Since I have triggered the ASSERT() on the delayed iput too many times,
now is the time to add some extra debug warnings for delayed iput.
All delayed iputs should be queued after all ordered extents finish
their IO and all involved workqueues are flushed.
Thus after the btrfs_run_delayed_iputs() inside close_ctree(), there
should be no more delayed puts added.
So introduce a new BTRFS_FS_STATE_NO_DELAYED_IPUT, set after the above
mentioned timing. And all btrfs_add_delayed_iput() will check that flag
and give a WARN_ON_ONCE().
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Even after all the error fixes related the
"ASSERT(list_empty(&fs_info->delayed_iputs));" in close_ctree(), I can
still hit it reliably with my experimental 2K block size.
[CAUSE]
In my case, all the error is triggered after the fs is already in error
status.
I find the following call trace to be the cause of race:
Main thread | endio_write_workers
---------------------------------------------+---------------------------
close_ctree() |
|- btrfs_error_commit_super() |
| |- btrfs_cleanup_transaction() |
| | |- btrfs_destroy_all_ordered_extents() |
| | |- btrfs_wait_ordered_roots() |
| |- btrfs_run_delayed_iputs() |
| | btrfs_finish_ordered_io()
| | |- btrfs_put_ordered_extent()
| | |- btrfs_add_delayed_iput()
|- ASSERT(list_empty(delayed_iputs)) |
!!! Triggered !!!
The root cause is that, btrfs_wait_ordered_roots() only wait for
ordered extents to finish their IOs, not to wait for them to finish and
removed.
[FIX]
Since btrfs_error_commit_super() will flush and wait for all ordered
extents, it should be executed early, before we start flushing the
workqueues.
And since btrfs_error_commit_super() now runs early, there is no need to
run btrfs_run_delayed_iputs() inside it, so just remove the
btrfs_run_delayed_iputs() call from btrfs_error_commit_super().
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At close_ctree() after we have ran delayed iputs either explicitly through
calling btrfs_run_delayed_iputs() or later during the call to
btrfs_commit_super() or btrfs_error_commit_super(), we assert that the
delayed iputs list is empty.
We have (another) race where this assertion might fail because we have
queued an async write into the fs_info->workers workqueue. Here's how it
happens:
1) We are submitting a data bio for an inode that is not the data
relocation inode, so we call btrfs_wq_submit_bio();
2) btrfs_wq_submit_bio() submits a work for the fs_info->workers queue
that will run run_one_async_done();
3) We enter close_ctree(), flush several work queues except
fs_info->workers, explicitly run delayed iputs with a call to
btrfs_run_delayed_iputs() and then again shortly after by calling
btrfs_commit_super() or btrfs_error_commit_super(), which also run
delayed iputs;
4) run_one_async_done() is executed in the work queue, and because there
was an IO error (bio->bi_status is not 0) it calls btrfs_bio_end_io(),
which drops the final reference on the associated ordered extent by
calling btrfs_put_ordered_extent() - and that adds a delayed iput for
the inode;
5) At close_ctree() we find that after stopping the cleaner and
transaction kthreads the delayed iputs list is not empty, failing the
following assertion:
ASSERT(list_empty(&fs_info->delayed_iputs));
Fix this by flushing the fs_info->workers workqueue before running delayed
iputs at close_ctree().
David reported this when running generic/648, which exercises IO error
paths by using the DM error table.
Reported-by: David Sterba <dsterba@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At close_ctree() after we have ran delayed iputs either through explicitly
calling btrfs_run_delayed_iputs() or later during the call to
btrfs_commit_super() or btrfs_error_commit_super(), we assert that the
delayed iputs list is empty.
When we have compressed writes this assertion may fail because delayed
iputs may have been added to the list after we last ran delayed iputs.
This happens like this:
1) We have a compressed write bio executing;
2) We enter close_ctree() and flush the fs_info->endio_write_workers
queue which is the queue used for running ordered extent completion;
3) The compressed write bio finishes and enters
btrfs_finish_compressed_write_work(), where it calls
btrfs_finish_ordered_extent() which in turn calls
btrfs_queue_ordered_fn(), which queues a work item in the
fs_info->endio_write_workers queue that we have flushed before;
4) At close_ctree() we proceed, run all existing delayed iputs and
call btrfs_commit_super() (which also runs delayed iputs), but before
we run the following assertion below:
ASSERT(list_empty(&fs_info->delayed_iputs))
A delayed iput is added by the step below...
5) The ordered extent completion job queued in step 3 runs and results in
creating a delayed iput when dropping the last reference of the ordered
extent (a call to btrfs_put_ordered_extent() made from
btrfs_finish_one_ordered());
6) At this point the delayed iputs list is not empty, so the assertion at
close_ctree() fails.
Fix this by flushing the fs_info->compressed_write_workers queue at
close_ctree() before flushing the fs_info->endio_write_workers queue,
respecting the queue dependency as the later is responsible for the
execution of ordered extent completion.
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we only support two block sizes, 4K and PAGE_SIZE.
This means on the most common architecture x86_64, we have no way to
test subpage block size. And that's exactly I have an aarch64 machine
dedicated for subpage tests.
But this is still a hurdle for a lot of btrfs developers, and to improve
the test coverage mostly on x86_64, here we enable debug builds to
accept 2K block size.
This involves:
- Introduce a dedicated minimal block size macro
BTRFS_MIN_BLOCKSIZE, which depends on if CONFIG_BTRFS_DEBUG is set.
If so it's 2K, otherwise it's 4K as usual.
- Allow 4K, PAGE_SIZE and BTRFS_MIN_BLOCKSIZE as block size
- Update subpage block size checks to be based on BTRFS_MIN_BLOCKSIZE
- Export the new supported blocksize through sysfs interfaces
As most of the subpage support is already pretty mature, there is no
extra work needed to support the extra 2K block size.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since the initial enablement of block size < page size support for
btrfs in v5.15, we have hit several milestones for block size < page
size (subpage) support:
- RAID56 subpage support
In v5.19
- Refactored scrub support to support subpage better
In v6.4
- Block perfect (previously requires page aligned ranges) compressed write
In v6.13
- Various error handling fixes involving subpage
In v6.14
Finally the only missing feature is the pretty simple and harmless
inlined data extent creation, just added in previous patches.
Now btrfs has all of its features ready for both regular and subpage
cases, there is no reason to output a warning about the experimental
subpage support, and we can finally remove it now.
Acked-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is the trivial pattern for path auto free, initialize at the
beginning and free at the end with simple goto -> return conversions.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is the trivial pattern for path auto free, initialize at the
beginning and free at the end with simple goto -> return conversions.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The most trivial pattern for the auto freeing when the variable is
declared with the macro and the final btrfs_free_path() is removed.
There are almost none goto -> return conversions and there's no other
function cleanup.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As the helper num_extent_folios() is now __pure, we can use it in for
loop without storing its value in a variable explicitly, the compiler
will do this for us.
The effects on btrfs.ko is -200 bytes and there are stack space savings
too:
btrfs_clone_extent_buffer -8 (32 -> 24)
btrfs_clear_buffer_dirty -8 (48 -> 40)
clear_extent_buffer_uptodate -8 (40 -> 32)
set_extent_buffer_dirty -8 (32 -> 24)
write_one_eb -8 (88 -> 80)
set_extent_buffer_uptodate -8 (40 -> 32)
read_extent_buffer_pages_nowait -16 (64 -> 48)
find_extent_buffer -8 (32 -> 24)
Signed-off-by: David Sterba <dsterba@suse.com>
Unlike folio helpers for date the ones for metadata always take the
extent buffer start and length, so they can be simplified to take the
eb only. The fs_info can be obtained from eb too so it can be dropped
as parameter.
Added in patch "btrfs: use metadata specific helpers to simplify extent
buffer helpers".
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a label that does nothing else than return, so remove it and
also change other gotos to immediate returns as the function is short
enough for this pattern.
Signed-off-by: David Sterba <dsterba@suse.com>
Since we have btrfs_meta_is_subpage(), we should make btrfs_is_subpage()
to be data inode specific.
This change involves:
- Simplify btrfs_is_subpage()
Now we only need to do a very simple sectorsize check against
PAGE_SIZE.
And since the function is pretty simple now, just make it an inline
function.
- Add an extra ASSERT() to make sure btrfs_is_subpage() is only called
on data inode mapping
- Migrate btree_csum_one_bio() to use btrfs_meta_folio_*() helpers
- Migrate alloc_extent_buffer() to use btrfs_meta_folio_*() helpers
- Migrate end_bbio_meta_write() to use btrfs_meta_folio_*() helpers
Or we will trigger the ASSERT() due to calling btrfs_folio_*() on
metadata folios.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For the future large folio support, our filemap can have folios with
different sizes, thus we can no longer rely on a fixed blocks_per_page
value.
To prepare for that future, here we do:
- Remove btrfs_fs_info::sectors_per_page
- Introduce a helper, btrfs_blocks_per_folio()
Which uses the folio size to calculate the number of blocks for each
folio.
- Migrate the existing btrfs_fs_info::sectors_per_page to use that
helper
There are some exceptions:
* Metadata nodesize < page size support
In the future, even if we support large folios, we will only
allocate a folio that matches our nodesize.
Thus we won't have a folio covering multiple metadata unless
nodesize < page size.
* Existing subpage bitmap dump
We use a single unsigned long to store the bitmap.
That means until we change the bitmap dumping code, our upper limit
for folio size will only be 256K (4K block size, 64 bit unsigned
long).
* btrfs_is_subpage() check
This will be migrated into a future patch.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit b35108a51c ("jiffies: Define secs_to_jiffies()") introduced
secs_to_jiffies(). As the value here is a multiple of 1000, use
secs_to_jiffies() instead of msecs_to_jiffies() to avoid the
multiplication
This is converted using scripts/coccinelle/misc/secs_to_jiffies.cocci with
the following Coccinelle rules:
@depends on patch@
expression E;
@@
-msecs_to_jiffies
+secs_to_jiffies
(E
- * \( 1000 \| MSEC_PER_SEC \)
)
Link: https://lkml.kernel.org/r/20250225-converge-secs-to-jiffies-part-two-v3-5-a43967e36c88@linux.microsoft.com
Signed-off-by: Easwar Hariharan <eahariha@linux.microsoft.com>
Acked-by: David Sterba <dsterba@suse.com>
Cc: Carlos Maiolino <cem@kernel.org>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Chris Mason <clm@fb.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Damien Le Maol <dlemoal@kernel.org>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dick Kennedy <dick.kennedy@broadcom.com>
Cc: Dongsheng Yang <dongsheng.yang@easystack.cn>
Cc: Fabio Estevam <festevam@gmail.com>
Cc: Frank Li <frank.li@nxp.com>
Cc: Hans de Goede <hdegoede@redhat.com>
Cc: Henrique de Moraes Holschuh <hmh@hmh.eng.br>
Cc: Ilpo Jarvinen <ilpo.jarvinen@linux.intel.com>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: James Bottomley <james.bottomley@HansenPartnership.com>
Cc: James Smart <james.smart@broadcom.com>
Cc: Jaroslav Kysela <perex@perex.cz>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Julia Lawall <julia.lawall@inria.fr>
Cc: Kalesh Anakkur Purayil <kalesh-anakkur.purayil@broadcom.com>
Cc: Keith Busch <kbusch@kernel.org>
Cc: Leon Romanovsky <leon@kernel.org>
Cc: Marc Kleine-Budde <mkl@pengutronix.de>
Cc: Mark Brown <broonie@kernel.org>
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Nicolas Palix <nicolas.palix@imag.fr>
Cc: Niklas Cassel <cassel@kernel.org>
Cc: Oded Gabbay <ogabbay@kernel.org>
Cc: Sagi Grimberg <sagi@grimberg.me>
Cc: Sascha Hauer <s.hauer@pengutronix.de>
Cc: Sebastian Reichel <sre@kernel.org>
Cc: Selvin Thyparampil Xavier <selvin.xavier@broadcom.com>
Cc: Shawn Guo <shawnguo@kernel.org>
Cc: Shyam-sundar S-k <Shyam-sundar.S-k@amd.com>
Cc: Takashi Iwai <tiwai@suse.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Xiubo Li <xiubli@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There are only 2 WAIT_* values left for wait parameter, we can encode
this to the function name if the waiting functionality is split.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Track number of read blocks in the whole filesystem. The counter is
initialized when devices are opened. The counter is increased at
btrfs_submit_dev_bio() if the stats tracking is enabled (depends on the
read policy). Stats tracking is disabled by default and is enabled
through fs_devices::collect_fs_stats when required.
The code is not under the EXPERIMENTAL define, as stats can be expanded
to include write counts and other performance counters, with the user
interface independent of its internal use.
This is an in-memory-only feature, not related to the dev error stats.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, fs_devices->fs_info is initialized in btrfs_init_devices_late(),
but this occurs too late for find_live_mirror(), which is invoked by
load_super_root() much earlier than btrfs_init_devices_late().
Fix this by moving the initialization to open_ctree(), before load_super_root().
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_validate_super() only does a very basic check on the
array chunk size (not too large than the available space, but not too
small to contain no chunk).
The more comprehensive checks (the regular chunk checks and size check
inside the system chunk array) are all done inside btrfs_read_sys_array().
It's not a big deal, but it also means we do not do any validation on
the system chunk array at super block writeback time either.
Do the following modification to centralize the system chunk array
checks into btrfs_validate_super():
- Make chunk_err() helper accept stack chunk pointer
If @leaf parameter is NULL, then the @chunk pointer will be a pointer
to the chunk item, other than the offset inside the leaf.
And since @leaf can be NULL, add a new @fs_info parameter for that
case.
- Make btrfs_check_chunk_valid() handle stack chunk pointer
The same as chunk_err(), a new @fs_info parameter, and if @leaf is
NULL, then @chunk will be a pointer to a stack chunk.
If @chunk is NULL, then all needed btrfs_chunk members will be read
using the stack helper instead of the leaf helper.
This means we need to read out all the needed member at the beginning
of the function.
Furthermore, at super block read time, fs_info->sectorsize is not yet
initialized, we need one extra @sectorsize parameter to grab the
correct sectorsize.
- Introduce a helper validate_sys_chunk_array()
* Validate the disk key.
* Validate the size before we access the full chunk items.
* Do the full chunk item validation.
- Call validate_sys_chunk_array() at btrfs_validate_super()
- Simplify the checks inside btrfs_read_sys_array()
Now the checks will be converted to an ASSERT().
- Simplify the checks inside read_one_chunk()
Now that all chunk items inside system chunk array and chunk tree are
verified, there is no need to verify them again inside read_one_chunk().
This change has the following advantages:
- More comprehensive checks at write time
And unlike the sys_chunk_array read routine, this time we do not need
to allocate a dummy extent buffer to do the check.
All the checks done here require no new memory allocation.
- Slightly improved readability when iterating the system chunk array
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The fs_info parameter is redundant because it can be extracted from the
transaction given as another parameter. So remove it and use the fs_info
accessible from the transaction.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The fs_info parameter is redundant because it can be extracted from the
transaction given as another parameter. So remove it and use the fs_info
accessible from the transaction.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's better suited at delayed-ref.c since it's about delayed refs and
contains logic to iterate over them (using the red black tree, doing all
the locking, freeing, etc), so move it from disk-io.c, which is pretty
big, into delayed-ref.c, hiding implementation details of how delayed
refs are tracked and managed. This also facilitates the next patches in
the series.
This change moves the code between files but also does the following
simple cleanups:
1) Rename the 'cache' variable to 'bg', since it's a block group
(the 'cache' logic comes from old days where the block group
structure was named 'btrfs_block_group_cache');
2) Move the 'ref' variable declaration to the scope of the inner
while loop, since it's not used outside that loop.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_destroy_delayed_refs() it's unexpected to not find the block
group to which a delayed reference's extent belongs to, so we have this
BUG_ON(), not just because it's highly unexpected but also because we
don't know what to do there.
Since we are in the transaction abort path, there's nothing we can do
other than proceed and cleanup all used resources we can. So remove
the BUG_ON() and deal with a missing block group by logging an error
message and continuing to cleanup all we can related to the current
delayed ref head and moving to other delayed refs.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The names for the members of struct btrfs_fs_info related to the extent
map shrinker are a bit too long, so rename them to be shorter by replacing
the "extent_map_" prefix with the "em_" prefix.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that the extent map shrinker can only be run by a single task (as a
work queue item) there is no need to keep the progress of the shrinker
protected by a spinlock and passing the progress to trace events as
parameters. So remove the lock and simplify the arguments for the trace
events.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the extent map shrinker is run synchronously for kswapd tasks
that end up calling the fs shrinker (fs/super.c:super_cache_scan()).
This has some disadvantages and for some heavy workloads with memory
pressure it can cause some delays and stalls that make a machine
unresponsive for some periods. This happens because:
1) We can have several kswapd tasks on machines with multiple NUMA zones,
and running the extent map shrinker concurrently can cause high
contention on some spin locks, namely the spin locks that protect
the radix tree that tracks roots, the per root xarray that tracks
open inodes and the list of delayed iputs. This not only delays the
shrinker but also causes high CPU consumption and makes the task
running the shrinker monopolize a core, resulting in the symptoms
of an unresponsive system. This was noted in previous commits such as
commit ae1e766f62 ("btrfs: only run the extent map shrinker from
kswapd tasks");
2) The extent map shrinker's iteration over inodes can often be slow, even
after changing the data structure that tracks open inodes for a root
from a red black tree (up to kernel 6.10) to an xarray (kernel 6.10+).
The transition to the xarray while it made things a bit faster, it's
still somewhat slow - for example in a test scenario with 10000 inodes
that have no extent maps loaded, the extent map shrinker took between
5ms to 8ms, using a release, non-debug kernel. Iterating over the
extent maps of an inode can also be slow if have an inode with many
thousands of extent maps, since we use a red black tree to track and
search extent maps. So having the extent map shrinker run synchronously
adds extra delay for other things a kswapd task does.
So make the extent map shrinker run asynchronously as a job for the
system unbounded workqueue, just like what we do for data and metadata
space reclaim jobs.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function got split in commit 6ab6ebb760 ("btrfs: split
alloc_log_tree()") and since then transaction parameter has been unused.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since the new mount option parser in commit ad21f15b0f ("btrfs:
switch to the new mount API") we don't pass the options like that
anymore.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmcZGqsACgkQxWXV+ddt
WDsZTg//dSLAAswT3dTAvWDt7rGxPhJC1V+gnzWdj/0Q3CUimNaw7zHp1QHtJDFT
S+3TVvJJ2JDvOnbi3u24s/bL5YdkWcvIyy87oVE4trJMbQPc/E45pkYFqF3TRQAH
wEYAVEnO9f9WUY+ekxX2XBzhmKp3xol93j9BBHDXOF9kHsDC5lI0D5YVYEhRY8Qu
D4GcqAhqUj5Hj6I6ppiqO47NCJBNzw1Se9QsgruPpmItRbB0/LYJFhUfevwosTKg
xVpkRVntFqQjkIdIdBfBv/ZGWfxJyM7K4M49QwLUqUQfxugu7BiGYuEjkBkiy07a
pZDEOF9s8wUZsxvRVohqKlhL0zHBF+/pAANowYuhKNW1sqKt4GVCdN3V34AbH8ST
JIbPvC2g1tUzIc2wckE8GO/NnsNR4r3k6iPB53MdCHrIo3jnENOeb9wF0GiVDb6s
OrhCa3ph2ps80YC1aCnc4Jr/yV2ONebSivnqvHCIUQEZfpjtAc07atm0i946/7nx
eiBE+9zSVJZB0LoooIVz2I3HX3lRnm3Wwi4nj8U/sNL/IbGaHNCurIETR23NivYP
yWVql2njwE+yMc8q9YZXs4MBdKsSGP6eGJW3ZwKi6ru2PJdf5eIib+ffvR4bLqXD
UUDfMyC1esGsQB24sc8wppk97wmmMrdqQUj9WnmNlTP8FUFggvQ=
=sYxX
-----END PGP SIGNATURE-----
Merge tag 'for-6.12-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- mount option fixes:
- fix handling of compression mount options on remount
- reject rw remount in case there are options that don't work
in read-write mode (like rescue options)
- fix zone accounting of unusable space
- fix in-memory corruption when merging extent maps
- fix delalloc range locking for sector < page
- use more convenient default value of drop subtree threshold, clean
more subvolumes without the fallback to marking quotas inconsistent
- fix smatch warning about incorrect value passed to ERR_PTR
* tag 'for-6.12-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix passing 0 to ERR_PTR in btrfs_search_dir_index_item()
btrfs: reject ro->rw reconfiguration if there are hard ro requirements
btrfs: fix read corruption due to race with extent map merging
btrfs: fix the delalloc range locking if sector size < page size
btrfs: qgroup: set a more sane default value for subtree drop threshold
btrfs: clear force-compress on remount when compress mount option is given
btrfs: zoned: fix zone unusable accounting for freed reserved extent
Since commit 011b46c304 ("btrfs: skip subtree scan if it's too high to
avoid low stall in btrfs_commit_transaction()"), btrfs qgroup can
automatically skip large subtree scan at the cost of marking qgroup
inconsistent.
It's designed to address the final performance problem of snapshot drop
with qgroup enabled, but to be safe the default value is
BTRFS_MAX_LEVEL, requiring a user space daemon to set a different value
to make it work.
I'd say it's not a good idea to rely on user space tool to set this
default value, especially when some operations (snapshot dropping) can
be triggered immediately after mount, leaving a very small window to
that that sysfs interface.
So instead of disabling this new feature by default, enable it with a
low threshold (3), so that large subvolume tree drop at mount time won't
cause huge qgroup workload.
CC: stable@vger.kernel.org # 6.1
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmb/9agACgkQxWXV+ddt
WDtKFA/5AW88osk/1k/NVhOvOa0xPr5XyDLq1n8Gaxfy8uHlHAc8wdsvJzCDMS0M
qUOD/tOPhRI0HGXPiKD767erwbyXiZAcCTkSd8x5jlXy1hVjUHQSKO//JxD0vtAZ
jOscoUA1wJJutopCXcppnoUUFE2753edEg0w2EtUXMpfqivqOmMCR+1ZtKkfaNJo
oRuZCq3Oi8hu7Wsvmh4Etq/9MvGM+xovXAMAji6Op8nsP1jJlzWztpEUogLOQH2S
IhDFFxP9shBV9JjV+HSyXcAYr8VArH6HtYjapR9oajCH0pvSjLYQQPq/qQ0//8Hb
SHr4YP6RBbpEIvvaQeA7vwsckBHNBOrSAbEgRQ2+zdmiwha6SRIEVyXYh5LUwcYT
WnVozbk7ZX9rD1jOVhvgouFG6vUz8A6/qt3BD028bVcyMvBXW4gsEduCMVlFGmlN
D6+hNY6J08j4HUEGnPk7fAYi/lk5OEK1p5yarUgsOQ3GqWWS0ywkrfbmbWwyC+Ff
AxggFTl9YodU5RMs7EU2GeHkLU6LnXgevk6FFm0JzsLtT/BbEP7pj6tOot4Msl1e
2ovqFiSbuPNg5Wr70ZBRO9LDIAYtTZy1UrVR/YCSLzm+wZsXMelDIHMQfE7+Yodp
O5Cud23AanRTwjErvNl3X4rhut8rrI1FsR89gDyKK1EPG+mwofo=
=yslr
-----END PGP SIGNATURE-----
Merge tag 'for-6.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- in incremental send, fix invalid clone operation for file that got
its size decreased
- fix __counted_by() annotation of send path cache entries, we do not
store the terminating NUL
- fix a longstanding bug in relocation (and quite hard to hit by
chance), drop back reference cache that can get out of sync after
transaction commit
- wait for fixup worker kthread before finishing umount
- add missing raid-stripe-tree extent for NOCOW files, zoned mode
cannot have NOCOW files but RST is meant to be a standalone feature
- handle transaction start error during relocation, avoid potential
NULL pointer dereference of relocation control structure (reported by
syzbot)
- disable module-wide rate limiting of debug level messages
- minor fix to tracepoint definition (reported by checkpatch.pl)
* tag 'for-6.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: disable rate limiting when debug enabled
btrfs: wait for fixup workers before stopping cleaner kthread during umount
btrfs: fix a NULL pointer dereference when failed to start a new trasacntion
btrfs: send: fix invalid clone operation for file that got its size decreased
btrfs: tracepoints: end assignment with semicolon at btrfs_qgroup_extent event class
btrfs: drop the backref cache during relocation if we commit
btrfs: also add stripe entries for NOCOW writes
btrfs: send: fix buffer overflow detection when copying path to cache entry
asm/unaligned.h is always an include of asm-generic/unaligned.h;
might as well move that thing to linux/unaligned.h and include
that - there's nothing arch-specific in that header.
auto-generated by the following:
for i in `git grep -l -w asm/unaligned.h`; do
sed -i -e "s/asm\/unaligned.h/linux\/unaligned.h/" $i
done
for i in `git grep -l -w asm-generic/unaligned.h`; do
sed -i -e "s/asm-generic\/unaligned.h/linux\/unaligned.h/" $i
done
git mv include/asm-generic/unaligned.h include/linux/unaligned.h
git mv tools/include/asm-generic/unaligned.h tools/include/linux/unaligned.h
sed -i -e "/unaligned.h/d" include/asm-generic/Kbuild
sed -i -e "s/__ASM_GENERIC/__LINUX/" include/linux/unaligned.h tools/include/linux/unaligned.h
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio.
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The member btrfs_fs_info::subpage_info stores the cached bitmap start
position inside the merged bitmap.
However in reality there is only one thing depending on the sectorsize,
bitmap_nr_bits, which records the number of sectors that fit inside a
page.
The sequence of sub-bitmaps have fixed order, thus it's just a quick
multiplication to calculate the start position of each sub-bitmaps.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmaVN3MACgkQxWXV+ddt
WDtpIRAAl+1NjsEj8e5V/UYn8Jr06ujTOnrkR3PCTICxDHbUaMLkQEw21H0K/ogQ
3fOiEVpSlZOfKdYXtXaMQbC0jd/Af2eA10Uht96nAEjAtxu1uJ4cFZGu2meNdXZP
xUioivJ/CElMPH2aluG6FaQvUTqmhrEr8tSoYbxzQmUd434q9kqqyjtw1tfzYDG1
VDn2f7ykhpB/8P0aoqgWSshWTmaCzG0GkuI28o1o0iZUIF/P9TKdzxlLRW6BVHE7
T2oGLEQjN1GQbCH75L4IeNJDkCBVfcDcbZkUDJ/ae4Pt/jJQTFY53YIP9wXFZQnd
mdfHmK7Atpsk75ATftYSq+ENkbQ5fsuut5CD63u54gAqA4M1FncDXTAWS1Y30F76
P8juSCmsSy0o3gTflDIo/IMdntoh/JmncwwStF6oKzmyUZZzzarsqM8mc1P03ZNt
3ttlnbY7lC1TDAlD5J2wXE0INCT2pN+4C9IToWdRypeuLu6qrI7cQ0oylyp9OVQM
t9umTXm0B6s1cyqEDjJf0xJZS/JTHYwu7S4EmAJwicgiLpOjABVTmO8021rVmDJy
TAUu6yEhSsrTT6Dxm7/2Et1EEOKFF5hhsG1SiGD9oUIZK6B5+0waT+rbkEWl7osR
4/TAv2zX6tuCc7HIW0fQloM/6/Gyd5wcDVaQNDUzFA075uKstwY=
=k5d3
-----END PGP SIGNATURE-----
Merge tag 'for-6.11-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"The highlights are new logic behind background block group reclaim,
automatic removal of qgroup after removing a subvolume and new
'rescue=' mount options.
The rest is optimizations, cleanups and refactoring.
User visible features:
- dynamic block group reclaim:
- tunable framework to avoid situations where eager data
allocations prevent creating new metadata chunks due to lack of
unallocated space
- reuse sysfs knob bg_reclaim_threshold (otherwise used only in
zoned mode) for a fixed value threshold
- new on/off sysfs knob "dynamic_reclaim" calculating the value
based on heuristics, aiming to keep spare working space for
relocating chunks but not to needlessly relocate partially
utilized block groups or reclaim newly allocated ones
- stats are exported in sysfs per block group type, files
"reclaim_*"
- this may increase IO load at unexpected times but the corner
case of no allocatable block groups is known to be worse
- automatically remove qgroup of deleted subvolumes:
- adjust qgroup removal conditions, make sure all related
subvolume data are already removed, or return EBUSY, also take
into account setting of sysfs drop_subtree_threshold
- also works in squota mode
- mount option updates: new modes of 'rescue=' that allow to mount
images (read-only) that could have been partially converted by user
space tools
- ignoremetacsums - invalid metadata checksums are ignored
- ignoresuperflags - super block flags that track conversion in
progress (like UUID or checksums)
Core:
- size of struct btrfs_inode is now below 1024 (on a release config),
improved memory packing and other secondary effects
- switch tracking of open inodes from rb-tree to xarray, minor
performance improvement
- reduce number of empty transaction commits when there are no dirty
data/metadata
- memory allocation optimizations (reduced numbers, reordering out of
critical sections)
- extent map structure optimizations and refactoring, more sanity
checks
- more subpage in zoned mode preparations or fixes
- general snapshot code cleanups, improvements and documentation
- tree-checker updates: more file extent ram_bytes fixes, continued
- raid-stripe-tree update (not backward compatible):
- remove extent encoding field from the structure, can be inferred
from other information
- requires btrfs-progs 6.9.1 or newer
- cleanups and refactoring
- error message updates
- error handling improvements
- return type and parameter cleanups and improvements"
* tag 'for-6.11-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (152 commits)
btrfs: fix extent map use-after-free when adding pages to compressed bio
btrfs: fix bitmap leak when loading free space cache on duplicate entry
btrfs: remove the BUG_ON() inside extent_range_clear_dirty_for_io()
btrfs: move extent_range_clear_dirty_for_io() into inode.c
btrfs: enhance compression error messages
btrfs: fix data race when accessing the last_trans field of a root
btrfs: rename the extra_gfp parameter of btrfs_alloc_page_array()
btrfs: remove the extra_gfp parameter from btrfs_alloc_folio_array()
btrfs: introduce new "rescue=ignoresuperflags" mount option
btrfs: introduce new "rescue=ignoremetacsums" mount option
btrfs: output the unrecognized super block flags as hex
btrfs: remove unused Opt enums
btrfs: tree-checker: add extra ram_bytes and disk_num_bytes check
btrfs: fix the ram_bytes assignment for truncated ordered extents
btrfs: make validate_extent_map() catch ram_bytes mismatch
btrfs: ignore incorrect btrfs_file_extent_item::ram_bytes
btrfs: cleanup the bytenr usage inside btrfs_extent_item_to_extent_map()
btrfs: fix typo in error message in btrfs_validate_super()
btrfs: move the direct IO code into its own file
btrfs: pass a btrfs_inode to btrfs_set_prop()
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmaRcQgACgkQxWXV+ddt
WDvAGxAAknJAiREp/AmzhSwkhr+nSnqex0t+VVgsOaMTu0BEHO0xhoXc3l0QuSwS
u2AIqmOYyzr/UQVXCuatBqAE+5T4njtYAYIWwE825yquAtHNyuok9+Sjhfvxrwgs
HmNAN4Vvl2Fwds7xbWE8ug18QlssuRTIX8hk7ZtS6xo49g0tsbRX9KlzIPpsULD3
BOZa+2NJwC1PGVeNPf3p06rfiUkKfmFYgdDybe2zJ17uwsRz1CFSsaEEB35ys1f0
xYOS4epfcie03EGyZmYctuNxatUkk/J/1lTH4Z9JHwvPBvLK1U97SyJ11Wz2VQC/
8ar8gUDRYtjWdf6vn6AWBM4MseaYm9LDMlPhbSfvpDcWiclGTE64IOP4gKKr3mCh
WzlNSIR9I+tYgrhvcsCEzd7lvrSVHa7clwfooYgkEx0wl5lgbN0llAdtJWG3eeLn
3stxje2FqqXsFNj5N9SrPy7f7t6xF2i8vwk4qh6EpRuT4yuatb+nWzDm9EuTT/Bc
P+zM1KFp7Blk7Zw/Tpw0O9qjt1whStY2xrqcMzg539WVo45MmuFEFzmGBRwZsH55
QPGLIjXPpt728AgMdhBFEG0DtWaiA3AOI/C5nYOtLu92aZVBmbaX7/d/GpJv3Vvd
Ihvr9s1c49YvTZsIS0T0tkq/7LXZi/SToRJDjhP5HCrRGf7A30Y=
=gtsF
-----END PGP SIGNATURE-----
Merge tag 'for-6.10-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Fix a regression in extent map shrinker behaviour.
In the past weeks we got reports from users that there are huge
latency spikes or freezes. This was bisected to newly added shrinker
of extent maps (it was added to fix a build up of the structures in
memory).
I'm assuming that the freezes would happen to many users after release
so I'd like to get it merged now so it's in 6.10. Although the diff
size is not small the changes are relatively straightforward, the
reporters verified the fixes and we did testing on our side.
The fixes:
- adjust behaviour under memory pressure and check lock or scheduling
conditions, bail out if needed
- synchronize tracking of the scanning progress so inode ranges are
not skipped or work duplicated
- do a delayed iput when scanning a root so evicting an inode does
not slow things down in case of lots of dirty data, also fix
lockdep warning, a deadlock could happen when writing the dirty
data would need to start a transaction"
* tag 'for-6.10-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: avoid races when tracking progress for extent map shrinking
btrfs: stop extent map shrinker if reschedule is needed
btrfs: use delayed iput during extent map shrinking
We store the progress (root and inode numbers) of the extent map shrinker
in fs_info without any synchronization but we can have multiple tasks
calling into the shrinker during memory allocations when there's enough
memory pressure for example.
This can result in a task A reading fs_info->extent_map_shrinker_last_ino
after another task B updates it, and task A reading
fs_info->extent_map_shrinker_last_root before task B updates it, making
task A see an odd state that isn't necessarily harmful but may make it
skip certain inode ranges or do more work than necessary by going over
the same inodes again. These unprotected accesses would also trigger
warnings from tools like KCSAN.
So add a lock to protect access to these progress fields.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
KCSAN complains about a data race when accessing the last_trans field of a
root:
[ 199.553628] BUG: KCSAN: data-race in btrfs_record_root_in_trans [btrfs] / record_root_in_trans [btrfs]
[ 199.555186] read to 0x000000008801e308 of 8 bytes by task 2812 on cpu 1:
[ 199.555210] btrfs_record_root_in_trans+0x9a/0x128 [btrfs]
[ 199.555999] start_transaction+0x154/0xcd8 [btrfs]
[ 199.556780] btrfs_join_transaction+0x44/0x60 [btrfs]
[ 199.557559] btrfs_dirty_inode+0x9c/0x140 [btrfs]
[ 199.558339] btrfs_update_time+0x8c/0xb0 [btrfs]
[ 199.559123] touch_atime+0x16c/0x1e0
[ 199.559151] pipe_read+0x6a8/0x7d0
[ 199.559179] vfs_read+0x466/0x498
[ 199.559204] ksys_read+0x108/0x150
[ 199.559230] __s390x_sys_read+0x68/0x88
[ 199.559257] do_syscall+0x1c6/0x210
[ 199.559286] __do_syscall+0xc8/0xf0
[ 199.559318] system_call+0x70/0x98
[ 199.559431] write to 0x000000008801e308 of 8 bytes by task 2808 on cpu 0:
[ 199.559464] record_root_in_trans+0x196/0x228 [btrfs]
[ 199.560236] btrfs_record_root_in_trans+0xfe/0x128 [btrfs]
[ 199.561097] start_transaction+0x154/0xcd8 [btrfs]
[ 199.561927] btrfs_join_transaction+0x44/0x60 [btrfs]
[ 199.562700] btrfs_dirty_inode+0x9c/0x140 [btrfs]
[ 199.563493] btrfs_update_time+0x8c/0xb0 [btrfs]
[ 199.564277] file_update_time+0xb8/0xf0
[ 199.564301] pipe_write+0x8ac/0xab8
[ 199.564326] vfs_write+0x33c/0x588
[ 199.564349] ksys_write+0x108/0x150
[ 199.564372] __s390x_sys_write+0x68/0x88
[ 199.564397] do_syscall+0x1c6/0x210
[ 199.564424] __do_syscall+0xc8/0xf0
[ 199.564452] system_call+0x70/0x98
This is because we update and read last_trans concurrently without any
type of synchronization. This should be generally harmless and in the
worst case it can make us do extra locking (btrfs_record_root_in_trans())
trigger some warnings at ctree.c or do extra work during relocation - this
would probably only happen in case of load or store tearing.
So fix this by always reading and updating the field using READ_ONCE()
and WRITE_ONCE(), this silences KCSAN and prevents load and store tearing.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This new mount option allows the kernel to skip the super flags check,
it's mostly to allow the kernel to do a rescue mount of an interrupted
checksum conversion.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce "rescue=ignoremetacsums" to ignore metadata csums, all the
other metadata sanity checks are still kept as is.
This new mount option is mostly to allow the kernel to mount an
interrupted checksum conversion (at the metadata csum overwrite stage).
And since the main part of metadata sanity checks is inside
tree-checker, we shouldn't lose much safety, and the new mount option is
rescue mount option it requires full read-only mount.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Most of the extra super block flags are beyond 32bits (from
CHANGING_FSID_V2 to CHANGING_*_CSUMS), thus using %llu is not only too
long and pretty hard to read.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a typo in an error message when checking the block group tree
feature, it mentions fres-space-tree instead of free-space-tree. Fix
that.
Signed-off-by: Mark Harmstone <maharmstone@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we have a handful of btrfs_check_eb_owner() calls in various
places and helpers that read extent buffers. However we call this in
the endio handler for every metadata block, so these extra checks are
unnecessary, simply remove them from everywhere except the endio
handler.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can add const to many parameters, this is for clarity and minor
addition to safety. There are some minor effects, in the assembly
code and .ko measured on release config. This patch does not cover all
possible conversions.
Signed-off-by: David Sterba <dsterba@suse.com>
Since err represents the function return value, rename it as ret,
and rename the original ret, which serves as a helper return value,
to found. Also, optimize the code to continue call btrfs_put_root()
for the rest of the root if even after btrfs_orphan_cleanup() returns
error.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have several places that attach to the current transaction with
btrfs_attach_transaction_barrier() and then commit the transaction if
there is one. Add a helper and use it to deduplicate this pattern.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_commit_super(), called in a few contexts such as when unmounting
a filesystem, we use btrfs_join_transaction() to catch any running
transaction and then commit it. This will however create a new and empty
transaction in case there's no running transaction or there's a running
transaction with a state >= TRANS_STATE_UNBLOCKED.
As we just want to be sure that any existing transaction is fully
committed, we can use btrfs_attach_transaction_barrier() instead of
btrfs_join_transaction(), therefore avoiding the creation and commit of
empty transactions, which only waste IO and causes rotation of the
precious backup roots.
Example where we create and commit a pointless empty transaction:
$ mkfs.btrfs -f /dev/sdj
$ btrfs inspect-internal dump-super /dev/sdj | grep -e '^generation'
generation 6
$ mount /dev/sdj /mnt/sdj
$ touch /mnt/sdj/foo
# Commit the currently open transaction. Just 'sync' or wait ~30
# seconds for the transaction kthread to commit it.
$ sync
$ btrfs inspect-internal dump-super /dev/sdj | grep -e '^generation'
generation 7
$ umount /mnt/sdj
$ btrfs inspect-internal dump-super /dev/sdj | grep -e '^generation'
generation 8
The transaction with id 8 was pointless, an empty transaction that did
not achieve anything.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The range is specified only in two ways, we can simplify the case for
the whole filesystem range as a NULL block group parameter.
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_block_group_root() is declared in disk-io.c; however,
all its callers are in block-group.c. Move it to the latter file and
declare it static.
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
On 64 bits platforms we don't really need to have a dedicated member (the
objectid field) for the inode's number since we store in the VFS inode's
i_ino member, which is an unsigned long and this type is 64 bits wide on
64 bits platforms. We only need that field in case we are on a 32 bits
platform because the unsigned long type is 32 bits wide on such platforms
See commit 33345d0152 ("Btrfs: Always use 64bit inode number") regarding
this 64/32 bits detail.
The objectid field of struct btrfs_inode is also used to store the ID of
a root for directories that are stubs for unreferenced roots. In such
cases the inode is a directory and has the BTRFS_INODE_ROOT_STUB runtime
flag set.
So in order to reduce the size of btrfs_inode structure on 64 bits
platforms we can remove the objectid member and use the VFS inode's i_ino
member instead whenever we need to get the inode number. In case the inode
is a root stub (BTRFS_INODE_ROOT_STUB set) we can use the member
last_reflink_trans to store the ID of the unreferenced root, since such
inode is a directory and reflinks can't be done against directories.
So remove the objectid fields for 64 bits platforms and alias the
last_reflink_trans field with a name of ref_root_id in a union.
On a release kernel config, this reduces the size of struct btrfs_inode
from 1040 bytes down to 1032 bytes.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently struct btrfs_inode has a key member, named "location", that is
either:
1) The key of the inode's item. In this case the objectid is the number
of the inode;
2) A key stored in a dir entry with a type of BTRFS_ROOT_ITEM_KEY, for
the case where we have a root that is a snapshot of a subvolume that
points to other subvolumes. In this case the objectid is the ID of
a subvolume inside the snapshotted parent subvolume.
The key is only used to lookup the inode item for the first case, while
for the second it's never used since it corresponds to directory stubs
created with new_simple_dir() and which are marked as dummy, so there's
no actual inode item to ever update. In the second case we only check
the key type at btrfs_ino() for 32 bits platforms and its objectid is
only needed for unlink.
Instead of using a key we can do fine with just the objectid, since we
can generate the key whenever we need it having only the objectid, as
in all use cases the type is always BTRFS_INODE_ITEM_KEY and the offset
is always 0.
So use only an objectid instead of a full key. This reduces the size of
struct btrfs_inode from 1048 bytes down to 1040 bytes on a release kernel.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we use the spinlock inode_lock from struct btrfs_root to
serialize access to two different data structures:
1) The delayed inodes xarray (struct btrfs_root::delayed_nodes);
2) The inodes xarray (struct btrfs_root::inodes).
Instead of using our own lock, we can use the spinlock that is part of the
xarray implementation, by using the xa_lock() and xa_unlock() APIs and
using the xarray APIs with the double underscore prefix that don't take
the xarray locks and assume the caller is using xa_lock() and xa_unlock().
So remove the spinlock inode_lock from struct btrfs_root and use the
corresponding xarray locks. This brings 2 benefits:
1) We reduce the size of struct btrfs_root, from 1336 bytes down to
1328 bytes on a 64 bits release kernel config;
2) We reduce lock contention by not using anymore the same lock for
changing two different and unrelated xarrays.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we use a red black tree (rb-tree) to track the currently open
inodes of a root (in struct btrfs_root::inode_tree). This however is not
very efficient when the number of inodes is large since rb-trees are
binary trees. For example for 100K open inodes, the tree has a depth of
17. Besides that, inserting into the tree requires navigating through it
and pulling useless cache lines in the process since the red black tree
nodes are embedded within the btrfs inode - on the other hand, by being
embedded, it requires no extra memory allocations.
We can improve this by using an xarray instead, which is efficient when
indices are densely clustered (such as inode numbers), is more cache
friendly and behaves like a resizable array, with a much better search
and insertion complexity than a red black tree. This only has one small
disadvantage which is that insertion will sometimes require allocating
memory for the xarray - which may fail (not that often since it uses a
kmem_cache) - but on the other hand we can reduce the btrfs inode
structure size by 24 bytes (from 1080 down to 1056 bytes) after removing
the embedded red black tree node, which after the next patches will allow
to reduce the size of the structure to 1024 bytes, meaning we will be able
to store 4 inodes per 4K page instead of 3 inodes.
This change does a straightforward change to use an xarray, and results
in a transaction abort if we can't allocate memory for the xarray when
creating an inode - but the next patch changes things so that we don't
need to abort.
Running the following fs_mark test showed some improvements:
$ cat test.sh
#!/bin/bash
DEV=/dev/nullb0
MNT=/mnt/nullb0
MOUNT_OPTIONS="-o ssd"
FILES=100000
THREADS=$(nproc --all)
echo "performance" | \
tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
mkfs.btrfs -f $DEV
mount $MOUNT_OPTIONS $DEV $MNT
OPTS="-S 0 -L 5 -n $FILES -s 0 -t $THREADS -k"
for ((i = 1; i <= $THREADS; i++)); do
OPTS="$OPTS -d $MNT/d$i"
done
fs_mark $OPTS
umount $MNT
Before this patch:
FSUse% Count Size Files/sec App Overhead
10 1200000 0 92081.6 12505547
16 2400000 0 138222.6 13067072
23 3600000 0 148833.1 13290336
43 4800000 0 97864.7 13931248
53 6000000 0 85597.3 14384313
After this patch:
FSUse% Count Size Files/sec App Overhead
10 1200000 0 93225.1 12571078
16 2400000 0 146720.3 12805007
23 3600000 0 160626.4 13073835
46 4800000 0 116286.2 13802927
53 6000000 0 90087.9 14754892
The test was run with a release kernel config (Debian's default config).
Also capturing the insertion times into the rb tree and into the xarray,
that is measuring the duration of the old function inode_tree_add() and
the duration of the new btrfs_add_inode_to_root() function, gave the
following results (in nanoseconds):
Before this patch, inode_tree_add() execution times:
Count: 5000000
Range: 0.000 - 5536887.000; Mean: 775.674; Median: 729.000; Stddev: 4820.961
Percentiles: 90th: 1015.000; 95th: 1139.000; 99th: 1397.000
0.000 - 7.816: 40 |
7.816 - 37.858: 209 |
37.858 - 170.278: 6059 |
170.278 - 753.961: 2754890 #####################################################
753.961 - 3326.728: 2232312 ###########################################
3326.728 - 14667.018: 4366 |
14667.018 - 64652.943: 852 |
64652.943 - 284981.761: 550 |
284981.761 - 1256150.914: 221 |
1256150.914 - 5536887.000: 7 |
After this patch, btrfs_add_inode_to_root() execution times:
Count: 5000000
Range: 0.000 - 2900652.000; Mean: 272.148; Median: 241.000; Stddev: 2873.369
Percentiles: 90th: 342.000; 95th: 432.000; 99th: 572.000
0.000 - 7.264: 104 |
7.264 - 33.145: 352 |
33.145 - 140.081: 109606 #
140.081 - 581.930: 4840090 #####################################################
581.930 - 2407.590: 43532 |
2407.590 - 9950.979: 2245 |
9950.979 - 41119.278: 514 |
41119.278 - 169902.616: 155 |
169902.616 - 702018.539: 47 |
702018.539 - 2900652.000: 9 |
Average, percentiles, standard deviation, etc, are all much better.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmZjGxEACgkQxWXV+ddt
WDt/lQ/9G5Ieozi7BoHcBTmE5BpyRXqfQ5dj9VaWFLZEH+rvdOiZlQ5QlcI1gkUg
jbSp7SB8qhrIbBwv2b58xgnGuuUxE2dd3tPP655bBhe7o4xvAKOK8XBVyVQQxvzq
eRI1J4daQC08FjlSNnHiY1ozl1OIOTSVllLBqkhkYOaBbIKbMByCVPpj4cwzqAvC
5iBCmL2RalAQ/ZasYwdBid2L2VD4dWGJ9uHY6pi+i9f/Q7nxGRlXqhHo25J5T2Gl
YE+75fS1lN9hQIkhZRlpiqOdpjJcxkkGJ0elXtRQ0t856lXUAOacIN+HW6aaLxj/
qv8tnaZO1M/Aw8t65N/8m/ktnBQEwXeX3rAcTpvaMLKAQRGP1oZdsyN5YzLpEi0h
0Y+yXyFdOYbTJBrGie+kRyh9RoRY3CLcQgRw/2u7ysRjBqdXPcaGXAH4ydE/67Qy
hdD9DVwDkjzmxh/V4o8raIM+b3Ql4FuBR0X93f8A0LeanJUlgCrc4lokgdA1tPEf
i/+epnnlEnBOpS4ht5PFn8FkpzeuKAR63AM5sKL18DYswpP5oCyyh76zMMoBh33k
JFEwVSUDW8AH6YSMAA5eLp9bGTDOGYyvNHKBRXAv5GHQkBXq4ahjZEUh2b/r1903
FzivbyRtUsxEh62SCsXCZqKlb1BhXRkhSqdbBFbYsKYmVEkylQo=
=7rUb
-----END PGP SIGNATURE-----
Merge tag 'for-6.10-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix handling of folio private changes.
The private value holds pointer to our extent buffer structure
representing a metadata range. Release and create of the range was
not properly synchronized when updating the private bit which ended
up in double folio_put, leading to all sorts of breakage
- fix a crash, reported as duplicate key in metadata, but caused by a
race of fsync and size extending write. Requires prealloc target
range + fsync and other conditions (log tree state, timing)
- fix leak of qgroup extent records after transaction abort
* tag 'for-6.10-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: protect folio::private when attaching extent buffer folios
btrfs: fix leak of qgroup extent records after transaction abort
btrfs: fix crash on racing fsync and size-extending write into prealloc
Qgroup extent records are created when delayed ref heads are created and
then released after accounting extents at btrfs_qgroup_account_extents(),
called during the transaction commit path.
If a transaction is aborted we free the qgroup records by calling
btrfs_qgroup_destroy_extent_records() at btrfs_destroy_delayed_refs(),
unless we don't have delayed references. We are incorrectly assuming
that no delayed references means we don't have qgroup extents records.
We can currently have no delayed references because we ran them all
during a transaction commit and the transaction was aborted after that
due to some error in the commit path.
So fix this by ensuring we btrfs_qgroup_destroy_extent_records() at
btrfs_destroy_delayed_refs() even if we don't have any delayed references.
Reported-by: syzbot+0fecc032fa134afd49df@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/0000000000004e7f980619f91835@google.com/
Fixes: 81f7eb00ff ("btrfs: destroy qgroup extent records on transaction abort")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Replacement of bdev->bd_inode with sane(r) set of primitives.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZkwjlgAKCRBZ7Krx/gZQ
66OmAP9nhZLASn/iM2+979I6O0GW+vid+uLh48uW3d+LbsmVIgD9GYpR+cuLQ/xj
mJESWfYKOVSpFFSrqlzKg9PQlU/GFgs=
=6LRp
-----END PGP SIGNATURE-----
Merge tag 'pull-bd_inode-1' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull bdev bd_inode updates from Al Viro:
"Replacement of bdev->bd_inode with sane(r) set of primitives by me and
Yu Kuai"
* tag 'pull-bd_inode-1' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
RIP ->bd_inode
dasd_format(): killing the last remaining user of ->bd_inode
nilfs_attach_log_writer(): use ->bd_mapping->host instead of ->bd_inode
block/bdev.c: use the knowledge of inode/bdev coallocation
gfs2: more obvious initializations of mapping->host
fs/buffer.c: massage the remaining users of ->bd_inode to ->bd_mapping
blk_ioctl_{discard,zeroout}(): we only want ->bd_inode->i_mapping here...
grow_dev_folio(): we only want ->bd_inode->i_mapping there
use ->bd_mapping instead of ->bd_inode->i_mapping
block_device: add a pointer to struct address_space (page cache of bdev)
missing helpers: bdev_unhash(), bdev_drop()
block: move two helpers into bdev.c
block2mtd: prevent direct access of bd_inode
dm-vdo: use bdev_nr_bytes(bdev) instead of i_size_read(bdev->bd_inode)
blkdev_write_iter(): saner way to get inode and bdev
bcachefs: remove dead function bdev_sectors()
ext4: remove block_device_ejected()
erofs_buf: store address_space instead of inode
erofs: switch erofs_bread() to passing offset instead of block number
Currently the error status of super block write is tracked in page/folio
status bit Error. For that we need to keep the reference for the whole
duration of write and wait.
Count the number of superblock writeback errors in the btrfs_device.
That means we don't need the folio to stay around until it's waited for,
and can avoid the extra call to folio_get/put.
Also remove a mention of PageError in a comment as it's the last mention
of the page Error state.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Iterate over folios instead of bvecs. Switch the order of unlock and put
to be the usual order; we know this folio can't be put until it's been
waited for, but that's fragile. Remove the calls to ClearPageUptodate /
SetPageUptodate -- if PAGE_SIZE is larger than BTRFS_SUPER_INFO_SIZE,
we'd be marking the entire folio uptodate without having actually
initialised all the bytes in the page.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is a direct conversion from pages to folios, assuming single page
folio. Also removes some calls to obsolete APIs and some hidden calls to
compound_head().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is a direct conversion from pages to folios, assuming single page
folio. Also removes a few calls to compound_head() and calls to
obsolete APIs.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are open coded tests of BTRFS_FS_STATE_DUMMY_FS_INFO and we have a
wrapper for that that's a compile-time constant when self-tests are not
built in. As this is only for development we can save some bytes and
conditions on release configs by using the helper in the remaining
cases.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no need to initialize the delayed inodes xarray with a GFP_ATOMIC
flag because that actually does nothing on the xarray operations. That was
needed for radix trees, but for xarrays the allocation flags are passed as
the last argument to xa_store() (which we are using correctly).
So initialize the delayed inodes xarray with a simple xa_init().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a per cpu counter that tracks the total number of extent maps that are
in extent trees of inodes that belong to fs trees. This is going to be
used in an upcoming change that adds a shrinker for extent maps. Only
extent maps for fs trees are considered, because for special trees such as
the data relocation tree we don't want to evict their extent maps which
are critical for the relocation to work, and since those are limited, it's
not a concern to have them in memory during the relocation of a block
group. Another case are extent maps for free space cache inodes, which
must always remain in memory, but those are limited (there's only one per
free space cache inode, which means one per block group).
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A comment from Filipe on one of my previous cleanups brought my
attention to a new helper we have for getting the root id of a root,
which makes it easier to read in the code.
The changes where made with the following Coccinelle semantic patch:
// <smpl>
@@
expression E,E1;
@@
(
E->root_key.objectid = E1
|
- E->root_key.objectid
+ btrfs_root_id(E)
)
// </smpl>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor style fixups ]
Signed-off-by: David Sterba <dsterba@suse.com>
At warn_about_uncommitted_trans(), there's no need to check if the list
is empty and return, because list_for_each_entry_safe() is safe to call
for an empty list, it simply does nothing. So remove the check.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Some of the operations after the free might convert more PERTRANS
metadata. Do the freeing as late as possible to eliminate a source of
leaked PERTRANS metadata.
This helps with the pass rate of generic/269 and generic/475.
Reviewed-by: Qu Wenruo <qwu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
The helpers btrfs_del_delalloc_inode() and __btrfs_del_delalloc_inode()
don't follow the pattern when the "__" helper does a special case and
are in fact reversed regarding the naming. We can merge them into one as
there's only one place that needs to be open coded.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no need to pass a root argument to __btrfs_del_delalloc_inode()
and btrfs_del_delalloc_inode(), we can just pass the inode since the root
is always the root associated to that inode. Some remove the root argument
from these functions.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a convenience helper to get a fs_info from a VFS inode pointer
instead of open coding the chain or using btrfs_sb() that in some cases
does one more pointer hop. This is implemented as a macro (still with
type checking) so we don't need full definitions of struct btrfs_inode,
btrfs_root or btrfs_fs_info.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add convenience helpers to get a fs_info from a page or folio pointer
instead of open coding the chain or using btrfs_sb() that in some cases
does one more pointer hop. This is implemented as a macro (still with
type checking) so we don't need full definitions of struct page, folio,
btrfs_root and btrfs_fs_info. The latter can't be static inlines as this
would create loop between ctree.h <-> fs.h, or the headers would have to
be restructured.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add convenience helpers to get a struct btrfs_inode from a page or folio
pointer instead of open coding the chain or intermediate BTRFS_I. This
is implemented as a macro (still with type checking) so we don't need
full definitions of struct page or address_space.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's one caller of btrfs_read_roots() and that already uses the
tree_root pointer, it's pointless to BUG_ON on it. As it's an assumption
of the initialization helpers make it an assert instead.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The btrfs_init_root_free_objectid() looks up a root by a key, allowing
to do an inexact search when key->offset is -1. It's never expected to
find such item, as it would break the allowed range of a root id.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With help of neovim, LSP and clangd we can identify header files that
are not actually needed to be included in the .c files. This is focused
only on removal (with minor fixups), further cleanups are possible but
will require doing the header files properly with forward declarations,
minimized includes and include-what-you-use care.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The block size stored in the super block is used by subsystems outside
of btrfs and it's a copy of fs_info::sectorsize. Unify that to always
use our sectorsize, with the exception of mount where we first need to
use fixed values (4K) until we read the super block and can set the
sectorsize.
Replace all uses, in most cases it's fewer pointer indirections.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
fstests looks for WARN_ON's in dmesg. Add WARN_ON_ONCE() to our leak
detection code (enabled only in debug builds) so that fstests will fail
if these things trip at all. This will allow us to easily catch
problems with our reference counting that may otherwise go unnoticed.
Reviewed-by: Neal Gompa <neal@gompa.dev>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After the conversion to folio interfaces (but without the patch to
enable larger folio allocation), there is an LTP report about observable
performance drop on metadata heavy operations.
https://lore.kernel.org/linux-btrfs/202312221750.571925bd-oliver.sang@intel.com/
This drop is caused by the extra code of calculating the
folio_size()/folio_shift(), instead of the old hard coded
PAGE_SIZE/PAGE_SHIFT.
To slightly reduce the overhead, just cache both folio_size and
folio_shift in extent_buffer.
The two new members (u32 folio_size and u8 folio_shift) are stored
inside the holes of extent_buffer. folio_size is shared with len, which
is reduced to u32. The size of eb does not change.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When creating a snapshot we may do a double free of an anonymous device
in case there's an error committing the transaction. The second free may
result in freeing an anonymous device number that was allocated by some
other subsystem in the kernel or another btrfs filesystem.
The steps that lead to this:
1) At ioctl.c:create_snapshot() we allocate an anonymous device number
and assign it to pending_snapshot->anon_dev;
2) Then we call btrfs_commit_transaction() and end up at
transaction.c:create_pending_snapshot();
3) There we call btrfs_get_new_fs_root() and pass it the anonymous device
number stored in pending_snapshot->anon_dev;
4) btrfs_get_new_fs_root() frees that anonymous device number because
btrfs_lookup_fs_root() returned a root - someone else did a lookup
of the new root already, which could some task doing backref walking;
5) After that some error happens in the transaction commit path, and at
ioctl.c:create_snapshot() we jump to the 'fail' label, and after
that we free again the same anonymous device number, which in the
meanwhile may have been reallocated somewhere else, because
pending_snapshot->anon_dev still has the same value as in step 1.
Recently syzbot ran into this and reported the following trace:
------------[ cut here ]------------
ida_free called for id=51 which is not allocated.
WARNING: CPU: 1 PID: 31038 at lib/idr.c:525 ida_free+0x370/0x420 lib/idr.c:525
Modules linked in:
CPU: 1 PID: 31038 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-00410-gc02197fc9076 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
RIP: 0010:ida_free+0x370/0x420 lib/idr.c:525
Code: 10 42 80 3c 28 (...)
RSP: 0018:ffffc90015a67300 EFLAGS: 00010246
RAX: be5130472f5dd000 RBX: 0000000000000033 RCX: 0000000000040000
RDX: ffffc90009a7a000 RSI: 000000000003ffff RDI: 0000000000040000
RBP: ffffc90015a673f0 R08: ffffffff81577992 R09: 1ffff92002b4cdb4
R10: dffffc0000000000 R11: fffff52002b4cdb5 R12: 0000000000000246
R13: dffffc0000000000 R14: ffffffff8e256b80 R15: 0000000000000246
FS: 00007fca3f4b46c0(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f167a17b978 CR3: 000000001ed26000 CR4: 0000000000350ef0
Call Trace:
<TASK>
btrfs_get_root_ref+0xa48/0xaf0 fs/btrfs/disk-io.c:1346
create_pending_snapshot+0xff2/0x2bc0 fs/btrfs/transaction.c:1837
create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1931
btrfs_commit_transaction+0xf1c/0x3740 fs/btrfs/transaction.c:2404
create_snapshot+0x507/0x880 fs/btrfs/ioctl.c:848
btrfs_mksubvol+0x5d0/0x750 fs/btrfs/ioctl.c:998
btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1044
__btrfs_ioctl_snap_create+0x387/0x4b0 fs/btrfs/ioctl.c:1306
btrfs_ioctl_snap_create_v2+0x1ca/0x400 fs/btrfs/ioctl.c:1393
btrfs_ioctl+0xa74/0xd40
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:871 [inline]
__se_sys_ioctl+0xfe/0x170 fs/ioctl.c:857
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
RIP: 0033:0x7fca3e67dda9
Code: 28 00 00 00 (...)
RSP: 002b:00007fca3f4b40c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fca3e7abf80 RCX: 00007fca3e67dda9
RDX: 00000000200005c0 RSI: 0000000050009417 RDI: 0000000000000003
RBP: 00007fca3e6ca47a R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007fca3e7abf80 R15: 00007fff6bf95658
</TASK>
Where we get an explicit message where we attempt to free an anonymous
device number that is not currently allocated. It happens in a different
code path from the example below, at btrfs_get_root_ref(), so this change
may not fix the case triggered by syzbot.
To fix at least the code path from the example above, change
btrfs_get_root_ref() and its callers to receive a dev_t pointer argument
for the anonymous device number, so that in case it frees the number, it
also resets it to 0, so that up in the call chain we don't attempt to do
the double free.
CC: stable@vger.kernel.org # 5.10+
Link: https://lore.kernel.org/linux-btrfs/000000000000f673a1061202f630@google.com/
Fixes: e03ee2fe87 ("btrfs: do not ASSERT() if the newly created subvolume already got read")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is a syzbot crash, triggered by the ASSERT() during subvolume
creation:
assertion failed: !anon_dev, in fs/btrfs/disk-io.c:1319
------------[ cut here ]------------
kernel BUG at fs/btrfs/disk-io.c:1319!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
RIP: 0010:btrfs_get_root_ref.part.0+0x9aa/0xa60
<TASK>
btrfs_get_new_fs_root+0xd3/0xf0
create_subvol+0xd02/0x1650
btrfs_mksubvol+0xe95/0x12b0
__btrfs_ioctl_snap_create+0x2f9/0x4f0
btrfs_ioctl_snap_create+0x16b/0x200
btrfs_ioctl+0x35f0/0x5cf0
__x64_sys_ioctl+0x19d/0x210
do_syscall_64+0x3f/0xe0
entry_SYSCALL_64_after_hwframe+0x63/0x6b
---[ end trace 0000000000000000 ]---
[CAUSE]
During create_subvol(), after inserting root item for the newly created
subvolume, we would trigger btrfs_get_new_fs_root() to get the
btrfs_root of that subvolume.
The idea here is, we have preallocated an anonymous device number for
the subvolume, thus we can assign it to the new subvolume.
But there is really nothing preventing things like backref walk to read
the new subvolume.
If that happens before we call btrfs_get_new_fs_root(), the subvolume
would be read out, with a new anonymous device number assigned already.
In that case, we would trigger ASSERT(), as we really expect no one to
read out that subvolume (which is not yet accessible from the fs).
But things like backref walk is still possible to trigger the read on
the subvolume.
Thus our assumption on the ASSERT() is not correct in the first place.
[FIX]
Fix it by removing the ASSERT(), and just free the @anon_dev, reset it
to 0, and continue.
If the subvolume tree is read out by something else, it should have
already get a new anon_dev assigned thus we only need to free the
preallocated one.
Reported-by: Chenyuan Yang <chenyuan0y@gmail.com>
Fixes: 2dfb1e43f5 ("btrfs: preallocate anon block device at first phase of snapshot creation")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Test case btrfs/124 failed if larger metadata folio is enabled, the
dying message looks like this:
BTRFS error (device dm-2): bad tree block start, mirror 2 want 31686656 have 0
BTRFS info (device dm-2): read error corrected: ino 0 off 31686656 (dev /dev/mapper/test-scratch2 sector 20928)
BUG: kernel NULL pointer dereference, address: 0000000000000020
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
CPU: 6 PID: 350881 Comm: btrfs Tainted: G OE 6.7.0-rc3-custom+ #128
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 2/2/2022
RIP: 0010:btrfs_read_extent_buffer+0x106/0x180 [btrfs]
PKRU: 55555554
Call Trace:
<TASK>
read_tree_block+0x33/0xb0 [btrfs]
read_block_for_search+0x23e/0x340 [btrfs]
btrfs_search_slot+0x2f9/0xe60 [btrfs]
btrfs_lookup_csum+0x75/0x160 [btrfs]
btrfs_lookup_bio_sums+0x21a/0x560 [btrfs]
btrfs_submit_chunk+0x152/0x680 [btrfs]
btrfs_submit_bio+0x1c/0x50 [btrfs]
submit_one_bio+0x40/0x80 [btrfs]
submit_extent_page+0x158/0x390 [btrfs]
btrfs_do_readpage+0x330/0x740 [btrfs]
extent_readahead+0x38d/0x6c0 [btrfs]
read_pages+0x94/0x2c0
page_cache_ra_unbounded+0x12d/0x190
relocate_file_extent_cluster+0x7c1/0x9d0 [btrfs]
relocate_block_group+0x2d3/0x560 [btrfs]
btrfs_relocate_block_group+0x2c7/0x4b0 [btrfs]
btrfs_relocate_chunk+0x4c/0x1a0 [btrfs]
btrfs_balance+0x925/0x13c0 [btrfs]
btrfs_ioctl+0x19f1/0x25d0 [btrfs]
__x64_sys_ioctl+0x90/0xd0
do_syscall_64+0x3f/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
[CAUSE]
The dying line is at btrfs_repair_io_failure() call inside
btrfs_repair_eb_io_failure().
The function is still relying on the extent buffer using page sized
folios.
When the extent buffer is using larger folio, we go into the 2nd slot of
folios[], and triggered the NULL pointer dereference.
[FIX]
Migrate btrfs_repair_io_failure() to folio interfaces.
So that when we hit a larger folio, we just submit the whole folio in
one go.
This also affects data repair path through btrfs_end_repair_bio(),
thankfully data is still fully page based, we can just add an
ASSERT(), and use page_folio() to convert the page to folio.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Although subpage itself is conflicting with higher folio, since subpage
(sectorsize < PAGE_SIZE and nodesize < PAGE_SIZE) means we will never
need higher order folio, there is a hidden pitfall:
- btrfs_page_*() helpers
Those helpers are an abstraction to handle both subpage and non-subpage
cases, which means we're going to pass pages pointers to those helpers.
And since those helpers are shared between data and metadata paths, it's
unavoidable to let them to handle folios, including higher order
folios).
Meanwhile for true subpage case, we should only have a single page
backed folios anyway, thus add a new ASSERT() for btrfs_subpage_assert()
to ensure that.
Also since those helpers are shared between both data and metadata, add
some extra ASSERT()s for data path to make sure we only get single page
backed folio for now.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These two functions are still using the old page based code, which is
not going to handle larger folios at all.
The migration itself is going to involve the following changes:
- PAGE_SIZE -> folio_size()
- PAGE_SHIFT -> folio_shift()
- get_eb_page_index() -> get_eb_folio_index()
- get_eb_offset_in_page() -> get_eb_offset_in_folio()
And since we're going to support larger folios, although above straight
conversion is good enough, this patch would add extra comments in the
involved functions to explain why the same single line code can now
cover 3 cases:
- folio_size == PAGE_SIZE, sectorsize == PAGE_SIZE, nodesize >= PAGE_SIZE
The common, non-subpage case with per-page folio.
- folio_size > PAGE_SIZE, sectorsize == PAGE_SIZE, nodesize >= PAGE_SIZE
The incoming larger folio, non-subpage case.
- folio_size == PAGE_SIZE, sectorsize < PAGE_SIZE, nodesize < PAGE_SIZE
The existing subpage case, we won't larger folio anyway.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Although we have migrated extent_buffer::pages[] to folios[], we're
still mostly using the folio_page() help to grab the page.
This patch would do the following cleanups for metadata:
- Introduce num_extent_folios() helper
This is to replace most num_extent_pages() callers.
- Use num_extent_folios() to iterate future large folios
This allows us to use things like
bio_add_folio()/bio_add_folio_nofail(), and only set the needed flags
for the folio (aka the leading/tailing page), which reduces the loop
iteration to 1 for large folios.
- Change metadata related functions to use folio pointers
Including their function name, involving:
* attach_extent_buffer_page()
* detach_extent_buffer_page()
* page_range_has_eb()
* btrfs_release_extent_buffer_pages()
* btree_clear_page_dirty()
* btrfs_page_inc_eb_refs()
* btrfs_page_dec_eb_refs()
- Change btrfs_is_subpage() to accept an address_space pointer
This is to allow both page->mapping and folio->mapping to be utilized.
As data is still using the old per-page code, and may keep so for a
while.
- Special corner case place holder for future order mismatches between
extent buffer and inode filemap
For now it's just a block of comments and a dead ASSERT(), no real
handling yet.
The subpage code would still go page, just because subpage and large
folio are conflicting conditions, thus we don't need to bother subpage
with higher order folios at all. Just folio_page(folio, 0) would be
enough.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor styling tweaks ]
Signed-off-by: David Sterba <dsterba@suse.com>
For now extent_buffer::pages[] are still only accepting single page
pointer, thus we can migrate to folios pretty easily.
As for single page, page and folio are 1:1 mapped, including their page
flags.
This patch would just do the conversion from struct page to struct
folio, providing the first step to higher order folio in the future.
This conversion is pretty simple:
- extent_buffer::pages[] -> extent_buffer::folios[]
- page_address(eb->pages[i]) -> folio_address(eb->pages[i])
- eb->pages[i] -> folio_page(eb->folios[i], 0)
There would be more specific cleanups preparing for the incoming higher
order folio support.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The radix-tree has been superseded by the xarray
(https://lwn.net/Articles/745073), this patch converts the
btrfs_root::delayed_nodes, the APIs are used in a simple way.
First idea is to do xa_insert() but this would require GFP_ATOMIC
allocation which we want to avoid if possible. The preload mechanism of
radix-tree can be emulated within the xarray API.
- xa_reserve() with GFP_NOFS outside of the lock, the reserved entry
is inserted atomically at most once
- xa_store() under a lock, in case something races in we can detect that
and xa_load() returns a valid pointer
All uses of xa_load() must check for a valid pointer in case they manage
to get between the xa_reserve() and xa_store(), this is handled in
btrfs_get_delayed_node().
Otherwise the functionality is equivalent, xarray implements the
radix-tree and there should be no performance difference.
The patch continues the efforts started in 253bf57555 ("btrfs: turn
delayed_nodes_tree into an XArray") and fixes the problems with locking
and GFP flags 088aea3b97 ("Revert "btrfs: turn delayed_nodes_tree
into an XArray"").
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're currently setting this when we try to load the roots and we see
that usebackuproot is set. Instead set this at mount option parsing
time.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's no reason this has to happen in open_ctree, and in fact in the
old mount API we had to call this from remount. Move this to super.c,
unexport it, and call it from both mount and reconfigure.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We add these mount options based on the fs_devices settings, which can
be set once we've opened the fs_devices. Move these into their own
helper and call it from get_tree_super.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have all of the parts in place to use the new mount API,
switch our fs_type to use the new callbacks.
There are a few things that have to be done at the same time because of
the order of operations changes that come along with the new mount API.
These must be done in the same patch otherwise things will go wrong.
1. Export and use btrfs_check_options in open_ctree(). This is because
the options are done ahead of time, and we need to check them once we
have the feature flags loaded.
2. Update the free space cache settings. Since we're coming in with the
options already set we need to make sure we don't undo what the user
has asked for.
3. Set our sb_flags at init_fs_context time, the fs_context stuff is
trying to manage the sb_flagss itself, so move that into
init_fs_context and out of the fill super part.
Additionally I've marked the unused functions with __maybe_unused and
will remove them in a future patch.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With the old mount API we'd pre-populate the mount options with the
space cache settings of the file system, and then the user toggled them
on or off with the mount options. When we switch to the new mount API
the mount options will be set before we get into opening the file
system, so we need a flag to indicate that the user explicitly asked for
-o nospace_cache so we can make the appropriate changes after the fact.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We currently don't allow these options to be set if we're extent tree v2
via the mount option parsing. However when we switch to the new mount
API we'll no longer have the super block loaded, so won't be able to
make this distinction at mount option parsing time. Address this by
checking for extent tree v2 at the point where we make the decision to
rebuild the free space tree.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we pre-load the space cache settings in btrfs_parse_options,
however when we switch to the new mount API the mount option parsing
will happen before we have the super block loaded. Add a helper to set
the appropriate options based on the fs settings, this will allow us to
have consistent free space cache settings.
This also folds in the space cache related decisions we make for subpage
sectorsize support, so all of this is done in one place.
Since this was being called by parse options it looks like we're
changing the behavior of remount, but in fact we aren't. The
pre-loading of the free space cache settings is done because we want to
handle the case of users not using any space_cache options, we'll derive
the appropriate mount option based on the on disk state. On remount
this wouldn't reset anything as we'll have cleared the v1 cache
generation if we mounted -o nospace_cache. Similarly it's impossible to
turn off the free space tree without specifically saying -o
nospace_cache,clear_cache, which will delete the free space tree and
clear the compat_ro option. Again in this case calling this code in
remount wouldn't result in any change.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With the new mount API we'll be setting our compression well before we
call open_ctree. We don't want to overwrite our settings, so set the
default in btrfs_init_fs_info instead of open_ctree.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs extent buffer helpers are doing all the cross-page
handling, as there is no guarantee that all those eb pages are
contiguous.
However on systems with enough memory, there is a very high chance the
page cache for btree_inode are allocated with physically contiguous
pages.
In that case, we can skip all the complex cross-page handling, thus
speeding up the code.
This patch adds a new member, extent_buffer::addr, which is only set to
non-NULL if all the extent buffer pages are physically contiguous.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
One a zoned filesystem, never clear the dirty flag of an extent buffer,
but instead mark it as zeroout.
On writeout, when encountering a marked extent_buffer, zero it out.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
EXTENT_BUFFER_ZONED_ZEROOUT better describes the state of the extent buffer,
namely it is written as all zeros. This is needed in zoned mode, to
preserve I/O ordering.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we abuse the extent_map structure for two purposes:
1) To actually represent extents for inodes;
2) To represent chunk mappings.
This is odd and has several disadvantages:
1) To create a chunk map, we need to do two memory allocations: one for
an extent_map structure and another one for a map_lookup structure, so
more potential for an allocation failure and more complicated code to
manage and link two structures;
2) For a chunk map we actually only use 3 fields (24 bytes) of the
respective extent map structure: the 'start' field to have the logical
start address of the chunk, the 'len' field to have the chunk's size,
and the 'orig_block_len' field to contain the chunk's stripe size.
Besides wasting a memory, it's also odd and not intuitive at all to
have the stripe size in a field named 'orig_block_len'.
We are also using 'block_len' of the extent_map structure to contain
the chunk size, so we have 2 fields for the same value, 'len' and
'block_len', which is pointless;
3) When an extent map is associated to a chunk mapping, we set the bit
EXTENT_FLAG_FS_MAPPING on its flags and then make its member named
'map_lookup' point to the associated map_lookup structure. This means
that for an extent map associated to an inode extent, we are not using
this 'map_lookup' pointer, so wasting 8 bytes (on a 64 bits platform);
4) Extent maps associated to a chunk mapping are never merged or split so
it's pointless to use the existing extent map infrastructure.
So add a dedicated data structure named 'btrfs_chunk_map' to represent
chunk mappings, this is basically the existing map_lookup structure with
some extra fields:
1) 'start' to contain the chunk logical address;
2) 'chunk_len' to contain the chunk's length;
3) 'stripe_size' for the stripe size;
4) 'rb_node' for insertion into a rb tree;
5) 'refs' for reference counting.
This way we do a single memory allocation for chunk mappings and we don't
waste memory for them with unused/unnecessary fields from an extent_map.
We also save 8 bytes from the extent_map structure by removing the
'map_lookup' pointer, so the size of struct extent_map is reduced from
144 bytes down to 136 bytes, and we can now have 30 extents map per 4K
page instead of 28.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>