRACE_RCU
 | |
| 	int				trc_reader_nesting;
 | |
| 	int				trc_ipi_to_cpu;
 | |
| 	union rcu_special		trc_reader_special;
 | |
| 	struct list_head		trc_holdout_list;
 | |
| 	struct list_head		trc_blkd_node;
 | |
| 	int				trc_blkd_cpu;
 | |
| #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
 | |
| 
 | |
| 	struct sched_info		sched_info;
 | |
| 
 | |
| 	struct list_head		tasks;
 | |
| #ifdef CONFIG_SMP
 | |
| 	struct plist_node		pushable_tasks;
 | |
| 	struct rb_node			pushable_dl_tasks;
 | |
| #endif
 | |
| 
 | |
| 	struct mm_struct		*mm;
 | |
| 	struct mm_struct		*active_mm;
 | |
| 	struct address_space		*faults_disabled_mapping;
 | |
| 
 | |
| 	int				exit_state;
 | |
| 	int				exit_code;
 | |
| 	int				exit_signal;
 | |
| 	/* The signal sent when the parent dies: */
 | |
| 	int				pdeath_signal;
 | |
| 	/* JOBCTL_*, siglock protected: */
 | |
| 	unsigned long			jobctl;
 | |
| 
 | |
| 	/* Used for emulating ABI behavior of previous Linux versions: */
 | |
| 	unsigned int			personality;
 | |
| 
 | |
| 	/* Scheduler bits, serialized by scheduler locks: */
 | |
| 	unsigned			sched_reset_on_fork:1;
 | |
| 	unsigned			sched_contributes_to_load:1;
 | |
| 	unsigned			sched_migrated:1;
 | |
| 
 | |
| 	/* Force alignment to the next boundary: */
 | |
| 	unsigned			:0;
 | |
| 
 | |
| 	/* Unserialized, strictly 'current' */
 | |
| 
 | |
| 	/*
 | |
| 	 * This field must not be in the scheduler word above due to wakelist
 | |
| 	 * queueing no longer being serialized by p->on_cpu. However:
 | |
| 	 *
 | |
| 	 * p->XXX = X;			ttwu()
 | |
| 	 * schedule()			  if (p->on_rq && ..) // false
 | |
| 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
 | |
| 	 *   deactivate_task()		      ttwu_queue_wakelist())
 | |
| 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
 | |
| 	 *
 | |
| 	 * guarantees all stores of 'current' are visible before
 | |
| 	 * ->sched_remote_wakeup gets used, so it can be in this word.
 | |
| 	 */
 | |
| 	unsigned			sched_remote_wakeup:1;
 | |
| #ifdef CONFIG_RT_MUTEXES
 | |
| 	unsigned			sched_rt_mutex:1;
 | |
| #endif
 | |
| 
 | |
| 	/* Bit to tell TOMOYO we're in execve(): */
 | |
| 	unsigned			in_execve:1;
 | |
| 	unsigned			in_iowait:1;
 | |
| #ifndef TIF_RESTORE_SIGMASK
 | |
| 	unsigned			restore_sigmask:1;
 | |
| #endif
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	unsigned			in_user_fault:1;
 | |
| #endif
 | |
| #ifdef CONFIG_LRU_GEN
 | |
| 	/* whether the LRU algorithm may apply to this access */
 | |
| 	unsigned			in_lru_fault:1;
 | |
| #endif
 | |
| #ifdef CONFIG_COMPAT_BRK
 | |
| 	unsigned			brk_randomized:1;
 | |
| #endif
 | |
| #ifdef CONFIG_CGROUPS
 | |
| 	/* disallow userland-initiated cgroup migration */
 | |
| 	unsigned			no_cgroup_migration:1;
 | |
| 	/* task is frozen/stopped (used by the cgroup freezer) */
 | |
| 	unsigned			frozen:1;
 | |
| #endif
 | |
| #ifdef CONFIG_BLK_CGROUP
 | |
| 	unsigned			use_memdelay:1;
 | |
| #endif
 | |
| #ifdef CONFIG_PSI
 | |
| 	/* Stalled due to lack of memory */
 | |
| 	unsigned			in_memstall:1;
 | |
| #endif
 | |
| #ifdef CONFIG_PAGE_OWNER
 | |
| 	/* Used by page_owner=on to detect recursion in page tracking. */
 | |
| 	unsigned			in_page_owner:1;
 | |
| #endif
 | |
| #ifdef CONFIG_EVENTFD
 | |
| 	/* Recursion prevention for eventfd_signal() */
 | |
| 	unsigned			in_eventfd:1;
 | |
| #endif
 | |
| #ifdef CONFIG_ARCH_HAS_CPU_PASID
 | |
| 	unsigned			pasid_activated:1;
 | |
| #endif
 | |
| #ifdef	CONFIG_CPU_SUP_INTEL
 | |
| 	unsigned			reported_split_lock:1;
 | |
| #endif
 | |
| #ifdef CONFIG_TASK_DELAY_ACCT
 | |
| 	/* delay due to memory thrashing */
 | |
| 	unsigned                        in_thrashing:1;
 | |
| #endif
 | |
| 
 | |
| 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
 | |
| 
 | |
| 	struct restart_block		restart_block;
 | |
| 
 | |
| 	pid_t				pid;
 | |
| 	pid_t				tgid;
 | |
| 
 | |
| #ifdef CONFIG_STACKPROTECTOR
 | |
| 	/* Canary value for the -fstack-protector GCC feature: */
 | |
| 	unsigned long			stack_canary;
 | |
| #endif
 | |
| 	/*
 | |
| 	 * Pointers to the (original) parent process, youngest child, younger sibling,
 | |
| 	 * older sibling, respectively.  (p->father can be replaced with
 | |
| 	 * p->real_parent->pid)
 | |
| 	 */
 | |
| 
 | |
| 	/* Real parent process: */
 | |
| 	struct task_struct __rcu	*real_parent;
 | |
| 
 | |
| 	/* Recipient of SIGCHLD, wait4() reports: */
 | |
| 	struct task_struct __rcu	*parent;
 | |
| 
 | |
| 	/*
 | |
| 	 * Children/sibling form the list of natural children:
 | |
| 	 */
 | |
| 	struct list_head		children;
 | |
| 	struct list_head		sibling;
 | |
| 	struct task_struct		*group_leader;
 | |
| 
 | |
| 	/*
 | |
| 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
 | |
| 	 *
 | |
| 	 * This includes both natural children and PTRACE_ATTACH targets.
 | |
| 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
 | |
| 	 */
 | |
| 	struct list_head		ptraced;
 | |
| 	struct list_head		ptrace_entry;
 | |
| 
 | |
| 	/* PID/PID hash table linkage. */
 | |
| 	struct pid			*thread_pid;
 | |
| 	struct hlist_node		pid_links[PIDTYPE_MAX];
 | |
| 	struct list_head		thread_node;
 | |
| 
 | |
| 	struct completion		*vfork_done;
 | |
| 
 | |
| 	/* CLONE_CHILD_SETTID: */
 | |
| 	int __user			*set_child_tid;
 | |
| 
 | |
| 	/* CLONE_CHILD_CLEARTID: */
 | |
| 	int __user			*clear_child_tid;
 | |
| 
 | |
| 	/* PF_KTHREAD | PF_IO_WORKER */
 | |
| 	void				*worker_private;
 | |
| 
 | |
| 	u64				utime;
 | |
| 	u64				stime;
 | |
| #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 | |
| 	u64				utimescaled;
 | |
| 	u64				stimescaled;
 | |
| #endif
 | |
| 	u64				gtime;
 | |
| 	struct prev_cputime		prev_cputime;
 | |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 | |
| 	struct vtime			vtime;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NO_HZ_FULL
 | |
| 	atomic_t			tick_dep_mask;
 | |
| #endif
 | |
| 	/* Context switch counts: */
 | |
| 	unsigned long			nvcsw;
 | |
| 	unsigned long			nivcsw;
 | |
| 
 | |
| 	/* Monotonic time in nsecs: */
 | |
| 	u64				start_time;
 | |
| 
 | |
| 	/* Boot based time in nsecs: */
 | |
| 	u64				start_boottime;
 | |
| 
 | |
| 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
 | |
| 	unsigned long			min_flt;
 | |
| 	unsigned long			maj_flt;
 | |
| 
 | |
| 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
 | |
| 	struct posix_cputimers		posix_cputimers;
 | |
| 
 | |
| #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
 | |
| 	struct posix_cputimers_work	posix_cputimers_work;
 | |
| #endif
 | |
| 
 | |
| 	/* Process credentials: */
 | |
| 
 | |
| 	/* Tracer's credentials at attach: */
 | |
| 	const struct cred __rcu		*ptracer_cred;
 | |
| 
 | |
| 	/* Objective and real subjective task credentials (COW): */
 | |
| 	const struct cred __rcu		*real_cred;
 | |
| 
 | |
| 	/* Effective (overridable) subjective task credentials (COW): */
 | |
| 	const struct cred __rcu		*cred;
 | |
| 
 | |
| #ifdef CONFIG_KEYS
 | |
| 	/* Cached requested key. */
 | |
| 	struct key			*cached_requested_key;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * executable name, excluding path.
 | |
| 	 *
 | |
| 	 * - normally initialized setup_new_exec()
 | |
| 	 * - access it with [gs]et_task_comm()
 | |
| 	 * - lock it with task_lock()
 | |
| 	 */
 | |
| 	char				comm[TASK_COMM_LEN];
 | |
| 
 | |
| 	struct nameidata		*nameidata;
 | |
| 
 | |
| #ifdef CONFIG_SYSVIPC
 | |
| 	struct sysv_sem			sysvsem;
 | |
| 	struct sysv_shm			sysvshm;
 | |
| #endif
 | |
| #ifdef CONFIG_DETECT_HUNG_TASK
 | |
| 	unsigned long			last_switch_count;
 | |
| 	unsigned long			last_switch_time;
 | |
| #endif
 | |
| 	/* Filesystem information: */
 | |
| 	struct fs_struct		*fs;
 | |
| 
 | |
| 	/* Open file information: */
 | |
| 	struct files_struct		*files;
 | |
| 
 | |
| #ifdef CONFIG_IO_URING
 | |
| 	struct io_uring_task		*io_uring;
 | |
| #endif
 | |
| 
 | |
| 	/* Namespaces: */
 | |
| 	struct nsproxy			*nsproxy;
 | |
| 
 | |
| 	/* Signal handlers: */
 | |
| 	struct signal_struct		*signal;
 | |
| 	struct sighand_struct __rcu		*sighand;
 | |
| 	sigset_t			blocked;
 | |
| 	sigset_t			real_blocked;
 | |
| 	/* Restored if set_restore_sigmask() was used: */
 | |
| 	sigset_t			saved_sigmask;
 | |
| 	struct sigpending		pending;
 | |
| 	unsigned long			sas_ss_sp;
 | |
| 	size_t				sas_ss_size;
 | |
| 	unsigned int			sas_ss_flags;
 | |
| 
 | |
| 	struct callback_head		*task_works;
 | |
| 
 | |
| #ifdef CONFIG_AUDIT
 | |
| #ifdef CONFIG_AUDITSYSCALL
 | |
| 	struct audit_context		*audit_context;
 | |
| #endif
 | |
| 	kuid_t				loginuid;
 | |
| 	unsigned int			sessionid;
 | |
| #endif
 | |
| 	struct seccomp			seccomp;
 | |
| 	struct syscall_user_dispatch	syscall_dispatch;
 | |
| 
 | |
| 	/* Thread group tracking: */
 | |
| 	u64				parent_exec_id;
 | |
| 	u64				self_exec_id;
 | |
| 
 | |
| 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
 | |
| 	spinlock_t			alloc_lock;
 | |
| 
 | |
| 	/* Protection of the PI data structures: */
 | |
| 	raw_spinlock_t			pi_lock;
 | |
| 
 | |
| 	struct wake_q_node		wake_q;
 | |
| 
 | |
| #ifdef CONFIG_RT_MUTEXES
 | |
| 	/* PI waiters blocked on a rt_mutex held by this task: */
 | |
| 	struct rb_root_cached		pi_waiters;
 | |
| 	/* Updated under owner's pi_lock and rq lock */
 | |
| 	struct task_struct		*pi_top_task;
 | |
| 	/* Deadlock detection and priority inheritance handling: */
 | |
| 	struct rt_mutex_waiter		*pi_blocked_on;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_MUTEXES
 | |
| 	/* Mutex deadlock detection: */
 | |
| 	struct mutex_waiter		*blocked_on;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 | |
| 	int				non_block_count;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_TRACE_IRQFLAGS
 | |
| 	struct irqtrace_events		irqtrace;
 | |
| 	unsigned int			hardirq_threaded;
 | |
| 	u64				hardirq_chain_key;
 | |
| 	int				softirqs_enabled;
 | |
| 	int				softirq_context;
 | |
| 	int				irq_config;
 | |
| #endif
 | |
| #ifdef CONFIG_PREEMPT_RT
 | |
| 	int				softirq_disable_cnt;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_LOCKDEP
 | |
| # define MAX_LOCK_DEPTH			48UL
 | |
| 	u64				curr_chain_key;
 | |
| 	int				lockdep_depth;
 | |
| 	unsigned int			lockdep_recursion;
 | |
| 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
 | |
| 	unsigned int			in_ubsan;
 | |
| #endif
 | |
| 
 | |
| 	/* Journalling filesystem info: */
 | |
| 	void				*journal_info;
 | |
| 
 | |
| 	/* Stacked block device info: */
 | |
| 	struct bio_list			*bio_list;
 | |
| 
 | |
| 	/* Stack plugging: */
 | |
| 	struct blk_plug			*plug;
 | |
| 
 | |
| 	/* VM state: */
 | |
| 	struct reclaim_state		*reclaim_state;
 | |
| 
 | |
| 	struct io_context		*io_context;
 | |
| 
 | |
| #ifdef CONFIG_COMPACTION
 | |
| 	struct capture_control		*capture_control;
 | |
| #endif
 | |
| 	/* Ptrace state: */
 | |
| 	unsigned long			ptrace_message;
 | |
| 	kernel_siginfo_t		*last_siginfo;
 | |
| 
 | |
| 	struct task_io_accounting	ioac;
 | |
| #ifdef CONFIG_PSI
 | |
| 	/* Pressure stall state */
 | |
| 	unsigned int			psi_flags;
 | |
| #endif
 | |
| #ifdef CONFIG_TASK_XACCT
 | |
| 	/* Accumulated RSS usage: */
 | |
| 	u64				acct_rss_mem1;
 | |
| 	/* Accumulated virtual memory usage: */
 | |
| 	u64				acct_vm_mem1;
 | |
| 	/* stime + utime since last update: */
 | |
| 	u64				acct_timexpd;
 | |
| #endif
 | |
| #ifdef CONFIG_CPUSETS
 | |
| 	/* Protected by ->alloc_lock: */
 | |
| 	nodemask_t			mems_allowed;
 | |
| 	/* Sequence number to catch updates: */
 | |
| 	seqcount_spinlock_t		mems_allowed_seq;
 | |
| 	int				cpuset_mem_spread_rotor;
 | |
| 	int				cpuset_slab_spread_rotor;
 | |
| #endif
 | |
| #ifdef CONFIG_CGROUPS
 | |
| 	/* Control Group info protected by css_set_lock: */
 | |
| 	struct css_set __rcu		*cgroups;
 | |
| 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
 | |
| 	struct list_head		cg_list;
 | |
| #endif
 | |
| #ifdef CONFIG_X86_CPU_RESCTRL
 | |
| 	u32				closid;
 | |
| 	u32				rmid;
 | |
| #endif
 | |
| #ifdef CONFIG_FUTEX
 | |
| 	struct robust_list_head __user	*robust_list;
 | |
| #ifdef CONFIG_COMPAT
 | |
| 	struct compat_robust_list_head __user *compat_robust_list;
 | |
| #endif
 | |
| 	struct list_head		pi_state_list;
 | |
| 	struct futex_pi_state		*pi_state_cache;
 | |
| 	struct mutex			futex_exit_mutex;
 | |
| 	unsigned int			futex_state;
 | |
| #endif
 | |
| #ifdef CONFIG_PERF_EVENTS
 | |
| 	struct perf_event_context	*perf_event_ctxp;
 | |
| 	struct mutex			perf_event_mutex;
 | |
| 	struct list_head		perf_event_list;
 | |
| #endif
 | |
| #ifdef CONFIG_DEBUG_PREEMPT
 | |
| 	unsigned long			preempt_disable_ip;
 | |
| #endif
 | |
| #ifdef CONFIG_NUMA
 | |
| 	/* Protected by alloc_lock: */
 | |
| 	struct mempolicy		*mempolicy;
 | |
| 	short				il_prev;
 | |
| 	u8				il_weight;
 | |
| 	short				pref_node_fork;
 | |
| #endif
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| 	int				numa_scan_seq;
 | |
| 	unsigned int			numa_scan_period;
 | |
| 	unsigned int			numa_scan_period_max;
 | |
| 	int				numa_preferred_nid;
 | |
| 	unsigned long			numa_migrate_retry;
 | |
| 	/* Migration stamp: */
 | |
| 	u64				node_stamp;
 | |
| 	u64				last_task_numa_placement;
 | |
| 	u64				last_sum_exec_runtime;
 | |
| 	struct callback_head		numa_work;
 | |
| 
 | |
| 	/*
 | |
| 	 * This pointer is only modified for current in syscall and
 | |
| 	 * pagefault context (and for tasks being destroyed), so it can be read
 | |
| 	 * from any of the following contexts:
 | |
| 	 *  - RCU read-side critical section
 | |
| 	 *  - current->numa_group from everywhere
 | |
| 	 *  - task's runqueue locked, task not running
 | |
| 	 */
 | |
| 	struct numa_group __rcu		*numa_group;
 | |
| 
 | |
| 	/*
 | |
| 	 * numa_faults is an array split into four regions:
 | |
| 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
 | |
| 	 * in this precise order.
 | |
| 	 *
 | |
| 	 * faults_memory: Exponential decaying average of faults on a per-node
 | |
| 	 * basis. Scheduling placement decisions are made based on these
 | |
| 	 * counts. The values remain static for the duration of a PTE scan.
 | |
| 	 * faults_cpu: Track the nodes the process was running on when a NUMA
 | |
| 	 * hinting fault was incurred.
 | |
| 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
 | |
| 	 * during the current scan window. When the scan completes, the counts
 | |
| 	 * in faults_memory and faults_cpu decay and these values are copied.
 | |
| 	 */
 | |
| 	unsigned long			*numa_faults;
 | |
| 	unsigned long			total_numa_faults;
 | |
| 
 | |
| 	/*
 | |
| 	 * numa_faults_locality tracks if faults recorded during the last
 | |
| 	 * scan window were remote/local or failed to migrate. The task scan
 | |
| 	 * period is adapted based on the locality of the faults with different
 | |
| 	 * weights depending on whether they were shared or private faults
 | |
| 	 */
 | |
| 	unsigned long			numa_faults_locality[3];
 | |
| 
 | |
| 	unsigned long			numa_pages_migrated;
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 
 | |
| #ifdef CONFIG_RSEQ
 | |
| 	struct rseq __user *rseq;
 | |
| 	u32 rseq_len;
 | |
| 	u32 rseq_sig;
 | |
| 	/*
 | |
| 	 * RmW on rseq_event_mask must be performed atomically
 | |
| 	 * with respect to preemption.
 | |
| 	 */
 | |
| 	unsigned long rseq_event_mask;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SCHED_MM_CID
 | |
| 	int				mm_cid;		/* Current cid in mm */
 | |
| 	int				last_mm_cid;	/* Most recent cid in mm */
 | |
| 	int				migrate_from_cpu;
 | |
| 	int				mm_cid_active;	/* Whether cid bitmap is active */
 | |
| 	struct callback_head		cid_work;
 | |
| #endif
 | |
| 
 | |
| 	struct tlbflush_unmap_batch	tlb_ubc;
 | |
| 
 | |
| 	/* Cache last used pipe for splice(): */
 | |
| 	struct pipe_inode_info		*splice_pipe;
 | |
| 
 | |
| 	struct page_frag		task_frag;
 | |
| 
 | |
| #ifdef CONFIG_TASK_DELAY_ACCT
 | |
| 	struct task_delay_info		*delays;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_FAULT_INJECTION
 | |
| 	int				make_it_fail;
 | |
| 	unsigned int			fail_nth;
 | |
| #endif
 | |
| 	/*
 | |
| 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
 | |
| 	 * balance_dirty_pages() for a dirty throttling pause:
 | |
| 	 */
 | |
| 	int				nr_dirtied;
 | |
| 	int				nr_dirtied_pause;
 | |
| 	/* Start of a write-and-pause period: */
 | |
| 	unsigned long			dirty_paused_when;
 | |
| 
 | |
| #ifdef CONFIG_LATENCYTOP
 | |
| 	int				latency_record_count;
 | |
| 	struct latency_record		latency_record[LT_SAVECOUNT];
 | |
| #endif
 | |
| 	/*
 | |
| 	 * Time slack values; these are used to round up poll() and
 | |
| 	 * select() etc timeout values. These are in nanoseconds.
 | |
| 	 */
 | |
| 	u64				timer_slack_ns;
 | |
| 	u64				default_timer_slack_ns;
 | |
| 
 | |
| #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
 | |
| 	unsigned int			kasan_depth;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_KCSAN
 | |
| 	struct kcsan_ctx		kcsan_ctx;
 | |
| #ifdef CONFIG_TRACE_IRQFLAGS
 | |
| 	struct irqtrace_events		kcsan_save_irqtrace;
 | |
| #endif
 | |
| #ifdef CONFIG_KCSAN_WEAK_MEMORY
 | |
| 	int				kcsan_stack_depth;
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_KMSAN
 | |
| 	struct kmsan_ctx		kmsan_ctx;
 | |
| #endif
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_KUNIT)
 | |
| 	struct kunit			*kunit_test;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_FUNCTION_GRAPH_TRACER
 | |
| 	/* Index of current stored address in ret_stack: */
 | |
| 	int				curr_ret_stack;
 | |
| 	int				curr_ret_depth;
 | |
| 
 | |
| 	/* Stack of return addresses for return function tracing: */
 | |
| 	struct ftrace_ret_stack		*ret_stack;
 | |
| 
 | |
| 	/* Timestamp for last schedule: */
 | |
| 	unsigned long long		ftrace_timestamp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Number of functions that haven't been traced
 | |
| 	 * because of depth overrun:
 | |
| 	 */
 | |
| 	atomic_t			trace_overrun;
 | |
| 
 | |
| 	/* Pause tracing: */
 | |
| 	atomic_t			tracing_graph_pause;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_TRACING
 | |
| 	/* Bitmask and counter of trace recursion: */
 | |
| 	unsigned long			trace_recursion;
 | |
| #endif /* CONFIG_TRACING */
 | |
| 
 | |
| #ifdef CONFIG_KCOV
 | |
| 	/* See kernel/kcov.c for more details. */
 | |
| 
 | |
| 	/* Coverage collection mode enabled for this task (0 if disabled): */
 | |
| 	unsigned int			kcov_mode;
 | |
| 
 | |
| 	/* Size of the kcov_area: */
 | |
| 	unsigned int			kcov_size;
 | |
| 
 | |
| 	/* Buffer for coverage collection: */
 | |
| 	void				*kcov_area;
 | |
| 
 | |
| 	/* KCOV descriptor wired with this task or NULL: */
 | |
| 	struct kcov			*kcov;
 | |
| 
 | |
| 	/* KCOV common handle for remote coverage collection: */
 | |
| 	u64				kcov_handle;
 | |
| 
 | |
| 	/* KCOV sequence number: */
 | |
| 	int				kcov_sequence;
 | |
| 
 | |
| 	/* Collect coverage from softirq context: */
 | |
| 	unsigned int			kcov_softirq;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	struct mem_cgroup		*memcg_in_oom;
 | |
| 
 | |
| 	/* Number of pages to reclaim on returning to userland: */
 | |
| 	unsigned int			memcg_nr_pages_over_high;
 | |
| 
 | |
| 	/* Used by memcontrol for targeted memcg charge: */
 | |
| 	struct mem_cgroup		*active_memcg;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MEMCG_KMEM
 | |
| 	struct obj_cgroup		*objcg;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_BLK_CGROUP
 | |
| 	struct gendisk			*throttle_disk;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_UPROBES
 | |
| 	struct uprobe_task		*utask;
 | |
| #endif
 | |
| #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
 | |
| 	unsigned int			sequential_io;
 | |
| 	unsigned int			sequential_io_avg;
 | |
| #endif
 | |
| 	struct kmap_ctrl		kmap_ctrl;
 | |
| #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 | |
| 	unsigned long			task_state_change;
 | |
| # ifdef CONFIG_PREEMPT_RT
 | |
| 	unsigned long			saved_state_change;
 | |
| # endif
 | |
| #endif
 | |
| 	struct rcu_head			rcu;
 | |
| 	refcount_t			rcu_users;
 | |
| 	int				pagefault_disabled;
 | |
| #ifdef CONFIG_MMU
 | |
| 	struct task_struct		*oom_reaper_list;
 | |
| 	struct timer_list		oom_reaper_timer;
 | |
| #endif
 | |
| #ifdef CONFIG_VMAP_STACK
 | |
| 	struct vm_struct		*stack_vm_area;
 | |
| #endif
 | |
| #ifdef CONFIG_THREAD_INFO_IN_TASK
 | |
| 	/* A live task holds one reference: */
 | |
| 	refcount_t			stack_refcount;
 | |
| #endif
 | |
| #ifdef CONFIG_LIVEPATCH
 | |
| 	int patch_state;
 | |
| #endif
 | |
| #ifdef CONFIG_SECURITY
 | |
| 	/* Used by LSM modules for access restriction: */
 | |
| 	void				*security;
 | |
| #endif
 | |
| #ifdef CONFIG_BPF_SYSCALL
 | |
| 	/* Used by BPF task local storage */
 | |
| 	struct bpf_local_storage __rcu	*bpf_storage;
 | |
| 	/* Used for BPF run context */
 | |
| 	struct bpf_run_ctx		*bpf_ctx;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
 | |
| 	unsigned long			lowest_stack;
 | |
| 	unsigned long			prev_lowest_stack;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_MCE
 | |
| 	void __user			*mce_vaddr;
 | |
| 	__u64				mce_kflags;
 | |
| 	u64				mce_addr;
 | |
| 	__u64				mce_ripv : 1,
 | |
| 					mce_whole_page : 1,
 | |
| 					__mce_reserved : 62;
 | |
| 	struct callback_head		mce_kill_me;
 | |
| 	int				mce_count;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_KRETPROBES
 | |
| 	struct llist_head               kretprobe_instances;
 | |
| #endif
 | |
| #ifdef CONFIG_RETHOOK
 | |
| 	struct llist_head               rethooks;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
 | |
| 	/*
 | |
| 	 * If L1D flush is supported on mm context switch
 | |
| 	 * then we use this callback head to queue kill work
 | |
| 	 * to kill tasks that are not running on SMT disabled
 | |
| 	 * cores
 | |
| 	 */
 | |
| 	struct callback_head		l1d_flush_kill;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_RV
 | |
| 	/*
 | |
| 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
 | |
| 	 * If we find justification for more monitors, we can think
 | |
| 	 * about adding more or developing a dynamic method. So far,
 | |
| 	 * none of these are justified.
 | |
| 	 */
 | |
| 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_USER_EVENTS
 | |
| 	struct user_event_mm		*user_event_mm;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * New fields for task_struct should be added above here, so that
 | |
| 	 * they are included in the randomized portion of task_struct.
 | |
| 	 */
 | |
| 	randomized_struct_fields_end
 | |
| 
 | |
| 	/* CPU-specific state of this task: */
 | |
| 	struct thread_struct		thread;
 | |
| 
 | |
| 	/*
 | |
| 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
 | |
| 	 * structure.  It *MUST* be at the end of 'task_struct'.
 | |
| 	 *
 | |
| 	 * Do not put anything below here!
 | |
| 	 */
 | |
| };
 | |
| 
 | |
| #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
 | |
| #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
 | |
| 
 | |
| static inline unsigned int __task_state_index(unsigned int tsk_state,
 | |
| 					      unsigned int tsk_exit_state)
 | |
| {
 | |
| 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
 | |
| 
 | |
| 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
 | |
| 
 | |
| 	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
 | |
| 		state = TASK_REPORT_IDLE;
 | |
| 
 | |
| 	/*
 | |
| 	 * We're lying here, but rather than expose a completely new task state
 | |
| 	 * to userspace, we can make this appear as if the task has gone through
 | |
| 	 * a regular rt_mutex_lock() call.
 | |
| 	 */
 | |
| 	if (tsk_state & TASK_RTLOCK_WAIT)
 | |
| 		state = TASK_UNINTERRUPTIBLE;
 | |
| 
 | |
| 	return fls(state);
 | |
| }
 | |
| 
 | |
| static inline unsigned int task_state_index(struct task_struct *tsk)
 | |
| {
 | |
| 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
 | |
| }
 | |
| 
 | |
| static inline char task_index_to_char(unsigned int state)
 | |
| {
 | |
| 	static const char state_char[] = "RSDTtXZPI";
 | |
| 
 | |
| 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
 | |
| 
 | |
| 	return state_char[state];
 | |
| }
 | |
| 
 | |
| static inline char task_state_to_char(struct task_struct *tsk)
 | |
| {
 | |
| 	return task_index_to_char(task_state_index(tsk));
 | |
| }
 | |
| 
 | |
| extern struct pid *cad_pid;
 | |
| 
 | |
| /*
 | |
|  * Per process flags
 | |
|  */
 | |
| #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
 | |
| #define PF_IDLE			0x00000002	/* I am an IDLE thread */
 | |
| #define PF_EXITING		0x00000004	/* Getting shut down */
 | |
| #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
 | |
| #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
 | |
| #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
 | |
| #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
 | |
| #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
 | |
| #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
 | |
| #define PF_DUMPCORE		0x00000200	/* Dumped core */
 | |
| #define PF_SIGNALED		0x00000400	/* Killed by a signal */
 | |
| #define PF_MEMALLOC		0x00000800	/* Allocating memory to free memory. See memalloc_noreclaim_save() */
 | |
| #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
 | |
| #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
 | |
| #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
 | |
| #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
 | |
| #define PF__HOLE__00010000	0x00010000
 | |
| #define PF_KSWAPD		0x00020000	/* I am kswapd */
 | |
| #define PF_MEMALLOC_NOFS	0x00040000	/* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
 | |
| #define PF_MEMALLOC_NOIO	0x00080000	/* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
 | |
| #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
 | |
| 						 * I am cleaning dirty pages from some other bdi. */
 | |
| #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
 | |
| #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
 | |
| #define PF_MEMALLOC_NORECLAIM	0x00800000	/* All allocation requests will clear __GFP_DIRECT_RECLAIM */
 | |
| #define PF_MEMALLOC_NOWARN	0x01000000	/* All allocation requests will inherit __GFP_NOWARN */
 | |
| #define PF__HOLE__02000000	0x02000000
 | |
| #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
 | |
| #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
 | |
| #define PF_MEMALLOC_PIN		0x10000000	/* Allocations constrained to zones which allow long term pinning.
 | |
| 						 * See memalloc_pin_save() */
 | |
| #define PF_BLOCK_TS		0x20000000	/* plug has ts that needs updating */
 | |
| #define PF__HOLE__40000000	0x40000000
 | |
| #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
 | |
| 
 | |
| /*
 | |
|  * Only the _current_ task can read/write to tsk->flags, but other
 | |
|  * tasks can access tsk->flags in readonly mode for example
 | |
|  * with tsk_used_math (like during threaded core dumping).
 | |
|  * There is however an exception to this rule during ptrace
 | |
|  * or during fork: the ptracer task is allowed to write to the
 | |
|  * child->flags of its traced child (same goes for fork, the parent
 | |
|  * can write to the child->flags), because we're guaranteed the
 | |
|  * child is not running and in turn not changing child->flags
 | |
|  * at the same time the parent does it.
 | |
|  */
 | |
| #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
 | |
| #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
 | |
| #define clear_used_math()			clear_stopped_child_used_math(current)
 | |
| #define set_used_math()				set_stopped_child_used_math(current)
 | |
| 
 | |
| #define conditional_stopped_child_used_math(condition, child) \
 | |
| 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
 | |
| 
 | |
| #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
 | |
| 
 | |
| #define copy_to_stopped_child_used_math(child) \
 | |
| 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
 | |
| 
 | |
| /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
 | |
| #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
 | |
| #define used_math()				tsk_used_math(current)
 | |
| 
 | |
| static __always_inline bool is_percpu_thread(void)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	return (current->flags & PF_NO_SETAFFINITY) &&
 | |
| 		(current->nr_cpus_allowed  == 1);
 | |
| #else
 | |
| 	return true;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Per-process atomic flags. */
 | |
| #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
 | |
| #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
 | |
| #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
 | |
| #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
 | |
| #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
 | |
| #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
 | |
| #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
 | |
| #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
 | |
| 
 | |
| #define TASK_PFA_TEST(name, func)					\
 | |
| 	static inline bool task_##func(struct task_struct *p)		\
 | |
| 	{ return test_bit(PFA_##name, &p->atomic_flags); }
 | |
| 
 | |
| #define TASK_PFA_SET(name, func)					\
 | |
| 	static inline void task_set_##func(struct task_struct *p)	\
 | |
| 	{ set_bit(PFA_##name, &p->atomic_flags); }
 | |
| 
 | |
| #define TASK_PFA_CLEAR(name, func)					\
 | |
| 	static inline void task_clear_##func(struct task_struct *p)	\
 | |
| 	{ clear_bit(PFA_##name, &p->atomic_flags); }
 | |
| 
 | |
| TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
 | |
| TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
 | |
| 
 | |
| TASK_PFA_TEST(SPREAD_PAGE, spread_page)
 | |
| TASK_PFA_SET(SPREAD_PAGE, spread_page)
 | |
| TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
 | |
| 
 | |
| TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
 | |
| TASK_PFA_SET(SPREAD_SLAB, spread_slab)
 | |
| TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
 | |
| 
 | |
| TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
 | |
| TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
 | |
| TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
 | |
| 
 | |
| TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
 | |
| TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
 | |
| TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
 | |
| 
 | |
| TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
 | |
| TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
 | |
| 
 | |
| TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
 | |
| TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
 | |
| TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
 | |
| 
 | |
| TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
 | |
| TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
 | |
| 
 | |
| static inline void
 | |
| current_restore_flags(unsigned long orig_flags, unsigned long flags)
 | |
| {
 | |
| 	current->flags &= ~flags;
 | |
| 	current->flags |= orig_flags & flags;
 | |
| }
 | |
| 
 | |
| extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
 | |
| extern int task_can_attach(struct task_struct *p);
 | |
| extern int dl_bw_alloc(int cpu, u64 dl_bw);
 | |
| extern void dl_bw_free(int cpu, u64 dl_bw);
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
 | |
| extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
 | |
| 
 | |
| /**
 | |
|  * set_cpus_allowed_ptr - set CPU affinity mask of a task
 | |
|  * @p: the task
 | |
|  * @new_mask: CPU affinity mask
 | |
|  *
 | |
|  * Return: zero if successful, or a negative error code
 | |
|  */
 | |
| extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
 | |
| extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
 | |
| extern void release_user_cpus_ptr(struct task_struct *p);
 | |
| extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
 | |
| extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
 | |
| extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
 | |
| #else
 | |
| static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
 | |
| {
 | |
| }
 | |
| static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
 | |
| {
 | |
| 	if (!cpumask_test_cpu(0, new_mask))
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
 | |
| {
 | |
| 	if (src->user_cpus_ptr)
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| static inline void release_user_cpus_ptr(struct task_struct *p)
 | |
| {
 | |
| 	WARN_ON(p->user_cpus_ptr);
 | |
| }
 | |
| 
 | |
| static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| extern int yield_to(struct task_struct *p, bool preempt);
 | |
| extern void set_user_nice(struct task_struct *p, long nice);
 | |
| extern int task_prio(const struct task_struct *p);
 | |
| 
 | |
| /**
 | |
|  * task_nice - return the nice value of a given task.
 | |
|  * @p: the task in question.
 | |
|  *
 | |
|  * Return: The nice value [ -20 ... 0 ... 19 ].
 | |
|  */
 | |
| static inline int task_nice(const struct task_struct *p)
 | |
| {
 | |
| 	return PRIO_TO_NICE((p)->static_prio);
 | |
| }
 | |
| 
 | |
| extern int can_nice(const struct task_struct *p, const int nice);
 | |
| extern int task_curr(const struct task_struct *p);
 | |
| extern int idle_cpu(int cpu);
 | |
| extern int available_idle_cpu(int cpu);
 | |
| extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
 | |
| extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
 | |
| extern void sched_set_fifo(struct task_struct *p);
 | |
| extern void sched_set_fifo_low(struct task_struct *p);
 | |
| extern void sched_set_normal(struct task_struct *p, int nice);
 | |
| extern int sched_setattr(struct task_struct *, const struct sched_attr *);
 | |
| extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
 | |
| extern struct task_struct *idle_task(int cpu);
 | |
| 
 | |
| /**
 | |
|  * is_idle_task - is the specified task an idle task?
 | |
|  * @p: the task in question.
 | |
|  *
 | |
|  * Return: 1 if @p is an idle task. 0 otherwise.
 | |
|  */
 | |
| static __always_inline bool is_idle_task(const struct task_struct *p)
 | |
| {
 | |
| 	return !!(p->flags & PF_IDLE);
 | |
| }
 | |
| 
 | |
| extern struct task_struct *curr_task(int cpu);
 | |
| extern void ia64_set_curr_task(int cpu, struct task_struct *p);
 | |
| 
 | |
| void yield(void);
 | |
| 
 | |
| union thread_union {
 | |
| 	struct task_struct task;
 | |
| #ifndef CONFIG_THREAD_INFO_IN_TASK
 | |
| 	struct thread_info thread_info;
 | |
| #endif
 | |
| 	unsigned long stack[THREAD_SIZE/sizeof(long)];
 | |
| };
 | |
| 
 | |
| #ifndef CONFIG_THREAD_INFO_IN_TASK
 | |
| extern struct thread_info init_thread_info;
 | |
| #endif
 | |
| 
 | |
| extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
 | |
| 
 | |
| #ifdef CONFIG_THREAD_INFO_IN_TASK
 | |
| # define task_thread_info(task)	(&(task)->thread_info)
 | |
| #elif !defined(__HAVE_THREAD_FUNCTIONS)
 | |
| # define task_thread_info(task)	((struct thread_info *)(task)->stack)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * find a task by one of its numerical ids
 | |
|  *
 | |
|  * find_task_by_pid_ns():
 | |
|  *      finds a task by its pid in the specified namespace
 | |
|  * find_task_by_vpid():
 | |
|  *      finds a task by its virtual pid
 | |
|  *
 | |
|  * see also find_vpid() etc in include/linux/pid.h
 | |
|  */
 | |
| 
 | |
| extern struct task_struct *find_task_by_vpid(pid_t nr);
 | |
| extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
 | |
| 
 | |
| /*
 | |
|  * find a task by its virtual pid and get the task struct
 | |
|  */
 | |
| extern struct task_struct *find_get_task_by_vpid(pid_t nr);
 | |
| 
 | |
| extern int wake_up_state(struct task_struct *tsk, unsigned int state);
 | |
| extern int wake_up_process(struct task_struct *tsk);
 | |
| extern void wake_up_new_task(struct task_struct *tsk);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| extern void kick_process(struct task_struct *tsk);
 | |
| #else
 | |
| static inline void kick_process(struct task_struct *tsk) { }
 | |
| #endif
 | |
| 
 | |
| extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
 | |
| 
 | |
| static inline void set_task_comm(struct task_struct *tsk, const char *from)
 | |
| {
 | |
| 	__set_task_comm(tsk, from, false);
 | |
| }
 | |
| 
 | |
| extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
 | |
| #define get_task_comm(buf, tsk) ({			\
 | |
| 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
 | |
| 	__get_task_comm(buf, sizeof(buf), tsk);		\
 | |
| })
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static __always_inline void scheduler_ipi(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
 | |
| 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
 | |
| 	 * this IPI.
 | |
| 	 */
 | |
| 	preempt_fold_need_resched();
 | |
| }
 | |
| #else
 | |
| static inline void scheduler_ipi(void) { }
 | |
| #endif
 | |
| 
 | |
| extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
 | |
| 
 | |
| /*
 | |
|  * Set thread flags in other task's structures.
 | |
|  * See asm/thread_info.h for TIF_xxxx flags available:
 | |
|  */
 | |
| static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
 | |
| {
 | |
| 	set_ti_thread_flag(task_thread_info(tsk), flag);
 | |
| }
 | |
| 
 | |
| static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
 | |
| {
 | |
| 	clear_ti_thread_flag(task_thread_info(tsk), flag);
 | |
| }
 | |
| 
 | |
| static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
 | |
| 					  bool value)
 | |
| {
 | |
| 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
 | |
| }
 | |
| 
 | |
| static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
 | |
| {
 | |
| 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
 | |
| }
 | |
| 
 | |
| static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
 | |
| {
 | |
| 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
 | |
| }
 | |
| 
 | |
| static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
 | |
| {
 | |
| 	return test_ti_thread_flag(task_thread_info(tsk), flag);
 | |
| }
 | |
| 
 | |
| static inline void set_tsk_need_resched(struct task_struct *tsk)
 | |
| {
 | |
| 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
 | |
| }
 | |
| 
 | |
| static inline void clear_tsk_need_resched(struct task_struct *tsk)
 | |
| {
 | |
| 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
 | |
| }
 | |
| 
 | |
| static inline int test_tsk_need_resched(struct task_struct *tsk)
 | |
| {
 | |
| 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cond_resched() and cond_resched_lock(): latency reduction via
 | |
|  * explicit rescheduling in places that are safe. The return
 | |
|  * value indicates whether a reschedule was done in fact.
 | |
|  * cond_resched_lock() will drop the spinlock before scheduling,
 | |
|  */
 | |
| #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
 | |
| extern int __cond_resched(void);
 | |
| 
 | |
| #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 | |
| 
 | |
| void sched_dynamic_klp_enable(void);
 | |
| void sched_dynamic_klp_disable(void);
 | |
| 
 | |
| DECLARE_STATIC_CALL(cond_resched, __cond_resched);
 | |
| 
 | |
| static __always_inline int _cond_resched(void)
 | |
| {
 | |
| 	return static_call_mod(cond_resched)();
 | |
| }
 | |
| 
 | |
| #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 | |
| 
 | |
| extern int dynamic_cond_resched(void);
 | |
| 
 | |
| static __always_inline int _cond_resched(void)
 | |
| {
 | |
| 	return dynamic_cond_resched();
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_PREEMPTION */
 | |
| 
 | |
| static inline int _cond_resched(void)
 | |
| {
 | |
| 	klp_sched_try_switch();
 | |
| 	return __cond_resched();
 | |
| }
 | |
| 
 | |
| #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
 | |
| 
 | |
| #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
 | |
| 
 | |
| static inline int _cond_resched(void)
 | |
| {
 | |
| 	klp_sched_try_switch();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
 | |
| 
 | |
| #define cond_resched() ({			\
 | |
| 	__might_resched(__FILE__, __LINE__, 0);	\
 | |
| 	_cond_resched();			\
 | |
| })
 | |
| 
 | |
| extern int __cond_resched_lock(spinlock_t *lock);
 | |
| extern int __cond_resched_rwlock_read(rwlock_t *lock);
 | |
| extern int __cond_resched_rwlock_write(rwlock_t *lock);
 | |
| 
 | |
| #define MIGHT_RESCHED_RCU_SHIFT		8
 | |
| #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
 | |
| 
 | |
| #ifndef CONFIG_PREEMPT_RT
 | |
| /*
 | |
|  * Non RT kernels have an elevated preempt count due to the held lock,
 | |
|  * but are not allowed to be inside a RCU read side critical section
 | |
|  */
 | |
| # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
 | |
| #else
 | |
| /*
 | |
|  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
 | |
|  * cond_resched*lock() has to take that into account because it checks for
 | |
|  * preempt_count() and rcu_preempt_depth().
 | |
|  */
 | |
| # define PREEMPT_LOCK_RESCHED_OFFSETS	\
 | |
| 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
 | |
| #endif
 | |
| 
 | |
| #define cond_resched_lock(lock) ({						\
 | |
| 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
 | |
| 	__cond_resched_lock(lock);						\
 | |
| })
 | |
| 
 | |
| #define cond_resched_rwlock_read(lock) ({					\
 | |
| 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
 | |
| 	__cond_resched_rwlock_read(lock);					\
 | |
| })
 | |
| 
 | |
| #define cond_resched_rwlock_write(lock) ({					\
 | |
| 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
 | |
| 	__cond_resched_rwlock_write(lock);					\
 | |
| })
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT_DYNAMIC
 | |
| 
 | |
| extern bool preempt_model_none(void);
 | |
| extern bool preempt_model_voluntary(void);
 | |
| extern bool preempt_model_full(void);
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline bool preempt_model_none(void)
 | |
| {
 | |
| 	return IS_ENABLED(CONFIG_PREEMPT_NONE);
 | |
| }
 | |
| static inline bool preempt_model_voluntary(void)
 | |
| {
 | |
| 	return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
 | |
| }
 | |
| static inline bool preempt_model_full(void)
 | |
| {
 | |
| 	return IS_ENABLED(CONFIG_PREEMPT);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static inline bool preempt_model_rt(void)
 | |
| {
 | |
| 	return IS_ENABLED(CONFIG_PREEMPT_RT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Does the preemption model allow non-cooperative preemption?
 | |
|  *
 | |
|  * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
 | |
|  * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
 | |
|  * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
 | |
|  * PREEMPT_NONE model.
 | |
|  */
 | |
| static inline bool preempt_model_preemptible(void)
 | |
| {
 | |
| 	return preempt_model_full() || preempt_model_rt();
 | |
| }
 | |
| 
 | |
| static __always_inline bool need_resched(void)
 | |
| {
 | |
| 	return unlikely(tif_need_resched());
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrappers for p->thread_info->cpu access. No-op on UP.
 | |
|  */
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| static inline unsigned int task_cpu(const struct task_struct *p)
 | |
| {
 | |
| 	return READ_ONCE(task_thread_info(p)->cpu);
 | |
| }
 | |
| 
 | |
| extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline unsigned int task_cpu(const struct task_struct *p)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| extern bool sched_task_on_rq(struct task_struct *p);
 | |
| extern unsigned long get_wchan(struct task_struct *p);
 | |
| extern struct task_struct *cpu_curr_snapshot(int cpu);
 | |
| 
 | |
| #include <linux/spinlock.h>
 | |
| 
 | |
| /*
 | |
|  * In order to reduce various lock holder preemption latencies provide an
 | |
|  * interface to see if a vCPU is currently running or not.
 | |
|  *
 | |
|  * This allows us to terminate optimistic spin loops and block, analogous to
 | |
|  * the native optimistic spin heuristic of testing if the lock owner task is
 | |
|  * running or not.
 | |
|  */
 | |
| #ifndef vcpu_is_preempted
 | |
| static inline bool vcpu_is_preempted(int cpu)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
 | |
| extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
 | |
| 
 | |
| #ifndef TASK_SIZE_OF
 | |
| #define TASK_SIZE_OF(tsk)	TASK_SIZE
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static inline bool owner_on_cpu(struct task_struct *owner)
 | |
| {
 | |
| 	/*
 | |
| 	 * As lock holder preemption issue, we both skip spinning if
 | |
| 	 * task is not on cpu or its cpu is preempted
 | |
| 	 */
 | |
| 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
 | |
| }
 | |
| 
 | |
| /* Returns effective CPU energy utilization, as seen by the scheduler */
 | |
| unsigned long sched_cpu_util(int cpu);
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| #ifdef CONFIG_SCHED_CORE
 | |
| extern void sched_core_free(struct task_struct *tsk);
 | |
| extern void sched_core_fork(struct task_struct *p);
 | |
| extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
 | |
| 				unsigned long uaddr);
 | |
| extern int sched_core_idle_cpu(int cpu);
 | |
| #else
 | |
| static inline void sched_core_free(struct task_struct *tsk) { }
 | |
| static inline void sched_core_fork(struct task_struct *p) { }
 | |
| static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
 | |
| #endif
 | |
| 
 | |
| extern void sched_set_stop_task(int cpu, struct task_struct *stop);
 | |
| 
 | |
| #ifdef CONFIG_MEM_ALLOC_PROFILING
 | |
| static inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
 | |
| {
 | |
| 	swap(current->alloc_tag, tag);
 | |
| 	return tag;
 | |
| }
 | |
| 
 | |
| static inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
 | |
| {
 | |
| #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
 | |
| 	WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
 | |
| #endif
 | |
| 	current->alloc_tag = old;
 | |
| }
 | |
| #else
 | |
| #define alloc_tag_save(_tag)			NULL
 | |
| #define alloc_tag_restore(_tag, _old)		do {} while (0)
 | |
| #endif
 | |
| 
 | |
| #endif
 |