forked from mirrors/linux
		
	 057b8d2571
			
		
	
	
		057b8d2571
		
	
	
	
	
		
			
			This customizes the subset of the Rust standard library `alloc` that
was just imported as-is, mainly by:
  - Adding SPDX license identifiers.
  - Skipping modules (e.g. `rc` and `sync`) via new `cfg`s.
  - Adding fallible (`try_*`) versions of existing infallible methods
    (i.e. returning a `Result` instead of panicking).
    Since the standard library requires stable/unstable attributes,
    these additions are annotated with:
        #[stable(feature = "kernel", since = "1.0.0")]
    Using "kernel" as the feature allows to have the additions
    clearly marked. The "1.0.0" version is just a placeholder.
    (At the moment, only one is needed, but in the future more
    fallible methods will be added).
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Co-developed-by: Alex Gaynor <alex.gaynor@gmail.com>
Signed-off-by: Alex Gaynor <alex.gaynor@gmail.com>
Co-developed-by: Wedson Almeida Filho <wedsonaf@google.com>
Signed-off-by: Wedson Almeida Filho <wedsonaf@google.com>
Co-developed-by: Gary Guo <gary@garyguo.net>
Signed-off-by: Gary Guo <gary@garyguo.net>
Co-developed-by: Matthew Bakhtiari <dev@mtbk.me>
Signed-off-by: Matthew Bakhtiari <dev@mtbk.me>
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
		
	
			
		
			
				
	
	
		
			2028 lines
		
	
	
	
		
			64 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			2028 lines
		
	
	
	
		
			64 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| // SPDX-License-Identifier: Apache-2.0 OR MIT
 | |
| 
 | |
| //! A pointer type for heap allocation.
 | |
| //!
 | |
| //! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
 | |
| //! heap allocation in Rust. Boxes provide ownership for this allocation, and
 | |
| //! drop their contents when they go out of scope. Boxes also ensure that they
 | |
| //! never allocate more than `isize::MAX` bytes.
 | |
| //!
 | |
| //! # Examples
 | |
| //!
 | |
| //! Move a value from the stack to the heap by creating a [`Box`]:
 | |
| //!
 | |
| //! ```
 | |
| //! let val: u8 = 5;
 | |
| //! let boxed: Box<u8> = Box::new(val);
 | |
| //! ```
 | |
| //!
 | |
| //! Move a value from a [`Box`] back to the stack by [dereferencing]:
 | |
| //!
 | |
| //! ```
 | |
| //! let boxed: Box<u8> = Box::new(5);
 | |
| //! let val: u8 = *boxed;
 | |
| //! ```
 | |
| //!
 | |
| //! Creating a recursive data structure:
 | |
| //!
 | |
| //! ```
 | |
| //! #[derive(Debug)]
 | |
| //! enum List<T> {
 | |
| //!     Cons(T, Box<List<T>>),
 | |
| //!     Nil,
 | |
| //! }
 | |
| //!
 | |
| //! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
 | |
| //! println!("{list:?}");
 | |
| //! ```
 | |
| //!
 | |
| //! This will print `Cons(1, Cons(2, Nil))`.
 | |
| //!
 | |
| //! Recursive structures must be boxed, because if the definition of `Cons`
 | |
| //! looked like this:
 | |
| //!
 | |
| //! ```compile_fail,E0072
 | |
| //! # enum List<T> {
 | |
| //! Cons(T, List<T>),
 | |
| //! # }
 | |
| //! ```
 | |
| //!
 | |
| //! It wouldn't work. This is because the size of a `List` depends on how many
 | |
| //! elements are in the list, and so we don't know how much memory to allocate
 | |
| //! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how
 | |
| //! big `Cons` needs to be.
 | |
| //!
 | |
| //! # Memory layout
 | |
| //!
 | |
| //! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for
 | |
| //! its allocation. It is valid to convert both ways between a [`Box`] and a
 | |
| //! raw pointer allocated with the [`Global`] allocator, given that the
 | |
| //! [`Layout`] used with the allocator is correct for the type. More precisely,
 | |
| //! a `value: *mut T` that has been allocated with the [`Global`] allocator
 | |
| //! with `Layout::for_value(&*value)` may be converted into a box using
 | |
| //! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
 | |
| //! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the
 | |
| //! [`Global`] allocator with [`Layout::for_value(&*value)`].
 | |
| //!
 | |
| //! For zero-sized values, the `Box` pointer still has to be [valid] for reads
 | |
| //! and writes and sufficiently aligned. In particular, casting any aligned
 | |
| //! non-zero integer literal to a raw pointer produces a valid pointer, but a
 | |
| //! pointer pointing into previously allocated memory that since got freed is
 | |
| //! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot
 | |
| //! be used is to use [`ptr::NonNull::dangling`].
 | |
| //!
 | |
| //! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented
 | |
| //! as a single pointer and is also ABI-compatible with C pointers
 | |
| //! (i.e. the C type `T*`). This means that if you have extern "C"
 | |
| //! Rust functions that will be called from C, you can define those
 | |
| //! Rust functions using `Box<T>` types, and use `T*` as corresponding
 | |
| //! type on the C side. As an example, consider this C header which
 | |
| //! declares functions that create and destroy some kind of `Foo`
 | |
| //! value:
 | |
| //!
 | |
| //! ```c
 | |
| //! /* C header */
 | |
| //!
 | |
| //! /* Returns ownership to the caller */
 | |
| //! struct Foo* foo_new(void);
 | |
| //!
 | |
| //! /* Takes ownership from the caller; no-op when invoked with null */
 | |
| //! void foo_delete(struct Foo*);
 | |
| //! ```
 | |
| //!
 | |
| //! These two functions might be implemented in Rust as follows. Here, the
 | |
| //! `struct Foo*` type from C is translated to `Box<Foo>`, which captures
 | |
| //! the ownership constraints. Note also that the nullable argument to
 | |
| //! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>`
 | |
| //! cannot be null.
 | |
| //!
 | |
| //! ```
 | |
| //! #[repr(C)]
 | |
| //! pub struct Foo;
 | |
| //!
 | |
| //! #[no_mangle]
 | |
| //! pub extern "C" fn foo_new() -> Box<Foo> {
 | |
| //!     Box::new(Foo)
 | |
| //! }
 | |
| //!
 | |
| //! #[no_mangle]
 | |
| //! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
 | |
| //! ```
 | |
| //!
 | |
| //! Even though `Box<T>` has the same representation and C ABI as a C pointer,
 | |
| //! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
 | |
| //! and expect things to work. `Box<T>` values will always be fully aligned,
 | |
| //! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
 | |
| //! free the value with the global allocator. In general, the best practice
 | |
| //! is to only use `Box<T>` for pointers that originated from the global
 | |
| //! allocator.
 | |
| //!
 | |
| //! **Important.** At least at present, you should avoid using
 | |
| //! `Box<T>` types for functions that are defined in C but invoked
 | |
| //! from Rust. In those cases, you should directly mirror the C types
 | |
| //! as closely as possible. Using types like `Box<T>` where the C
 | |
| //! definition is just using `T*` can lead to undefined behavior, as
 | |
| //! described in [rust-lang/unsafe-code-guidelines#198][ucg#198].
 | |
| //!
 | |
| //! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
 | |
| //! [dereferencing]: core::ops::Deref
 | |
| //! [`Box::<T>::from_raw(value)`]: Box::from_raw
 | |
| //! [`Global`]: crate::alloc::Global
 | |
| //! [`Layout`]: crate::alloc::Layout
 | |
| //! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value
 | |
| //! [valid]: ptr#safety
 | |
| 
 | |
| #![stable(feature = "rust1", since = "1.0.0")]
 | |
| 
 | |
| use core::any::Any;
 | |
| use core::async_iter::AsyncIterator;
 | |
| use core::borrow;
 | |
| use core::cmp::Ordering;
 | |
| use core::convert::{From, TryFrom};
 | |
| use core::fmt;
 | |
| use core::future::Future;
 | |
| use core::hash::{Hash, Hasher};
 | |
| #[cfg(not(no_global_oom_handling))]
 | |
| use core::iter::FromIterator;
 | |
| use core::iter::{FusedIterator, Iterator};
 | |
| use core::marker::{Destruct, Unpin, Unsize};
 | |
| use core::mem;
 | |
| use core::ops::{
 | |
|     CoerceUnsized, Deref, DerefMut, DispatchFromDyn, Generator, GeneratorState, Receiver,
 | |
| };
 | |
| use core::pin::Pin;
 | |
| use core::ptr::{self, Unique};
 | |
| use core::task::{Context, Poll};
 | |
| 
 | |
| #[cfg(not(no_global_oom_handling))]
 | |
| use crate::alloc::{handle_alloc_error, WriteCloneIntoRaw};
 | |
| use crate::alloc::{AllocError, Allocator, Global, Layout};
 | |
| #[cfg(not(no_global_oom_handling))]
 | |
| use crate::borrow::Cow;
 | |
| use crate::raw_vec::RawVec;
 | |
| #[cfg(not(no_global_oom_handling))]
 | |
| use crate::str::from_boxed_utf8_unchecked;
 | |
| #[cfg(not(no_global_oom_handling))]
 | |
| use crate::vec::Vec;
 | |
| 
 | |
| #[cfg(not(no_thin))]
 | |
| #[unstable(feature = "thin_box", issue = "92791")]
 | |
| pub use thin::ThinBox;
 | |
| 
 | |
| #[cfg(not(no_thin))]
 | |
| mod thin;
 | |
| 
 | |
| /// A pointer type for heap allocation.
 | |
| ///
 | |
| /// See the [module-level documentation](../../std/boxed/index.html) for more.
 | |
| #[lang = "owned_box"]
 | |
| #[fundamental]
 | |
| #[stable(feature = "rust1", since = "1.0.0")]
 | |
| // The declaration of the `Box` struct must be kept in sync with the
 | |
| // `alloc::alloc::box_free` function or ICEs will happen. See the comment
 | |
| // on `box_free` for more details.
 | |
| pub struct Box<
 | |
|     T: ?Sized,
 | |
|     #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
 | |
| >(Unique<T>, A);
 | |
| 
 | |
| impl<T> Box<T> {
 | |
|     /// Allocates memory on the heap and then places `x` into it.
 | |
|     ///
 | |
|     /// This doesn't actually allocate if `T` is zero-sized.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let five = Box::new(5);
 | |
|     /// ```
 | |
|     #[cfg(not(no_global_oom_handling))]
 | |
|     #[inline(always)]
 | |
|     #[stable(feature = "rust1", since = "1.0.0")]
 | |
|     #[must_use]
 | |
|     pub fn new(x: T) -> Self {
 | |
|         box x
 | |
|     }
 | |
| 
 | |
|     /// Constructs a new box with uninitialized contents.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(new_uninit)]
 | |
|     ///
 | |
|     /// let mut five = Box::<u32>::new_uninit();
 | |
|     ///
 | |
|     /// let five = unsafe {
 | |
|     ///     // Deferred initialization:
 | |
|     ///     five.as_mut_ptr().write(5);
 | |
|     ///
 | |
|     ///     five.assume_init()
 | |
|     /// };
 | |
|     ///
 | |
|     /// assert_eq!(*five, 5)
 | |
|     /// ```
 | |
|     #[cfg(not(no_global_oom_handling))]
 | |
|     #[unstable(feature = "new_uninit", issue = "63291")]
 | |
|     #[must_use]
 | |
|     #[inline]
 | |
|     pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
 | |
|         Self::new_uninit_in(Global)
 | |
|     }
 | |
| 
 | |
|     /// Constructs a new `Box` with uninitialized contents, with the memory
 | |
|     /// being filled with `0` bytes.
 | |
|     ///
 | |
|     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
 | |
|     /// of this method.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(new_uninit)]
 | |
|     ///
 | |
|     /// let zero = Box::<u32>::new_zeroed();
 | |
|     /// let zero = unsafe { zero.assume_init() };
 | |
|     ///
 | |
|     /// assert_eq!(*zero, 0)
 | |
|     /// ```
 | |
|     ///
 | |
|     /// [zeroed]: mem::MaybeUninit::zeroed
 | |
|     #[cfg(not(no_global_oom_handling))]
 | |
|     #[inline]
 | |
|     #[unstable(feature = "new_uninit", issue = "63291")]
 | |
|     #[must_use]
 | |
|     pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> {
 | |
|         Self::new_zeroed_in(Global)
 | |
|     }
 | |
| 
 | |
|     /// Constructs a new `Pin<Box<T>>`. If `T` does not implement `Unpin`, then
 | |
|     /// `x` will be pinned in memory and unable to be moved.
 | |
|     #[cfg(not(no_global_oom_handling))]
 | |
|     #[stable(feature = "pin", since = "1.33.0")]
 | |
|     #[must_use]
 | |
|     #[inline(always)]
 | |
|     pub fn pin(x: T) -> Pin<Box<T>> {
 | |
|         (box x).into()
 | |
|     }
 | |
| 
 | |
|     /// Allocates memory on the heap then places `x` into it,
 | |
|     /// returning an error if the allocation fails
 | |
|     ///
 | |
|     /// This doesn't actually allocate if `T` is zero-sized.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(allocator_api)]
 | |
|     ///
 | |
|     /// let five = Box::try_new(5)?;
 | |
|     /// # Ok::<(), std::alloc::AllocError>(())
 | |
|     /// ```
 | |
|     #[unstable(feature = "allocator_api", issue = "32838")]
 | |
|     #[inline]
 | |
|     pub fn try_new(x: T) -> Result<Self, AllocError> {
 | |
|         Self::try_new_in(x, Global)
 | |
|     }
 | |
| 
 | |
|     /// Constructs a new box with uninitialized contents on the heap,
 | |
|     /// returning an error if the allocation fails
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(allocator_api, new_uninit)]
 | |
|     ///
 | |
|     /// let mut five = Box::<u32>::try_new_uninit()?;
 | |
|     ///
 | |
|     /// let five = unsafe {
 | |
|     ///     // Deferred initialization:
 | |
|     ///     five.as_mut_ptr().write(5);
 | |
|     ///
 | |
|     ///     five.assume_init()
 | |
|     /// };
 | |
|     ///
 | |
|     /// assert_eq!(*five, 5);
 | |
|     /// # Ok::<(), std::alloc::AllocError>(())
 | |
|     /// ```
 | |
|     #[unstable(feature = "allocator_api", issue = "32838")]
 | |
|     // #[unstable(feature = "new_uninit", issue = "63291")]
 | |
|     #[inline]
 | |
|     pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
 | |
|         Box::try_new_uninit_in(Global)
 | |
|     }
 | |
| 
 | |
|     /// Constructs a new `Box` with uninitialized contents, with the memory
 | |
|     /// being filled with `0` bytes on the heap
 | |
|     ///
 | |
|     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
 | |
|     /// of this method.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(allocator_api, new_uninit)]
 | |
|     ///
 | |
|     /// let zero = Box::<u32>::try_new_zeroed()?;
 | |
|     /// let zero = unsafe { zero.assume_init() };
 | |
|     ///
 | |
|     /// assert_eq!(*zero, 0);
 | |
|     /// # Ok::<(), std::alloc::AllocError>(())
 | |
|     /// ```
 | |
|     ///
 | |
|     /// [zeroed]: mem::MaybeUninit::zeroed
 | |
|     #[unstable(feature = "allocator_api", issue = "32838")]
 | |
|     // #[unstable(feature = "new_uninit", issue = "63291")]
 | |
|     #[inline]
 | |
|     pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
 | |
|         Box::try_new_zeroed_in(Global)
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T, A: Allocator> Box<T, A> {
 | |
|     /// Allocates memory in the given allocator then places `x` into it.
 | |
|     ///
 | |
|     /// This doesn't actually allocate if `T` is zero-sized.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(allocator_api)]
 | |
|     ///
 | |
|     /// use std::alloc::System;
 | |
|     ///
 | |
|     /// let five = Box::new_in(5, System);
 | |
|     /// ```
 | |
|     #[cfg(not(no_global_oom_handling))]
 | |
|     #[unstable(feature = "allocator_api", issue = "32838")]
 | |
|     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
|     #[must_use]
 | |
|     #[inline]
 | |
|     pub const fn new_in(x: T, alloc: A) -> Self
 | |
|     where
 | |
|         A: ~const Allocator + ~const Destruct,
 | |
|     {
 | |
|         let mut boxed = Self::new_uninit_in(alloc);
 | |
|         unsafe {
 | |
|             boxed.as_mut_ptr().write(x);
 | |
|             boxed.assume_init()
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Allocates memory in the given allocator then places `x` into it,
 | |
|     /// returning an error if the allocation fails
 | |
|     ///
 | |
|     /// This doesn't actually allocate if `T` is zero-sized.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(allocator_api)]
 | |
|     ///
 | |
|     /// use std::alloc::System;
 | |
|     ///
 | |
|     /// let five = Box::try_new_in(5, System)?;
 | |
|     /// # Ok::<(), std::alloc::AllocError>(())
 | |
|     /// ```
 | |
|     #[unstable(feature = "allocator_api", issue = "32838")]
 | |
|     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
|     #[inline]
 | |
|     pub const fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError>
 | |
|     where
 | |
|         T: ~const Destruct,
 | |
|         A: ~const Allocator + ~const Destruct,
 | |
|     {
 | |
|         let mut boxed = Self::try_new_uninit_in(alloc)?;
 | |
|         unsafe {
 | |
|             boxed.as_mut_ptr().write(x);
 | |
|             Ok(boxed.assume_init())
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Constructs a new box with uninitialized contents in the provided allocator.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(allocator_api, new_uninit)]
 | |
|     ///
 | |
|     /// use std::alloc::System;
 | |
|     ///
 | |
|     /// let mut five = Box::<u32, _>::new_uninit_in(System);
 | |
|     ///
 | |
|     /// let five = unsafe {
 | |
|     ///     // Deferred initialization:
 | |
|     ///     five.as_mut_ptr().write(5);
 | |
|     ///
 | |
|     ///     five.assume_init()
 | |
|     /// };
 | |
|     ///
 | |
|     /// assert_eq!(*five, 5)
 | |
|     /// ```
 | |
|     #[unstable(feature = "allocator_api", issue = "32838")]
 | |
|     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
|     #[cfg(not(no_global_oom_handling))]
 | |
|     #[must_use]
 | |
|     // #[unstable(feature = "new_uninit", issue = "63291")]
 | |
|     pub const fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
 | |
|     where
 | |
|         A: ~const Allocator + ~const Destruct,
 | |
|     {
 | |
|         let layout = Layout::new::<mem::MaybeUninit<T>>();
 | |
|         // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
 | |
|         // That would make code size bigger.
 | |
|         match Box::try_new_uninit_in(alloc) {
 | |
|             Ok(m) => m,
 | |
|             Err(_) => handle_alloc_error(layout),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Constructs a new box with uninitialized contents in the provided allocator,
 | |
|     /// returning an error if the allocation fails
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(allocator_api, new_uninit)]
 | |
|     ///
 | |
|     /// use std::alloc::System;
 | |
|     ///
 | |
|     /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
 | |
|     ///
 | |
|     /// let five = unsafe {
 | |
|     ///     // Deferred initialization:
 | |
|     ///     five.as_mut_ptr().write(5);
 | |
|     ///
 | |
|     ///     five.assume_init()
 | |
|     /// };
 | |
|     ///
 | |
|     /// assert_eq!(*five, 5);
 | |
|     /// # Ok::<(), std::alloc::AllocError>(())
 | |
|     /// ```
 | |
|     #[unstable(feature = "allocator_api", issue = "32838")]
 | |
|     // #[unstable(feature = "new_uninit", issue = "63291")]
 | |
|     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
|     pub const fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
 | |
|     where
 | |
|         A: ~const Allocator + ~const Destruct,
 | |
|     {
 | |
|         let layout = Layout::new::<mem::MaybeUninit<T>>();
 | |
|         let ptr = alloc.allocate(layout)?.cast();
 | |
|         unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
 | |
|     }
 | |
| 
 | |
|     /// Constructs a new `Box` with uninitialized contents, with the memory
 | |
|     /// being filled with `0` bytes in the provided allocator.
 | |
|     ///
 | |
|     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
 | |
|     /// of this method.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(allocator_api, new_uninit)]
 | |
|     ///
 | |
|     /// use std::alloc::System;
 | |
|     ///
 | |
|     /// let zero = Box::<u32, _>::new_zeroed_in(System);
 | |
|     /// let zero = unsafe { zero.assume_init() };
 | |
|     ///
 | |
|     /// assert_eq!(*zero, 0)
 | |
|     /// ```
 | |
|     ///
 | |
|     /// [zeroed]: mem::MaybeUninit::zeroed
 | |
|     #[unstable(feature = "allocator_api", issue = "32838")]
 | |
|     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
|     #[cfg(not(no_global_oom_handling))]
 | |
|     // #[unstable(feature = "new_uninit", issue = "63291")]
 | |
|     #[must_use]
 | |
|     pub const fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
 | |
|     where
 | |
|         A: ~const Allocator + ~const Destruct,
 | |
|     {
 | |
|         let layout = Layout::new::<mem::MaybeUninit<T>>();
 | |
|         // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
 | |
|         // That would make code size bigger.
 | |
|         match Box::try_new_zeroed_in(alloc) {
 | |
|             Ok(m) => m,
 | |
|             Err(_) => handle_alloc_error(layout),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Constructs a new `Box` with uninitialized contents, with the memory
 | |
|     /// being filled with `0` bytes in the provided allocator,
 | |
|     /// returning an error if the allocation fails,
 | |
|     ///
 | |
|     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
 | |
|     /// of this method.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(allocator_api, new_uninit)]
 | |
|     ///
 | |
|     /// use std::alloc::System;
 | |
|     ///
 | |
|     /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
 | |
|     /// let zero = unsafe { zero.assume_init() };
 | |
|     ///
 | |
|     /// assert_eq!(*zero, 0);
 | |
|     /// # Ok::<(), std::alloc::AllocError>(())
 | |
|     /// ```
 | |
|     ///
 | |
|     /// [zeroed]: mem::MaybeUninit::zeroed
 | |
|     #[unstable(feature = "allocator_api", issue = "32838")]
 | |
|     // #[unstable(feature = "new_uninit", issue = "63291")]
 | |
|     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
|     pub const fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
 | |
|     where
 | |
|         A: ~const Allocator + ~const Destruct,
 | |
|     {
 | |
|         let layout = Layout::new::<mem::MaybeUninit<T>>();
 | |
|         let ptr = alloc.allocate_zeroed(layout)?.cast();
 | |
|         unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
 | |
|     }
 | |
| 
 | |
|     /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement `Unpin`, then
 | |
|     /// `x` will be pinned in memory and unable to be moved.
 | |
|     #[cfg(not(no_global_oom_handling))]
 | |
|     #[unstable(feature = "allocator_api", issue = "32838")]
 | |
|     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
|     #[must_use]
 | |
|     #[inline(always)]
 | |
|     pub const fn pin_in(x: T, alloc: A) -> Pin<Self>
 | |
|     where
 | |
|         A: 'static + ~const Allocator + ~const Destruct,
 | |
|     {
 | |
|         Self::into_pin(Self::new_in(x, alloc))
 | |
|     }
 | |
| 
 | |
|     /// Converts a `Box<T>` into a `Box<[T]>`
 | |
|     ///
 | |
|     /// This conversion does not allocate on the heap and happens in place.
 | |
|     #[unstable(feature = "box_into_boxed_slice", issue = "71582")]
 | |
|     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
|     pub const fn into_boxed_slice(boxed: Self) -> Box<[T], A> {
 | |
|         let (raw, alloc) = Box::into_raw_with_allocator(boxed);
 | |
|         unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) }
 | |
|     }
 | |
| 
 | |
|     /// Consumes the `Box`, returning the wrapped value.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(box_into_inner)]
 | |
|     ///
 | |
|     /// let c = Box::new(5);
 | |
|     ///
 | |
|     /// assert_eq!(Box::into_inner(c), 5);
 | |
|     /// ```
 | |
|     #[unstable(feature = "box_into_inner", issue = "80437")]
 | |
|     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
|     #[inline]
 | |
|     pub const fn into_inner(boxed: Self) -> T
 | |
|     where
 | |
|         Self: ~const Destruct,
 | |
|     {
 | |
|         *boxed
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T> Box<[T]> {
 | |
|     /// Constructs a new boxed slice with uninitialized contents.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(new_uninit)]
 | |
|     ///
 | |
|     /// let mut values = Box::<[u32]>::new_uninit_slice(3);
 | |
|     ///
 | |
|     /// let values = unsafe {
 | |
|     ///     // Deferred initialization:
 | |
|     ///     values[0].as_mut_ptr().write(1);
 | |
|     ///     values[1].as_mut_ptr().write(2);
 | |
|     ///     values[2].as_mut_ptr().write(3);
 | |
|     ///
 | |
|     ///     values.assume_init()
 | |
|     /// };
 | |
|     ///
 | |
|     /// assert_eq!(*values, [1, 2, 3])
 | |
|     /// ```
 | |
|     #[cfg(not(no_global_oom_handling))]
 | |
|     #[unstable(feature = "new_uninit", issue = "63291")]
 | |
|     #[must_use]
 | |
|     pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
 | |
|         unsafe { RawVec::with_capacity(len).into_box(len) }
 | |
|     }
 | |
| 
 | |
|     /// Constructs a new boxed slice with uninitialized contents, with the memory
 | |
|     /// being filled with `0` bytes.
 | |
|     ///
 | |
|     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
 | |
|     /// of this method.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(new_uninit)]
 | |
|     ///
 | |
|     /// let values = Box::<[u32]>::new_zeroed_slice(3);
 | |
|     /// let values = unsafe { values.assume_init() };
 | |
|     ///
 | |
|     /// assert_eq!(*values, [0, 0, 0])
 | |
|     /// ```
 | |
|     ///
 | |
|     /// [zeroed]: mem::MaybeUninit::zeroed
 | |
|     #[cfg(not(no_global_oom_handling))]
 | |
|     #[unstable(feature = "new_uninit", issue = "63291")]
 | |
|     #[must_use]
 | |
|     pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
 | |
|         unsafe { RawVec::with_capacity_zeroed(len).into_box(len) }
 | |
|     }
 | |
| 
 | |
|     /// Constructs a new boxed slice with uninitialized contents. Returns an error if
 | |
|     /// the allocation fails
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(allocator_api, new_uninit)]
 | |
|     ///
 | |
|     /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
 | |
|     /// let values = unsafe {
 | |
|     ///     // Deferred initialization:
 | |
|     ///     values[0].as_mut_ptr().write(1);
 | |
|     ///     values[1].as_mut_ptr().write(2);
 | |
|     ///     values[2].as_mut_ptr().write(3);
 | |
|     ///     values.assume_init()
 | |
|     /// };
 | |
|     ///
 | |
|     /// assert_eq!(*values, [1, 2, 3]);
 | |
|     /// # Ok::<(), std::alloc::AllocError>(())
 | |
|     /// ```
 | |
|     #[unstable(feature = "allocator_api", issue = "32838")]
 | |
|     #[inline]
 | |
|     pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
 | |
|         unsafe {
 | |
|             let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
 | |
|                 Ok(l) => l,
 | |
|                 Err(_) => return Err(AllocError),
 | |
|             };
 | |
|             let ptr = Global.allocate(layout)?;
 | |
|             Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len))
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Constructs a new boxed slice with uninitialized contents, with the memory
 | |
|     /// being filled with `0` bytes. Returns an error if the allocation fails
 | |
|     ///
 | |
|     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
 | |
|     /// of this method.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(allocator_api, new_uninit)]
 | |
|     ///
 | |
|     /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
 | |
|     /// let values = unsafe { values.assume_init() };
 | |
|     ///
 | |
|     /// assert_eq!(*values, [0, 0, 0]);
 | |
|     /// # Ok::<(), std::alloc::AllocError>(())
 | |
|     /// ```
 | |
|     ///
 | |
|     /// [zeroed]: mem::MaybeUninit::zeroed
 | |
|     #[unstable(feature = "allocator_api", issue = "32838")]
 | |
|     #[inline]
 | |
|     pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
 | |
|         unsafe {
 | |
|             let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
 | |
|                 Ok(l) => l,
 | |
|                 Err(_) => return Err(AllocError),
 | |
|             };
 | |
|             let ptr = Global.allocate_zeroed(layout)?;
 | |
|             Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len))
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T, A: Allocator> Box<[T], A> {
 | |
|     /// Constructs a new boxed slice with uninitialized contents in the provided allocator.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(allocator_api, new_uninit)]
 | |
|     ///
 | |
|     /// use std::alloc::System;
 | |
|     ///
 | |
|     /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
 | |
|     ///
 | |
|     /// let values = unsafe {
 | |
|     ///     // Deferred initialization:
 | |
|     ///     values[0].as_mut_ptr().write(1);
 | |
|     ///     values[1].as_mut_ptr().write(2);
 | |
|     ///     values[2].as_mut_ptr().write(3);
 | |
|     ///
 | |
|     ///     values.assume_init()
 | |
|     /// };
 | |
|     ///
 | |
|     /// assert_eq!(*values, [1, 2, 3])
 | |
|     /// ```
 | |
|     #[cfg(not(no_global_oom_handling))]
 | |
|     #[unstable(feature = "allocator_api", issue = "32838")]
 | |
|     // #[unstable(feature = "new_uninit", issue = "63291")]
 | |
|     #[must_use]
 | |
|     pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
 | |
|         unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) }
 | |
|     }
 | |
| 
 | |
|     /// Constructs a new boxed slice with uninitialized contents in the provided allocator,
 | |
|     /// with the memory being filled with `0` bytes.
 | |
|     ///
 | |
|     /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
 | |
|     /// of this method.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(allocator_api, new_uninit)]
 | |
|     ///
 | |
|     /// use std::alloc::System;
 | |
|     ///
 | |
|     /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
 | |
|     /// let values = unsafe { values.assume_init() };
 | |
|     ///
 | |
|     /// assert_eq!(*values, [0, 0, 0])
 | |
|     /// ```
 | |
|     ///
 | |
|     /// [zeroed]: mem::MaybeUninit::zeroed
 | |
|     #[cfg(not(no_global_oom_handling))]
 | |
|     #[unstable(feature = "allocator_api", issue = "32838")]
 | |
|     // #[unstable(feature = "new_uninit", issue = "63291")]
 | |
|     #[must_use]
 | |
|     pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
 | |
|         unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> {
 | |
|     /// Converts to `Box<T, A>`.
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// As with [`MaybeUninit::assume_init`],
 | |
|     /// it is up to the caller to guarantee that the value
 | |
|     /// really is in an initialized state.
 | |
|     /// Calling this when the content is not yet fully initialized
 | |
|     /// causes immediate undefined behavior.
 | |
|     ///
 | |
|     /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(new_uninit)]
 | |
|     ///
 | |
|     /// let mut five = Box::<u32>::new_uninit();
 | |
|     ///
 | |
|     /// let five: Box<u32> = unsafe {
 | |
|     ///     // Deferred initialization:
 | |
|     ///     five.as_mut_ptr().write(5);
 | |
|     ///
 | |
|     ///     five.assume_init()
 | |
|     /// };
 | |
|     ///
 | |
|     /// assert_eq!(*five, 5)
 | |
|     /// ```
 | |
|     #[unstable(feature = "new_uninit", issue = "63291")]
 | |
|     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
|     #[inline]
 | |
|     pub const unsafe fn assume_init(self) -> Box<T, A> {
 | |
|         let (raw, alloc) = Box::into_raw_with_allocator(self);
 | |
|         unsafe { Box::from_raw_in(raw as *mut T, alloc) }
 | |
|     }
 | |
| 
 | |
|     /// Writes the value and converts to `Box<T, A>`.
 | |
|     ///
 | |
|     /// This method converts the box similarly to [`Box::assume_init`] but
 | |
|     /// writes `value` into it before conversion thus guaranteeing safety.
 | |
|     /// In some scenarios use of this method may improve performance because
 | |
|     /// the compiler may be able to optimize copying from stack.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(new_uninit)]
 | |
|     ///
 | |
|     /// let big_box = Box::<[usize; 1024]>::new_uninit();
 | |
|     ///
 | |
|     /// let mut array = [0; 1024];
 | |
|     /// for (i, place) in array.iter_mut().enumerate() {
 | |
|     ///     *place = i;
 | |
|     /// }
 | |
|     ///
 | |
|     /// // The optimizer may be able to elide this copy, so previous code writes
 | |
|     /// // to heap directly.
 | |
|     /// let big_box = Box::write(big_box, array);
 | |
|     ///
 | |
|     /// for (i, x) in big_box.iter().enumerate() {
 | |
|     ///     assert_eq!(*x, i);
 | |
|     /// }
 | |
|     /// ```
 | |
|     #[unstable(feature = "new_uninit", issue = "63291")]
 | |
|     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
|     #[inline]
 | |
|     pub const fn write(mut boxed: Self, value: T) -> Box<T, A> {
 | |
|         unsafe {
 | |
|             (*boxed).write(value);
 | |
|             boxed.assume_init()
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> {
 | |
|     /// Converts to `Box<[T], A>`.
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// As with [`MaybeUninit::assume_init`],
 | |
|     /// it is up to the caller to guarantee that the values
 | |
|     /// really are in an initialized state.
 | |
|     /// Calling this when the content is not yet fully initialized
 | |
|     /// causes immediate undefined behavior.
 | |
|     ///
 | |
|     /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(new_uninit)]
 | |
|     ///
 | |
|     /// let mut values = Box::<[u32]>::new_uninit_slice(3);
 | |
|     ///
 | |
|     /// let values = unsafe {
 | |
|     ///     // Deferred initialization:
 | |
|     ///     values[0].as_mut_ptr().write(1);
 | |
|     ///     values[1].as_mut_ptr().write(2);
 | |
|     ///     values[2].as_mut_ptr().write(3);
 | |
|     ///
 | |
|     ///     values.assume_init()
 | |
|     /// };
 | |
|     ///
 | |
|     /// assert_eq!(*values, [1, 2, 3])
 | |
|     /// ```
 | |
|     #[unstable(feature = "new_uninit", issue = "63291")]
 | |
|     #[inline]
 | |
|     pub unsafe fn assume_init(self) -> Box<[T], A> {
 | |
|         let (raw, alloc) = Box::into_raw_with_allocator(self);
 | |
|         unsafe { Box::from_raw_in(raw as *mut [T], alloc) }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: ?Sized> Box<T> {
 | |
|     /// Constructs a box from a raw pointer.
 | |
|     ///
 | |
|     /// After calling this function, the raw pointer is owned by the
 | |
|     /// resulting `Box`. Specifically, the `Box` destructor will call
 | |
|     /// the destructor of `T` and free the allocated memory. For this
 | |
|     /// to be safe, the memory must have been allocated in accordance
 | |
|     /// with the [memory layout] used by `Box` .
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// This function is unsafe because improper use may lead to
 | |
|     /// memory problems. For example, a double-free may occur if the
 | |
|     /// function is called twice on the same raw pointer.
 | |
|     ///
 | |
|     /// The safety conditions are described in the [memory layout] section.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// Recreate a `Box` which was previously converted to a raw pointer
 | |
|     /// using [`Box::into_raw`]:
 | |
|     /// ```
 | |
|     /// let x = Box::new(5);
 | |
|     /// let ptr = Box::into_raw(x);
 | |
|     /// let x = unsafe { Box::from_raw(ptr) };
 | |
|     /// ```
 | |
|     /// Manually create a `Box` from scratch by using the global allocator:
 | |
|     /// ```
 | |
|     /// use std::alloc::{alloc, Layout};
 | |
|     ///
 | |
|     /// unsafe {
 | |
|     ///     let ptr = alloc(Layout::new::<i32>()) as *mut i32;
 | |
|     ///     // In general .write is required to avoid attempting to destruct
 | |
|     ///     // the (uninitialized) previous contents of `ptr`, though for this
 | |
|     ///     // simple example `*ptr = 5` would have worked as well.
 | |
|     ///     ptr.write(5);
 | |
|     ///     let x = Box::from_raw(ptr);
 | |
|     /// }
 | |
|     /// ```
 | |
|     ///
 | |
|     /// [memory layout]: self#memory-layout
 | |
|     /// [`Layout`]: crate::Layout
 | |
|     #[stable(feature = "box_raw", since = "1.4.0")]
 | |
|     #[inline]
 | |
|     pub unsafe fn from_raw(raw: *mut T) -> Self {
 | |
|         unsafe { Self::from_raw_in(raw, Global) }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: ?Sized, A: Allocator> Box<T, A> {
 | |
|     /// Constructs a box from a raw pointer in the given allocator.
 | |
|     ///
 | |
|     /// After calling this function, the raw pointer is owned by the
 | |
|     /// resulting `Box`. Specifically, the `Box` destructor will call
 | |
|     /// the destructor of `T` and free the allocated memory. For this
 | |
|     /// to be safe, the memory must have been allocated in accordance
 | |
|     /// with the [memory layout] used by `Box` .
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// This function is unsafe because improper use may lead to
 | |
|     /// memory problems. For example, a double-free may occur if the
 | |
|     /// function is called twice on the same raw pointer.
 | |
|     ///
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// Recreate a `Box` which was previously converted to a raw pointer
 | |
|     /// using [`Box::into_raw_with_allocator`]:
 | |
|     /// ```
 | |
|     /// #![feature(allocator_api)]
 | |
|     ///
 | |
|     /// use std::alloc::System;
 | |
|     ///
 | |
|     /// let x = Box::new_in(5, System);
 | |
|     /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
 | |
|     /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
 | |
|     /// ```
 | |
|     /// Manually create a `Box` from scratch by using the system allocator:
 | |
|     /// ```
 | |
|     /// #![feature(allocator_api, slice_ptr_get)]
 | |
|     ///
 | |
|     /// use std::alloc::{Allocator, Layout, System};
 | |
|     ///
 | |
|     /// unsafe {
 | |
|     ///     let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32;
 | |
|     ///     // In general .write is required to avoid attempting to destruct
 | |
|     ///     // the (uninitialized) previous contents of `ptr`, though for this
 | |
|     ///     // simple example `*ptr = 5` would have worked as well.
 | |
|     ///     ptr.write(5);
 | |
|     ///     let x = Box::from_raw_in(ptr, System);
 | |
|     /// }
 | |
|     /// # Ok::<(), std::alloc::AllocError>(())
 | |
|     /// ```
 | |
|     ///
 | |
|     /// [memory layout]: self#memory-layout
 | |
|     /// [`Layout`]: crate::Layout
 | |
|     #[unstable(feature = "allocator_api", issue = "32838")]
 | |
|     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
|     #[inline]
 | |
|     pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
 | |
|         Box(unsafe { Unique::new_unchecked(raw) }, alloc)
 | |
|     }
 | |
| 
 | |
|     /// Consumes the `Box`, returning a wrapped raw pointer.
 | |
|     ///
 | |
|     /// The pointer will be properly aligned and non-null.
 | |
|     ///
 | |
|     /// After calling this function, the caller is responsible for the
 | |
|     /// memory previously managed by the `Box`. In particular, the
 | |
|     /// caller should properly destroy `T` and release the memory, taking
 | |
|     /// into account the [memory layout] used by `Box`. The easiest way to
 | |
|     /// do this is to convert the raw pointer back into a `Box` with the
 | |
|     /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
 | |
|     /// the cleanup.
 | |
|     ///
 | |
|     /// Note: this is an associated function, which means that you have
 | |
|     /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
 | |
|     /// is so that there is no conflict with a method on the inner type.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
 | |
|     /// for automatic cleanup:
 | |
|     /// ```
 | |
|     /// let x = Box::new(String::from("Hello"));
 | |
|     /// let ptr = Box::into_raw(x);
 | |
|     /// let x = unsafe { Box::from_raw(ptr) };
 | |
|     /// ```
 | |
|     /// Manual cleanup by explicitly running the destructor and deallocating
 | |
|     /// the memory:
 | |
|     /// ```
 | |
|     /// use std::alloc::{dealloc, Layout};
 | |
|     /// use std::ptr;
 | |
|     ///
 | |
|     /// let x = Box::new(String::from("Hello"));
 | |
|     /// let p = Box::into_raw(x);
 | |
|     /// unsafe {
 | |
|     ///     ptr::drop_in_place(p);
 | |
|     ///     dealloc(p as *mut u8, Layout::new::<String>());
 | |
|     /// }
 | |
|     /// ```
 | |
|     ///
 | |
|     /// [memory layout]: self#memory-layout
 | |
|     #[stable(feature = "box_raw", since = "1.4.0")]
 | |
|     #[inline]
 | |
|     pub fn into_raw(b: Self) -> *mut T {
 | |
|         Self::into_raw_with_allocator(b).0
 | |
|     }
 | |
| 
 | |
|     /// Consumes the `Box`, returning a wrapped raw pointer and the allocator.
 | |
|     ///
 | |
|     /// The pointer will be properly aligned and non-null.
 | |
|     ///
 | |
|     /// After calling this function, the caller is responsible for the
 | |
|     /// memory previously managed by the `Box`. In particular, the
 | |
|     /// caller should properly destroy `T` and release the memory, taking
 | |
|     /// into account the [memory layout] used by `Box`. The easiest way to
 | |
|     /// do this is to convert the raw pointer back into a `Box` with the
 | |
|     /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform
 | |
|     /// the cleanup.
 | |
|     ///
 | |
|     /// Note: this is an associated function, which means that you have
 | |
|     /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This
 | |
|     /// is so that there is no conflict with a method on the inner type.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`]
 | |
|     /// for automatic cleanup:
 | |
|     /// ```
 | |
|     /// #![feature(allocator_api)]
 | |
|     ///
 | |
|     /// use std::alloc::System;
 | |
|     ///
 | |
|     /// let x = Box::new_in(String::from("Hello"), System);
 | |
|     /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
 | |
|     /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
 | |
|     /// ```
 | |
|     /// Manual cleanup by explicitly running the destructor and deallocating
 | |
|     /// the memory:
 | |
|     /// ```
 | |
|     /// #![feature(allocator_api)]
 | |
|     ///
 | |
|     /// use std::alloc::{Allocator, Layout, System};
 | |
|     /// use std::ptr::{self, NonNull};
 | |
|     ///
 | |
|     /// let x = Box::new_in(String::from("Hello"), System);
 | |
|     /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
 | |
|     /// unsafe {
 | |
|     ///     ptr::drop_in_place(ptr);
 | |
|     ///     let non_null = NonNull::new_unchecked(ptr);
 | |
|     ///     alloc.deallocate(non_null.cast(), Layout::new::<String>());
 | |
|     /// }
 | |
|     /// ```
 | |
|     ///
 | |
|     /// [memory layout]: self#memory-layout
 | |
|     #[unstable(feature = "allocator_api", issue = "32838")]
 | |
|     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
|     #[inline]
 | |
|     pub const fn into_raw_with_allocator(b: Self) -> (*mut T, A) {
 | |
|         let (leaked, alloc) = Box::into_unique(b);
 | |
|         (leaked.as_ptr(), alloc)
 | |
|     }
 | |
| 
 | |
|     #[unstable(
 | |
|         feature = "ptr_internals",
 | |
|         issue = "none",
 | |
|         reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead"
 | |
|     )]
 | |
|     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
|     #[inline]
 | |
|     #[doc(hidden)]
 | |
|     pub const fn into_unique(b: Self) -> (Unique<T>, A) {
 | |
|         // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a
 | |
|         // raw pointer for the type system. Turning it directly into a raw pointer would not be
 | |
|         // recognized as "releasing" the unique pointer to permit aliased raw accesses,
 | |
|         // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer
 | |
|         // behaves correctly.
 | |
|         let alloc = unsafe { ptr::read(&b.1) };
 | |
|         (Unique::from(Box::leak(b)), alloc)
 | |
|     }
 | |
| 
 | |
|     /// Returns a reference to the underlying allocator.
 | |
|     ///
 | |
|     /// Note: this is an associated function, which means that you have
 | |
|     /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This
 | |
|     /// is so that there is no conflict with a method on the inner type.
 | |
|     #[unstable(feature = "allocator_api", issue = "32838")]
 | |
|     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
|     #[inline]
 | |
|     pub const fn allocator(b: &Self) -> &A {
 | |
|         &b.1
 | |
|     }
 | |
| 
 | |
|     /// Consumes and leaks the `Box`, returning a mutable reference,
 | |
|     /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
 | |
|     /// `'a`. If the type has only static references, or none at all, then this
 | |
|     /// may be chosen to be `'static`.
 | |
|     ///
 | |
|     /// This function is mainly useful for data that lives for the remainder of
 | |
|     /// the program's life. Dropping the returned reference will cause a memory
 | |
|     /// leak. If this is not acceptable, the reference should first be wrapped
 | |
|     /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
 | |
|     /// then be dropped which will properly destroy `T` and release the
 | |
|     /// allocated memory.
 | |
|     ///
 | |
|     /// Note: this is an associated function, which means that you have
 | |
|     /// to call it as `Box::leak(b)` instead of `b.leak()`. This
 | |
|     /// is so that there is no conflict with a method on the inner type.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// Simple usage:
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let x = Box::new(41);
 | |
|     /// let static_ref: &'static mut usize = Box::leak(x);
 | |
|     /// *static_ref += 1;
 | |
|     /// assert_eq!(*static_ref, 42);
 | |
|     /// ```
 | |
|     ///
 | |
|     /// Unsized data:
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let x = vec![1, 2, 3].into_boxed_slice();
 | |
|     /// let static_ref = Box::leak(x);
 | |
|     /// static_ref[0] = 4;
 | |
|     /// assert_eq!(*static_ref, [4, 2, 3]);
 | |
|     /// ```
 | |
|     #[stable(feature = "box_leak", since = "1.26.0")]
 | |
|     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
|     #[inline]
 | |
|     pub const fn leak<'a>(b: Self) -> &'a mut T
 | |
|     where
 | |
|         A: 'a,
 | |
|     {
 | |
|         unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() }
 | |
|     }
 | |
| 
 | |
|     /// Converts a `Box<T>` into a `Pin<Box<T>>`
 | |
|     ///
 | |
|     /// This conversion does not allocate on the heap and happens in place.
 | |
|     ///
 | |
|     /// This is also available via [`From`].
 | |
|     #[unstable(feature = "box_into_pin", issue = "62370")]
 | |
|     #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
|     pub const fn into_pin(boxed: Self) -> Pin<Self>
 | |
|     where
 | |
|         A: 'static,
 | |
|     {
 | |
|         // It's not possible to move or replace the insides of a `Pin<Box<T>>`
 | |
|         // when `T: !Unpin`,  so it's safe to pin it directly without any
 | |
|         // additional requirements.
 | |
|         unsafe { Pin::new_unchecked(boxed) }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(feature = "rust1", since = "1.0.0")]
 | |
| unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Box<T, A> {
 | |
|     fn drop(&mut self) {
 | |
|         // FIXME: Do nothing, drop is currently performed by compiler.
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(not(no_global_oom_handling))]
 | |
| #[stable(feature = "rust1", since = "1.0.0")]
 | |
| impl<T: Default> Default for Box<T> {
 | |
|     /// Creates a `Box<T>`, with the `Default` value for T.
 | |
|     fn default() -> Self {
 | |
|         box T::default()
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(not(no_global_oom_handling))]
 | |
| #[stable(feature = "rust1", since = "1.0.0")]
 | |
| #[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
 | |
| impl<T> const Default for Box<[T]> {
 | |
|     fn default() -> Self {
 | |
|         let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling();
 | |
|         Box(ptr, Global)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(not(no_global_oom_handling))]
 | |
| #[stable(feature = "default_box_extra", since = "1.17.0")]
 | |
| #[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
 | |
| impl const Default for Box<str> {
 | |
|     fn default() -> Self {
 | |
|         // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`.
 | |
|         let ptr: Unique<str> = unsafe {
 | |
|             let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling();
 | |
|             Unique::new_unchecked(bytes.as_ptr() as *mut str)
 | |
|         };
 | |
|         Box(ptr, Global)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(not(no_global_oom_handling))]
 | |
| #[stable(feature = "rust1", since = "1.0.0")]
 | |
| impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> {
 | |
|     /// Returns a new box with a `clone()` of this box's contents.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let x = Box::new(5);
 | |
|     /// let y = x.clone();
 | |
|     ///
 | |
|     /// // The value is the same
 | |
|     /// assert_eq!(x, y);
 | |
|     ///
 | |
|     /// // But they are unique objects
 | |
|     /// assert_ne!(&*x as *const i32, &*y as *const i32);
 | |
|     /// ```
 | |
|     #[inline]
 | |
|     fn clone(&self) -> Self {
 | |
|         // Pre-allocate memory to allow writing the cloned value directly.
 | |
|         let mut boxed = Self::new_uninit_in(self.1.clone());
 | |
|         unsafe {
 | |
|             (**self).write_clone_into_raw(boxed.as_mut_ptr());
 | |
|             boxed.assume_init()
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Copies `source`'s contents into `self` without creating a new allocation.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// let x = Box::new(5);
 | |
|     /// let mut y = Box::new(10);
 | |
|     /// let yp: *const i32 = &*y;
 | |
|     ///
 | |
|     /// y.clone_from(&x);
 | |
|     ///
 | |
|     /// // The value is the same
 | |
|     /// assert_eq!(x, y);
 | |
|     ///
 | |
|     /// // And no allocation occurred
 | |
|     /// assert_eq!(yp, &*y);
 | |
|     /// ```
 | |
|     #[inline]
 | |
|     fn clone_from(&mut self, source: &Self) {
 | |
|         (**self).clone_from(&(**source));
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(not(no_global_oom_handling))]
 | |
| #[stable(feature = "box_slice_clone", since = "1.3.0")]
 | |
| impl Clone for Box<str> {
 | |
|     fn clone(&self) -> Self {
 | |
|         // this makes a copy of the data
 | |
|         let buf: Box<[u8]> = self.as_bytes().into();
 | |
|         unsafe { from_boxed_utf8_unchecked(buf) }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(feature = "rust1", since = "1.0.0")]
 | |
| impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> {
 | |
|     #[inline]
 | |
|     fn eq(&self, other: &Self) -> bool {
 | |
|         PartialEq::eq(&**self, &**other)
 | |
|     }
 | |
|     #[inline]
 | |
|     fn ne(&self, other: &Self) -> bool {
 | |
|         PartialEq::ne(&**self, &**other)
 | |
|     }
 | |
| }
 | |
| #[stable(feature = "rust1", since = "1.0.0")]
 | |
| impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> {
 | |
|     #[inline]
 | |
|     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
 | |
|         PartialOrd::partial_cmp(&**self, &**other)
 | |
|     }
 | |
|     #[inline]
 | |
|     fn lt(&self, other: &Self) -> bool {
 | |
|         PartialOrd::lt(&**self, &**other)
 | |
|     }
 | |
|     #[inline]
 | |
|     fn le(&self, other: &Self) -> bool {
 | |
|         PartialOrd::le(&**self, &**other)
 | |
|     }
 | |
|     #[inline]
 | |
|     fn ge(&self, other: &Self) -> bool {
 | |
|         PartialOrd::ge(&**self, &**other)
 | |
|     }
 | |
|     #[inline]
 | |
|     fn gt(&self, other: &Self) -> bool {
 | |
|         PartialOrd::gt(&**self, &**other)
 | |
|     }
 | |
| }
 | |
| #[stable(feature = "rust1", since = "1.0.0")]
 | |
| impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> {
 | |
|     #[inline]
 | |
|     fn cmp(&self, other: &Self) -> Ordering {
 | |
|         Ord::cmp(&**self, &**other)
 | |
|     }
 | |
| }
 | |
| #[stable(feature = "rust1", since = "1.0.0")]
 | |
| impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {}
 | |
| 
 | |
| #[stable(feature = "rust1", since = "1.0.0")]
 | |
| impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> {
 | |
|     fn hash<H: Hasher>(&self, state: &mut H) {
 | |
|         (**self).hash(state);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
 | |
| impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> {
 | |
|     fn finish(&self) -> u64 {
 | |
|         (**self).finish()
 | |
|     }
 | |
|     fn write(&mut self, bytes: &[u8]) {
 | |
|         (**self).write(bytes)
 | |
|     }
 | |
|     fn write_u8(&mut self, i: u8) {
 | |
|         (**self).write_u8(i)
 | |
|     }
 | |
|     fn write_u16(&mut self, i: u16) {
 | |
|         (**self).write_u16(i)
 | |
|     }
 | |
|     fn write_u32(&mut self, i: u32) {
 | |
|         (**self).write_u32(i)
 | |
|     }
 | |
|     fn write_u64(&mut self, i: u64) {
 | |
|         (**self).write_u64(i)
 | |
|     }
 | |
|     fn write_u128(&mut self, i: u128) {
 | |
|         (**self).write_u128(i)
 | |
|     }
 | |
|     fn write_usize(&mut self, i: usize) {
 | |
|         (**self).write_usize(i)
 | |
|     }
 | |
|     fn write_i8(&mut self, i: i8) {
 | |
|         (**self).write_i8(i)
 | |
|     }
 | |
|     fn write_i16(&mut self, i: i16) {
 | |
|         (**self).write_i16(i)
 | |
|     }
 | |
|     fn write_i32(&mut self, i: i32) {
 | |
|         (**self).write_i32(i)
 | |
|     }
 | |
|     fn write_i64(&mut self, i: i64) {
 | |
|         (**self).write_i64(i)
 | |
|     }
 | |
|     fn write_i128(&mut self, i: i128) {
 | |
|         (**self).write_i128(i)
 | |
|     }
 | |
|     fn write_isize(&mut self, i: isize) {
 | |
|         (**self).write_isize(i)
 | |
|     }
 | |
|     fn write_length_prefix(&mut self, len: usize) {
 | |
|         (**self).write_length_prefix(len)
 | |
|     }
 | |
|     fn write_str(&mut self, s: &str) {
 | |
|         (**self).write_str(s)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(not(no_global_oom_handling))]
 | |
| #[stable(feature = "from_for_ptrs", since = "1.6.0")]
 | |
| impl<T> From<T> for Box<T> {
 | |
|     /// Converts a `T` into a `Box<T>`
 | |
|     ///
 | |
|     /// The conversion allocates on the heap and moves `t`
 | |
|     /// from the stack into it.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```rust
 | |
|     /// let x = 5;
 | |
|     /// let boxed = Box::new(5);
 | |
|     ///
 | |
|     /// assert_eq!(Box::from(x), boxed);
 | |
|     /// ```
 | |
|     fn from(t: T) -> Self {
 | |
|         Box::new(t)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(feature = "pin", since = "1.33.0")]
 | |
| #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
| impl<T: ?Sized, A: Allocator> const From<Box<T, A>> for Pin<Box<T, A>>
 | |
| where
 | |
|     A: 'static,
 | |
| {
 | |
|     /// Converts a `Box<T>` into a `Pin<Box<T>>`
 | |
|     ///
 | |
|     /// This conversion does not allocate on the heap and happens in place.
 | |
|     fn from(boxed: Box<T, A>) -> Self {
 | |
|         Box::into_pin(boxed)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(not(no_global_oom_handling))]
 | |
| #[stable(feature = "box_from_slice", since = "1.17.0")]
 | |
| impl<T: Copy> From<&[T]> for Box<[T]> {
 | |
|     /// Converts a `&[T]` into a `Box<[T]>`
 | |
|     ///
 | |
|     /// This conversion allocates on the heap
 | |
|     /// and performs a copy of `slice`.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     /// ```rust
 | |
|     /// // create a &[u8] which will be used to create a Box<[u8]>
 | |
|     /// let slice: &[u8] = &[104, 101, 108, 108, 111];
 | |
|     /// let boxed_slice: Box<[u8]> = Box::from(slice);
 | |
|     ///
 | |
|     /// println!("{boxed_slice:?}");
 | |
|     /// ```
 | |
|     fn from(slice: &[T]) -> Box<[T]> {
 | |
|         let len = slice.len();
 | |
|         let buf = RawVec::with_capacity(len);
 | |
|         unsafe {
 | |
|             ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len);
 | |
|             buf.into_box(slice.len()).assume_init()
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(not(no_global_oom_handling))]
 | |
| #[stable(feature = "box_from_cow", since = "1.45.0")]
 | |
| impl<T: Copy> From<Cow<'_, [T]>> for Box<[T]> {
 | |
|     /// Converts a `Cow<'_, [T]>` into a `Box<[T]>`
 | |
|     ///
 | |
|     /// When `cow` is the `Cow::Borrowed` variant, this
 | |
|     /// conversion allocates on the heap and copies the
 | |
|     /// underlying slice. Otherwise, it will try to reuse the owned
 | |
|     /// `Vec`'s allocation.
 | |
|     #[inline]
 | |
|     fn from(cow: Cow<'_, [T]>) -> Box<[T]> {
 | |
|         match cow {
 | |
|             Cow::Borrowed(slice) => Box::from(slice),
 | |
|             Cow::Owned(slice) => Box::from(slice),
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(not(no_global_oom_handling))]
 | |
| #[stable(feature = "box_from_slice", since = "1.17.0")]
 | |
| impl From<&str> for Box<str> {
 | |
|     /// Converts a `&str` into a `Box<str>`
 | |
|     ///
 | |
|     /// This conversion allocates on the heap
 | |
|     /// and performs a copy of `s`.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```rust
 | |
|     /// let boxed: Box<str> = Box::from("hello");
 | |
|     /// println!("{boxed}");
 | |
|     /// ```
 | |
|     #[inline]
 | |
|     fn from(s: &str) -> Box<str> {
 | |
|         unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(not(no_global_oom_handling))]
 | |
| #[stable(feature = "box_from_cow", since = "1.45.0")]
 | |
| impl From<Cow<'_, str>> for Box<str> {
 | |
|     /// Converts a `Cow<'_, str>` into a `Box<str>`
 | |
|     ///
 | |
|     /// When `cow` is the `Cow::Borrowed` variant, this
 | |
|     /// conversion allocates on the heap and copies the
 | |
|     /// underlying `str`. Otherwise, it will try to reuse the owned
 | |
|     /// `String`'s allocation.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```rust
 | |
|     /// use std::borrow::Cow;
 | |
|     ///
 | |
|     /// let unboxed = Cow::Borrowed("hello");
 | |
|     /// let boxed: Box<str> = Box::from(unboxed);
 | |
|     /// println!("{boxed}");
 | |
|     /// ```
 | |
|     ///
 | |
|     /// ```rust
 | |
|     /// # use std::borrow::Cow;
 | |
|     /// let unboxed = Cow::Owned("hello".to_string());
 | |
|     /// let boxed: Box<str> = Box::from(unboxed);
 | |
|     /// println!("{boxed}");
 | |
|     /// ```
 | |
|     #[inline]
 | |
|     fn from(cow: Cow<'_, str>) -> Box<str> {
 | |
|         match cow {
 | |
|             Cow::Borrowed(s) => Box::from(s),
 | |
|             Cow::Owned(s) => Box::from(s),
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(feature = "boxed_str_conv", since = "1.19.0")]
 | |
| impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> {
 | |
|     /// Converts a `Box<str>` into a `Box<[u8]>`
 | |
|     ///
 | |
|     /// This conversion does not allocate on the heap and happens in place.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     /// ```rust
 | |
|     /// // create a Box<str> which will be used to create a Box<[u8]>
 | |
|     /// let boxed: Box<str> = Box::from("hello");
 | |
|     /// let boxed_str: Box<[u8]> = Box::from(boxed);
 | |
|     ///
 | |
|     /// // create a &[u8] which will be used to create a Box<[u8]>
 | |
|     /// let slice: &[u8] = &[104, 101, 108, 108, 111];
 | |
|     /// let boxed_slice = Box::from(slice);
 | |
|     ///
 | |
|     /// assert_eq!(boxed_slice, boxed_str);
 | |
|     /// ```
 | |
|     #[inline]
 | |
|     fn from(s: Box<str, A>) -> Self {
 | |
|         let (raw, alloc) = Box::into_raw_with_allocator(s);
 | |
|         unsafe { Box::from_raw_in(raw as *mut [u8], alloc) }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(not(no_global_oom_handling))]
 | |
| #[stable(feature = "box_from_array", since = "1.45.0")]
 | |
| impl<T, const N: usize> From<[T; N]> for Box<[T]> {
 | |
|     /// Converts a `[T; N]` into a `Box<[T]>`
 | |
|     ///
 | |
|     /// This conversion moves the array to newly heap-allocated memory.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```rust
 | |
|     /// let boxed: Box<[u8]> = Box::from([4, 2]);
 | |
|     /// println!("{boxed:?}");
 | |
|     /// ```
 | |
|     fn from(array: [T; N]) -> Box<[T]> {
 | |
|         box array
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
 | |
| impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]> {
 | |
|     type Error = Box<[T]>;
 | |
| 
 | |
|     /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`.
 | |
|     ///
 | |
|     /// The conversion occurs in-place and does not require a
 | |
|     /// new memory allocation.
 | |
|     ///
 | |
|     /// # Errors
 | |
|     ///
 | |
|     /// Returns the old `Box<[T]>` in the `Err` variant if
 | |
|     /// `boxed_slice.len()` does not equal `N`.
 | |
|     fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error> {
 | |
|         if boxed_slice.len() == N {
 | |
|             Ok(unsafe { Box::from_raw(Box::into_raw(boxed_slice) as *mut [T; N]) })
 | |
|         } else {
 | |
|             Err(boxed_slice)
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<A: Allocator> Box<dyn Any, A> {
 | |
|     /// Attempt to downcast the box to a concrete type.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// use std::any::Any;
 | |
|     ///
 | |
|     /// fn print_if_string(value: Box<dyn Any>) {
 | |
|     ///     if let Ok(string) = value.downcast::<String>() {
 | |
|     ///         println!("String ({}): {}", string.len(), string);
 | |
|     ///     }
 | |
|     /// }
 | |
|     ///
 | |
|     /// let my_string = "Hello World".to_string();
 | |
|     /// print_if_string(Box::new(my_string));
 | |
|     /// print_if_string(Box::new(0i8));
 | |
|     /// ```
 | |
|     #[inline]
 | |
|     #[stable(feature = "rust1", since = "1.0.0")]
 | |
|     pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
 | |
|         if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
 | |
|     }
 | |
| 
 | |
|     /// Downcasts the box to a concrete type.
 | |
|     ///
 | |
|     /// For a safe alternative see [`downcast`].
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(downcast_unchecked)]
 | |
|     ///
 | |
|     /// use std::any::Any;
 | |
|     ///
 | |
|     /// let x: Box<dyn Any> = Box::new(1_usize);
 | |
|     ///
 | |
|     /// unsafe {
 | |
|     ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
 | |
|     /// }
 | |
|     /// ```
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// The contained value must be of type `T`. Calling this method
 | |
|     /// with the incorrect type is *undefined behavior*.
 | |
|     ///
 | |
|     /// [`downcast`]: Self::downcast
 | |
|     #[inline]
 | |
|     #[unstable(feature = "downcast_unchecked", issue = "90850")]
 | |
|     pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
 | |
|         debug_assert!(self.is::<T>());
 | |
|         unsafe {
 | |
|             let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self);
 | |
|             Box::from_raw_in(raw as *mut T, alloc)
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<A: Allocator> Box<dyn Any + Send, A> {
 | |
|     /// Attempt to downcast the box to a concrete type.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// use std::any::Any;
 | |
|     ///
 | |
|     /// fn print_if_string(value: Box<dyn Any + Send>) {
 | |
|     ///     if let Ok(string) = value.downcast::<String>() {
 | |
|     ///         println!("String ({}): {}", string.len(), string);
 | |
|     ///     }
 | |
|     /// }
 | |
|     ///
 | |
|     /// let my_string = "Hello World".to_string();
 | |
|     /// print_if_string(Box::new(my_string));
 | |
|     /// print_if_string(Box::new(0i8));
 | |
|     /// ```
 | |
|     #[inline]
 | |
|     #[stable(feature = "rust1", since = "1.0.0")]
 | |
|     pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
 | |
|         if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
 | |
|     }
 | |
| 
 | |
|     /// Downcasts the box to a concrete type.
 | |
|     ///
 | |
|     /// For a safe alternative see [`downcast`].
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(downcast_unchecked)]
 | |
|     ///
 | |
|     /// use std::any::Any;
 | |
|     ///
 | |
|     /// let x: Box<dyn Any + Send> = Box::new(1_usize);
 | |
|     ///
 | |
|     /// unsafe {
 | |
|     ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
 | |
|     /// }
 | |
|     /// ```
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// The contained value must be of type `T`. Calling this method
 | |
|     /// with the incorrect type is *undefined behavior*.
 | |
|     ///
 | |
|     /// [`downcast`]: Self::downcast
 | |
|     #[inline]
 | |
|     #[unstable(feature = "downcast_unchecked", issue = "90850")]
 | |
|     pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
 | |
|         debug_assert!(self.is::<T>());
 | |
|         unsafe {
 | |
|             let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self);
 | |
|             Box::from_raw_in(raw as *mut T, alloc)
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<A: Allocator> Box<dyn Any + Send + Sync, A> {
 | |
|     /// Attempt to downcast the box to a concrete type.
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// use std::any::Any;
 | |
|     ///
 | |
|     /// fn print_if_string(value: Box<dyn Any + Send + Sync>) {
 | |
|     ///     if let Ok(string) = value.downcast::<String>() {
 | |
|     ///         println!("String ({}): {}", string.len(), string);
 | |
|     ///     }
 | |
|     /// }
 | |
|     ///
 | |
|     /// let my_string = "Hello World".to_string();
 | |
|     /// print_if_string(Box::new(my_string));
 | |
|     /// print_if_string(Box::new(0i8));
 | |
|     /// ```
 | |
|     #[inline]
 | |
|     #[stable(feature = "box_send_sync_any_downcast", since = "1.51.0")]
 | |
|     pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
 | |
|         if self.is::<T>() { unsafe { Ok(self.downcast_unchecked::<T>()) } } else { Err(self) }
 | |
|     }
 | |
| 
 | |
|     /// Downcasts the box to a concrete type.
 | |
|     ///
 | |
|     /// For a safe alternative see [`downcast`].
 | |
|     ///
 | |
|     /// # Examples
 | |
|     ///
 | |
|     /// ```
 | |
|     /// #![feature(downcast_unchecked)]
 | |
|     ///
 | |
|     /// use std::any::Any;
 | |
|     ///
 | |
|     /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize);
 | |
|     ///
 | |
|     /// unsafe {
 | |
|     ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
 | |
|     /// }
 | |
|     /// ```
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// The contained value must be of type `T`. Calling this method
 | |
|     /// with the incorrect type is *undefined behavior*.
 | |
|     ///
 | |
|     /// [`downcast`]: Self::downcast
 | |
|     #[inline]
 | |
|     #[unstable(feature = "downcast_unchecked", issue = "90850")]
 | |
|     pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
 | |
|         debug_assert!(self.is::<T>());
 | |
|         unsafe {
 | |
|             let (raw, alloc): (*mut (dyn Any + Send + Sync), _) =
 | |
|                 Box::into_raw_with_allocator(self);
 | |
|             Box::from_raw_in(raw as *mut T, alloc)
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(feature = "rust1", since = "1.0.0")]
 | |
| impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> {
 | |
|     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 | |
|         fmt::Display::fmt(&**self, f)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(feature = "rust1", since = "1.0.0")]
 | |
| impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> {
 | |
|     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 | |
|         fmt::Debug::fmt(&**self, f)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(feature = "rust1", since = "1.0.0")]
 | |
| impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> {
 | |
|     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 | |
|         // It's not possible to extract the inner Uniq directly from the Box,
 | |
|         // instead we cast it to a *const which aliases the Unique
 | |
|         let ptr: *const T = &**self;
 | |
|         fmt::Pointer::fmt(&ptr, f)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(feature = "rust1", since = "1.0.0")]
 | |
| #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
| impl<T: ?Sized, A: Allocator> const Deref for Box<T, A> {
 | |
|     type Target = T;
 | |
| 
 | |
|     fn deref(&self) -> &T {
 | |
|         &**self
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(feature = "rust1", since = "1.0.0")]
 | |
| #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
| impl<T: ?Sized, A: Allocator> const DerefMut for Box<T, A> {
 | |
|     fn deref_mut(&mut self) -> &mut T {
 | |
|         &mut **self
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[unstable(feature = "receiver_trait", issue = "none")]
 | |
| impl<T: ?Sized, A: Allocator> Receiver for Box<T, A> {}
 | |
| 
 | |
| #[stable(feature = "rust1", since = "1.0.0")]
 | |
| impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> {
 | |
|     type Item = I::Item;
 | |
|     fn next(&mut self) -> Option<I::Item> {
 | |
|         (**self).next()
 | |
|     }
 | |
|     fn size_hint(&self) -> (usize, Option<usize>) {
 | |
|         (**self).size_hint()
 | |
|     }
 | |
|     fn nth(&mut self, n: usize) -> Option<I::Item> {
 | |
|         (**self).nth(n)
 | |
|     }
 | |
|     fn last(self) -> Option<I::Item> {
 | |
|         BoxIter::last(self)
 | |
|     }
 | |
| }
 | |
| 
 | |
| trait BoxIter {
 | |
|     type Item;
 | |
|     fn last(self) -> Option<Self::Item>;
 | |
| }
 | |
| 
 | |
| impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> {
 | |
|     type Item = I::Item;
 | |
|     default fn last(self) -> Option<I::Item> {
 | |
|         #[inline]
 | |
|         fn some<T>(_: Option<T>, x: T) -> Option<T> {
 | |
|             Some(x)
 | |
|         }
 | |
| 
 | |
|         self.fold(None, some)
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Specialization for sized `I`s that uses `I`s implementation of `last()`
 | |
| /// instead of the default.
 | |
| #[stable(feature = "rust1", since = "1.0.0")]
 | |
| impl<I: Iterator, A: Allocator> BoxIter for Box<I, A> {
 | |
|     fn last(self) -> Option<I::Item> {
 | |
|         (*self).last()
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(feature = "rust1", since = "1.0.0")]
 | |
| impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> {
 | |
|     fn next_back(&mut self) -> Option<I::Item> {
 | |
|         (**self).next_back()
 | |
|     }
 | |
|     fn nth_back(&mut self, n: usize) -> Option<I::Item> {
 | |
|         (**self).nth_back(n)
 | |
|     }
 | |
| }
 | |
| #[stable(feature = "rust1", since = "1.0.0")]
 | |
| impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> {
 | |
|     fn len(&self) -> usize {
 | |
|         (**self).len()
 | |
|     }
 | |
|     fn is_empty(&self) -> bool {
 | |
|         (**self).is_empty()
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(feature = "fused", since = "1.26.0")]
 | |
| impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {}
 | |
| 
 | |
| #[stable(feature = "boxed_closure_impls", since = "1.35.0")]
 | |
| impl<Args, F: FnOnce<Args> + ?Sized, A: Allocator> FnOnce<Args> for Box<F, A> {
 | |
|     type Output = <F as FnOnce<Args>>::Output;
 | |
| 
 | |
|     extern "rust-call" fn call_once(self, args: Args) -> Self::Output {
 | |
|         <F as FnOnce<Args>>::call_once(*self, args)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(feature = "boxed_closure_impls", since = "1.35.0")]
 | |
| impl<Args, F: FnMut<Args> + ?Sized, A: Allocator> FnMut<Args> for Box<F, A> {
 | |
|     extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output {
 | |
|         <F as FnMut<Args>>::call_mut(self, args)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(feature = "boxed_closure_impls", since = "1.35.0")]
 | |
| impl<Args, F: Fn<Args> + ?Sized, A: Allocator> Fn<Args> for Box<F, A> {
 | |
|     extern "rust-call" fn call(&self, args: Args) -> Self::Output {
 | |
|         <F as Fn<Args>>::call(self, args)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[unstable(feature = "coerce_unsized", issue = "27732")]
 | |
| impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A> {}
 | |
| 
 | |
| #[unstable(feature = "dispatch_from_dyn", issue = "none")]
 | |
| impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U>> for Box<T, Global> {}
 | |
| 
 | |
| #[cfg(not(no_global_oom_handling))]
 | |
| #[stable(feature = "boxed_slice_from_iter", since = "1.32.0")]
 | |
| impl<I> FromIterator<I> for Box<[I]> {
 | |
|     fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self {
 | |
|         iter.into_iter().collect::<Vec<_>>().into_boxed_slice()
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(not(no_global_oom_handling))]
 | |
| #[stable(feature = "box_slice_clone", since = "1.3.0")]
 | |
| impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> {
 | |
|     fn clone(&self) -> Self {
 | |
|         let alloc = Box::allocator(self).clone();
 | |
|         self.to_vec_in(alloc).into_boxed_slice()
 | |
|     }
 | |
| 
 | |
|     fn clone_from(&mut self, other: &Self) {
 | |
|         if self.len() == other.len() {
 | |
|             self.clone_from_slice(&other);
 | |
|         } else {
 | |
|             *self = other.clone();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(feature = "box_borrow", since = "1.1.0")]
 | |
| impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> {
 | |
|     fn borrow(&self) -> &T {
 | |
|         &**self
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(feature = "box_borrow", since = "1.1.0")]
 | |
| impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> {
 | |
|     fn borrow_mut(&mut self) -> &mut T {
 | |
|         &mut **self
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
 | |
| impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> {
 | |
|     fn as_ref(&self) -> &T {
 | |
|         &**self
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
 | |
| impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> {
 | |
|     fn as_mut(&mut self) -> &mut T {
 | |
|         &mut **self
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Nota bene
 | |
|  *
 | |
|  *  We could have chosen not to add this impl, and instead have written a
 | |
|  *  function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
 | |
|  *  because Box<T> implements Unpin even when T does not, as a result of
 | |
|  *  this impl.
 | |
|  *
 | |
|  *  We chose this API instead of the alternative for a few reasons:
 | |
|  *      - Logically, it is helpful to understand pinning in regard to the
 | |
|  *        memory region being pointed to. For this reason none of the
 | |
|  *        standard library pointer types support projecting through a pin
 | |
|  *        (Box<T> is the only pointer type in std for which this would be
 | |
|  *        safe.)
 | |
|  *      - It is in practice very useful to have Box<T> be unconditionally
 | |
|  *        Unpin because of trait objects, for which the structural auto
 | |
|  *        trait functionality does not apply (e.g., Box<dyn Foo> would
 | |
|  *        otherwise not be Unpin).
 | |
|  *
 | |
|  *  Another type with the same semantics as Box but only a conditional
 | |
|  *  implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
 | |
|  *  could have a method to project a Pin<T> from it.
 | |
|  */
 | |
| #[stable(feature = "pin", since = "1.33.0")]
 | |
| #[rustc_const_unstable(feature = "const_box", issue = "92521")]
 | |
| impl<T: ?Sized, A: Allocator> const Unpin for Box<T, A> where A: 'static {}
 | |
| 
 | |
| #[unstable(feature = "generator_trait", issue = "43122")]
 | |
| impl<G: ?Sized + Generator<R> + Unpin, R, A: Allocator> Generator<R> for Box<G, A>
 | |
| where
 | |
|     A: 'static,
 | |
| {
 | |
|     type Yield = G::Yield;
 | |
|     type Return = G::Return;
 | |
| 
 | |
|     fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> {
 | |
|         G::resume(Pin::new(&mut *self), arg)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[unstable(feature = "generator_trait", issue = "43122")]
 | |
| impl<G: ?Sized + Generator<R>, R, A: Allocator> Generator<R> for Pin<Box<G, A>>
 | |
| where
 | |
|     A: 'static,
 | |
| {
 | |
|     type Yield = G::Yield;
 | |
|     type Return = G::Return;
 | |
| 
 | |
|     fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState<Self::Yield, Self::Return> {
 | |
|         G::resume((*self).as_mut(), arg)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[stable(feature = "futures_api", since = "1.36.0")]
 | |
| impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A>
 | |
| where
 | |
|     A: 'static,
 | |
| {
 | |
|     type Output = F::Output;
 | |
| 
 | |
|     fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
 | |
|         F::poll(Pin::new(&mut *self), cx)
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[unstable(feature = "async_iterator", issue = "79024")]
 | |
| impl<S: ?Sized + AsyncIterator + Unpin> AsyncIterator for Box<S> {
 | |
|     type Item = S::Item;
 | |
| 
 | |
|     fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
 | |
|         Pin::new(&mut **self).poll_next(cx)
 | |
|     }
 | |
| 
 | |
|     fn size_hint(&self) -> (usize, Option<usize>) {
 | |
|         (**self).size_hint()
 | |
|     }
 | |
| }
 |