fune/js/src/vm/JSObject.cpp
2020-08-02 15:29:15 +00:00

4170 lines
125 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* JS object implementation.
*/
#include "vm/JSObject-inl.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/Maybe.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/TemplateLib.h"
#include <algorithm>
#include <string.h>
#include "jsapi.h"
#include "jsexn.h"
#include "jsfriendapi.h"
#include "jsnum.h"
#include "jstypes.h"
#include "builtin/Array.h"
#include "builtin/BigInt.h"
#include "builtin/Eval.h"
#include "builtin/Object.h"
#include "builtin/String.h"
#include "builtin/Symbol.h"
#include "builtin/WeakSetObject.h"
#include "frontend/BytecodeCompiler.h"
#include "gc/Policy.h"
#include "jit/BaselineJIT.h"
#include "js/CharacterEncoding.h"
#include "js/friend/DumpFunctions.h" // js::DumpObject
#include "js/friend/WindowProxy.h" // js::IsWindow, js::ToWindowProxyIfWindow
#include "js/MemoryMetrics.h"
#include "js/PropertyDescriptor.h" // JS::FromPropertyDescriptor
#include "js/PropertySpec.h" // JSPropertySpec
#include "js/Proxy.h"
#include "js/Result.h"
#include "js/UbiNode.h"
#include "js/UniquePtr.h"
#include "js/Wrapper.h"
#include "util/Memory.h"
#include "util/Text.h"
#include "util/Windows.h"
#include "vm/ArgumentsObject.h"
#include "vm/BytecodeUtil.h"
#include "vm/DateObject.h"
#include "vm/Interpreter.h"
#include "vm/Iteration.h"
#include "vm/JSAtom.h"
#include "vm/JSContext.h"
#include "vm/JSFunction.h"
#include "vm/JSScript.h"
#include "vm/ProxyObject.h"
#include "vm/RegExpStaticsObject.h"
#include "vm/Shape.h"
#include "vm/TypedArrayObject.h"
#include "builtin/Boolean-inl.h"
#include "builtin/TypedObject-inl.h"
#include "gc/Marking-inl.h"
#include "vm/ArrayObject-inl.h"
#include "vm/BooleanObject-inl.h"
#include "vm/Caches-inl.h"
#include "vm/Compartment-inl.h"
#include "vm/Interpreter-inl.h"
#include "vm/JSAtom-inl.h"
#include "vm/JSContext-inl.h"
#include "vm/JSFunction-inl.h"
#include "vm/NativeObject-inl.h"
#include "vm/NumberObject-inl.h"
#include "vm/ObjectGroup-inl.h"
#include "vm/PlainObject-inl.h" // js::CopyInitializerObject
#include "vm/Realm-inl.h"
#include "vm/Shape-inl.h"
#include "vm/StringObject-inl.h"
#include "vm/TypedArrayObject-inl.h"
#include "vm/TypeInference-inl.h"
using namespace js;
void js::ReportNotObject(JSContext* cx, JSErrNum err, int spindex,
HandleValue v) {
MOZ_ASSERT(!v.isObject());
ReportValueError(cx, err, spindex, v, nullptr);
}
void js::ReportNotObject(JSContext* cx, JSErrNum err, HandleValue v) {
ReportNotObject(cx, err, JSDVG_SEARCH_STACK, v);
}
void js::ReportNotObject(JSContext* cx, const Value& v) {
RootedValue value(cx, v);
ReportNotObject(cx, JSMSG_OBJECT_REQUIRED, value);
}
void js::ReportNotObjectArg(JSContext* cx, const char* nth, const char* fun,
HandleValue v) {
MOZ_ASSERT(!v.isObject());
UniqueChars bytes;
if (const char* chars = ValueToSourceForError(cx, v, bytes)) {
JS_ReportErrorNumberLatin1(cx, GetErrorMessage, nullptr,
JSMSG_OBJECT_REQUIRED_ARG, nth, fun, chars);
}
}
JS_PUBLIC_API const char* JS::InformalValueTypeName(const Value& v) {
switch (v.type()) {
case ValueType::Double:
case ValueType::Int32:
return "number";
case ValueType::Boolean:
return "boolean";
case ValueType::Undefined:
return "undefined";
case ValueType::Null:
return "null";
case ValueType::String:
return "string";
case ValueType::Symbol:
return "symbol";
case ValueType::BigInt:
return "bigint";
case ValueType::Object:
return v.toObject().getClass()->name;
case ValueType::Magic:
return "magic";
case ValueType::PrivateGCThing:
break;
}
MOZ_CRASH("unexpected type");
}
// ES6 draft rev37 6.2.4.4 FromPropertyDescriptor
JS_PUBLIC_API bool JS::FromPropertyDescriptor(JSContext* cx,
Handle<PropertyDescriptor> desc,
MutableHandleValue vp) {
AssertHeapIsIdle();
CHECK_THREAD(cx);
cx->check(desc);
// Step 1.
if (!desc.object()) {
vp.setUndefined();
return true;
}
return FromPropertyDescriptorToObject(cx, desc, vp);
}
bool js::FromPropertyDescriptorToObject(JSContext* cx,
Handle<PropertyDescriptor> desc,
MutableHandleValue vp) {
// Step 2-3.
RootedObject obj(cx, NewBuiltinClassInstance<PlainObject>(cx));
if (!obj) {
return false;
}
const JSAtomState& names = cx->names();
// Step 4.
if (desc.hasValue()) {
if (!DefineDataProperty(cx, obj, names.value, desc.value())) {
return false;
}
}
// Step 5.
RootedValue v(cx);
if (desc.hasWritable()) {
v.setBoolean(desc.writable());
if (!DefineDataProperty(cx, obj, names.writable, v)) {
return false;
}
}
// Step 6.
if (desc.hasGetterObject()) {
if (JSObject* get = desc.getterObject()) {
v.setObject(*get);
} else {
v.setUndefined();
}
if (!DefineDataProperty(cx, obj, names.get, v)) {
return false;
}
}
// Step 7.
if (desc.hasSetterObject()) {
if (JSObject* set = desc.setterObject()) {
v.setObject(*set);
} else {
v.setUndefined();
}
if (!DefineDataProperty(cx, obj, names.set, v)) {
return false;
}
}
// Step 8.
if (desc.hasEnumerable()) {
v.setBoolean(desc.enumerable());
if (!DefineDataProperty(cx, obj, names.enumerable, v)) {
return false;
}
}
// Step 9.
if (desc.hasConfigurable()) {
v.setBoolean(desc.configurable());
if (!DefineDataProperty(cx, obj, names.configurable, v)) {
return false;
}
}
vp.setObject(*obj);
return true;
}
bool js::GetFirstArgumentAsObject(JSContext* cx, const CallArgs& args,
const char* method,
MutableHandleObject objp) {
if (!args.requireAtLeast(cx, method, 1)) {
return false;
}
HandleValue v = args[0];
if (!v.isObject()) {
UniqueChars bytes =
DecompileValueGenerator(cx, JSDVG_SEARCH_STACK, v, nullptr);
if (!bytes) {
return false;
}
JS_ReportErrorNumberUTF8(cx, GetErrorMessage, nullptr,
JSMSG_UNEXPECTED_TYPE, bytes.get(),
"not an object");
return false;
}
objp.set(&v.toObject());
return true;
}
static bool GetPropertyIfPresent(JSContext* cx, HandleObject obj, HandleId id,
MutableHandleValue vp, bool* foundp) {
if (!HasProperty(cx, obj, id, foundp)) {
return false;
}
if (!*foundp) {
vp.setUndefined();
return true;
}
return GetProperty(cx, obj, obj, id, vp);
}
bool js::Throw(JSContext* cx, HandleId id, unsigned errorNumber,
const char* details) {
MOZ_ASSERT(js_ErrorFormatString[errorNumber].argCount == (details ? 2 : 1));
MOZ_ASSERT_IF(details, JS::StringIsASCII(details));
UniqueChars bytes =
IdToPrintableUTF8(cx, id, IdToPrintableBehavior::IdIsPropertyKey);
if (!bytes) {
return false;
}
if (details) {
JS_ReportErrorNumberUTF8(cx, GetErrorMessage, nullptr, errorNumber,
bytes.get(), details);
} else {
JS_ReportErrorNumberUTF8(cx, GetErrorMessage, nullptr, errorNumber,
bytes.get());
}
return false;
}
/*** PropertyDescriptor operations and DefineProperties *********************/
static const char js_getter_str[] = "getter";
static const char js_setter_str[] = "setter";
static Result<> CheckCallable(JSContext* cx, JSObject* obj,
const char* fieldName) {
if (obj && !obj->isCallable()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_BAD_GET_SET_FIELD, fieldName);
return cx->alreadyReportedError();
}
return Ok();
}
bool js::ToPropertyDescriptor(JSContext* cx, HandleValue descval,
bool checkAccessors,
MutableHandle<PropertyDescriptor> desc) {
// step 2
RootedObject obj(cx,
RequireObject(cx, JSMSG_OBJECT_REQUIRED_PROP_DESC, descval));
if (!obj) {
return false;
}
// step 3
desc.clear();
bool found = false;
RootedId id(cx);
RootedValue v(cx);
unsigned attrs = 0;
// step 4
id = NameToId(cx->names().enumerable);
if (!GetPropertyIfPresent(cx, obj, id, &v, &found)) {
return false;
}
if (found) {
if (ToBoolean(v)) {
attrs |= JSPROP_ENUMERATE;
}
} else {
attrs |= JSPROP_IGNORE_ENUMERATE;
}
// step 5
id = NameToId(cx->names().configurable);
if (!GetPropertyIfPresent(cx, obj, id, &v, &found)) {
return false;
}
if (found) {
if (!ToBoolean(v)) {
attrs |= JSPROP_PERMANENT;
}
} else {
attrs |= JSPROP_IGNORE_PERMANENT;
}
// step 6
id = NameToId(cx->names().value);
if (!GetPropertyIfPresent(cx, obj, id, &v, &found)) {
return false;
}
if (found) {
desc.value().set(v);
} else {
attrs |= JSPROP_IGNORE_VALUE;
}
// step 7
id = NameToId(cx->names().writable);
if (!GetPropertyIfPresent(cx, obj, id, &v, &found)) {
return false;
}
if (found) {
if (!ToBoolean(v)) {
attrs |= JSPROP_READONLY;
}
} else {
attrs |= JSPROP_IGNORE_READONLY;
}
// step 8
bool hasGetOrSet;
id = NameToId(cx->names().get);
if (!GetPropertyIfPresent(cx, obj, id, &v, &found)) {
return false;
}
hasGetOrSet = found;
if (found) {
if (v.isObject()) {
if (checkAccessors) {
JS_TRY_OR_RETURN_FALSE(cx,
CheckCallable(cx, &v.toObject(), js_getter_str));
}
desc.setGetterObject(&v.toObject());
} else if (!v.isUndefined()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_BAD_GET_SET_FIELD, js_getter_str);
return false;
}
attrs |= JSPROP_GETTER;
}
// step 9
id = NameToId(cx->names().set);
if (!GetPropertyIfPresent(cx, obj, id, &v, &found)) {
return false;
}
hasGetOrSet |= found;
if (found) {
if (v.isObject()) {
if (checkAccessors) {
JS_TRY_OR_RETURN_FALSE(cx,
CheckCallable(cx, &v.toObject(), js_setter_str));
}
desc.setSetterObject(&v.toObject());
} else if (!v.isUndefined()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_BAD_GET_SET_FIELD, js_setter_str);
return false;
}
attrs |= JSPROP_SETTER;
}
// step 10
if (hasGetOrSet) {
if (!(attrs & JSPROP_IGNORE_READONLY) || !(attrs & JSPROP_IGNORE_VALUE)) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_INVALID_DESCRIPTOR);
return false;
}
// By convention, these bits are not used on accessor descriptors.
attrs &= ~(JSPROP_IGNORE_READONLY | JSPROP_IGNORE_VALUE);
}
desc.setAttributes(attrs);
MOZ_ASSERT_IF(attrs & JSPROP_READONLY,
!(attrs & (JSPROP_GETTER | JSPROP_SETTER)));
return true;
}
Result<> js::CheckPropertyDescriptorAccessors(JSContext* cx,
Handle<PropertyDescriptor> desc) {
if (desc.hasGetterObject()) {
MOZ_TRY(CheckCallable(cx, desc.getterObject(), js_getter_str));
}
if (desc.hasSetterObject()) {
MOZ_TRY(CheckCallable(cx, desc.setterObject(), js_setter_str));
}
return Ok();
}
void js::CompletePropertyDescriptor(MutableHandle<PropertyDescriptor> desc) {
desc.assertValid();
if (desc.isGenericDescriptor() || desc.isDataDescriptor()) {
if (!desc.hasWritable()) {
desc.attributesRef() |= JSPROP_READONLY;
}
desc.attributesRef() &= ~(JSPROP_IGNORE_READONLY | JSPROP_IGNORE_VALUE);
} else {
if (!desc.hasGetterObject()) {
desc.setGetterObject(nullptr);
}
if (!desc.hasSetterObject()) {
desc.setSetterObject(nullptr);
}
desc.attributesRef() |= JSPROP_GETTER | JSPROP_SETTER;
}
if (!desc.hasConfigurable()) {
desc.attributesRef() |= JSPROP_PERMANENT;
}
desc.attributesRef() &= ~(JSPROP_IGNORE_PERMANENT | JSPROP_IGNORE_ENUMERATE);
desc.assertComplete();
}
bool js::ReadPropertyDescriptors(
JSContext* cx, HandleObject props, bool checkAccessors,
MutableHandleIdVector ids, MutableHandle<PropertyDescriptorVector> descs) {
if (!GetPropertyKeys(cx, props, JSITER_OWNONLY | JSITER_SYMBOLS, ids)) {
return false;
}
RootedId id(cx);
for (size_t i = 0, len = ids.length(); i < len; i++) {
id = ids[i];
Rooted<PropertyDescriptor> desc(cx);
RootedValue v(cx);
if (!GetProperty(cx, props, props, id, &v) ||
!ToPropertyDescriptor(cx, v, checkAccessors, &desc) ||
!descs.append(desc)) {
return false;
}
}
return true;
}
/*** Seal and freeze ********************************************************/
static unsigned GetSealedOrFrozenAttributes(unsigned attrs,
IntegrityLevel level) {
// Make all attributes permanent; if freezing, make data attributes
// read-only.
if (level == IntegrityLevel::Frozen &&
!(attrs & (JSPROP_GETTER | JSPROP_SETTER))) {
return JSPROP_PERMANENT | JSPROP_READONLY;
}
return JSPROP_PERMANENT;
}
/* ES6 draft rev 29 (6 Dec 2014) 7.3.13. */
bool js::SetIntegrityLevel(JSContext* cx, HandleObject obj,
IntegrityLevel level) {
cx->check(obj);
// Steps 3-5. (Steps 1-2 are redundant assertions.)
if (!PreventExtensions(cx, obj)) {
return false;
}
// Steps 6-9, loosely interpreted.
if (obj->isNative() && !obj->as<NativeObject>().inDictionaryMode() &&
!obj->is<TypedArrayObject>() && !obj->is<MappedArgumentsObject>()) {
HandleNativeObject nobj = obj.as<NativeObject>();
// Seal/freeze non-dictionary objects by constructing a new shape
// hierarchy mirroring the original one, which can be shared if many
// objects with the same structure are sealed/frozen. If we use the
// generic path below then any non-empty object will be converted to
// dictionary mode.
RootedShape last(
cx, EmptyShape::getInitialShape(
cx, nobj->getClass(), nobj->taggedProto(),
nobj->numFixedSlots(), nobj->lastProperty()->getObjectFlags()));
if (!last) {
return false;
}
// Get an in-order list of the shapes in this object.
using ShapeVec = GCVector<Shape*, 8>;
Rooted<ShapeVec> shapes(cx, ShapeVec(cx));
for (Shape::Range<NoGC> r(nobj->lastProperty()); !r.empty(); r.popFront()) {
if (!shapes.append(&r.front())) {
return false;
}
}
std::reverse(shapes.begin(), shapes.end());
for (Shape* shape : shapes) {
Rooted<StackShape> child(cx, StackShape(shape));
bool isPrivate = JSID_IS_SYMBOL(child.get().propid) &&
JSID_TO_SYMBOL(child.get().propid)->isPrivateName();
// Private fields are not visible to SetIntegrity.
if (!isPrivate) {
child.setAttrs(child.attrs() |
GetSealedOrFrozenAttributes(child.attrs(), level));
if (!JSID_IS_EMPTY(child.get().propid) &&
level == IntegrityLevel::Frozen) {
MarkTypePropertyNonWritable(cx, nobj, child.get().propid);
}
}
last = cx->zone()->propertyTree().getChild(cx, last, child);
if (!last) {
return false;
}
}
MOZ_ASSERT(nobj->lastProperty()->slotSpan() == last->slotSpan());
MOZ_ALWAYS_TRUE(nobj->setLastProperty(cx, last));
// Ordinarily ArraySetLength handles this, but we're going behind its back
// right now, so we must do this manually.
if (level == IntegrityLevel::Frozen && obj->is<ArrayObject>()) {
MOZ_ASSERT(!nobj->denseElementsAreCopyOnWrite());
obj->as<ArrayObject>().setNonWritableLength(cx);
}
} else {
// Steps 6-7.
RootedIdVector keys(cx);
if (!GetPropertyKeys(
cx, obj, JSITER_HIDDEN | JSITER_OWNONLY | JSITER_SYMBOLS, &keys)) {
return false;
}
RootedId id(cx);
Rooted<PropertyDescriptor> desc(cx);
const unsigned AllowConfigure =
JSPROP_IGNORE_ENUMERATE | JSPROP_IGNORE_READONLY | JSPROP_IGNORE_VALUE;
const unsigned AllowConfigureAndWritable =
AllowConfigure & ~JSPROP_IGNORE_READONLY;
// 8.a/9.a. The two different loops are merged here.
for (size_t i = 0; i < keys.length(); i++) {
id = keys[i];
if (level == IntegrityLevel::Sealed) {
// 8.a.i.
desc.setAttributes(AllowConfigure | JSPROP_PERMANENT);
} else {
// 9.a.i-ii.
Rooted<PropertyDescriptor> currentDesc(cx);
if (!GetOwnPropertyDescriptor(cx, obj, id, &currentDesc)) {
return false;
}
// 9.a.iii.
if (!currentDesc.object()) {
continue;
}
// 9.a.iii.1-2
if (currentDesc.isAccessorDescriptor()) {
desc.setAttributes(AllowConfigure | JSPROP_PERMANENT);
} else {
desc.setAttributes(AllowConfigureAndWritable | JSPROP_PERMANENT |
JSPROP_READONLY);
}
}
// 8.a.i-ii. / 9.a.iii.3-4
if (!DefineProperty(cx, obj, id, desc)) {
return false;
}
}
}
// Finally, freeze or seal the dense elements.
if (obj->isNative()) {
if (!ObjectElements::FreezeOrSeal(cx, obj.as<NativeObject>(), level)) {
return false;
}
}
return true;
}
static bool ResolveLazyProperties(JSContext* cx, HandleNativeObject obj) {
const JSClass* clasp = obj->getClass();
if (JSEnumerateOp enumerate = clasp->getEnumerate()) {
if (!enumerate(cx, obj)) {
return false;
}
}
if (clasp->getNewEnumerate() && clasp->getResolve()) {
RootedIdVector properties(cx);
if (!clasp->getNewEnumerate()(cx, obj, &properties,
/* enumerableOnly = */ false)) {
return false;
}
RootedId id(cx);
for (size_t i = 0; i < properties.length(); i++) {
id = properties[i];
bool found;
if (!HasOwnProperty(cx, obj, id, &found)) {
return false;
}
}
}
return true;
}
// ES6 draft rev33 (12 Feb 2015) 7.3.15
bool js::TestIntegrityLevel(JSContext* cx, HandleObject obj,
IntegrityLevel level, bool* result) {
// Steps 3-6. (Steps 1-2 are redundant assertions.)
bool status;
if (!IsExtensible(cx, obj, &status)) {
return false;
}
if (status) {
*result = false;
return true;
}
// Fast path for native objects.
if (obj->isNative()) {
HandleNativeObject nobj = obj.as<NativeObject>();
// Force lazy properties to be resolved.
if (!ResolveLazyProperties(cx, nobj)) {
return false;
}
// Typed array elements are non-configurable, writable properties, so
// if any elements are present, the typed array cannot be frozen.
if (nobj->is<TypedArrayObject>() &&
nobj->as<TypedArrayObject>().length() > 0 &&
level == IntegrityLevel::Frozen) {
*result = false;
return true;
}
bool hasDenseElements = false;
for (size_t i = 0; i < nobj->getDenseInitializedLength(); i++) {
if (nobj->containsDenseElement(i)) {
hasDenseElements = true;
break;
}
}
if (hasDenseElements) {
// Unless the sealed flag is set, dense elements are configurable.
if (!nobj->denseElementsAreSealed()) {
*result = false;
return true;
}
// Unless the frozen flag is set, dense elements are writable.
if (level == IntegrityLevel::Frozen && !nobj->denseElementsAreFrozen()) {
*result = false;
return true;
}
}
// Steps 7-9.
for (Shape::Range<NoGC> r(nobj->lastProperty()); !r.empty(); r.popFront()) {
Shape* shape = &r.front();
// Steps 9.c.i-ii.
if (shape->configurable() ||
(level == IntegrityLevel::Frozen && shape->isDataDescriptor() &&
shape->writable())) {
*result = false;
return true;
}
}
} else {
// Steps 7-8.
RootedIdVector props(cx);
if (!GetPropertyKeys(
cx, obj, JSITER_HIDDEN | JSITER_OWNONLY | JSITER_SYMBOLS, &props)) {
return false;
}
// Step 9.
RootedId id(cx);
Rooted<PropertyDescriptor> desc(cx);
for (size_t i = 0, len = props.length(); i < len; i++) {
id = props[i];
// Steps 9.a-b.
if (!GetOwnPropertyDescriptor(cx, obj, id, &desc)) {
return false;
}
// Step 9.c.
if (!desc.object()) {
continue;
}
// Steps 9.c.i-ii.
if (desc.configurable() || (level == IntegrityLevel::Frozen &&
desc.isDataDescriptor() && desc.writable())) {
*result = false;
return true;
}
}
}
// Step 10.
*result = true;
return true;
}
/* * */
static inline JSObject* NewObject(JSContext* cx, HandleObjectGroup group,
gc::AllocKind kind, NewObjectKind newKind,
uint32_t initialShapeFlags = 0) {
const JSClass* clasp = group->clasp();
MOZ_ASSERT(clasp != &ArrayObject::class_);
MOZ_ASSERT_IF(clasp == &JSFunction::class_,
kind == gc::AllocKind::FUNCTION ||
kind == gc::AllocKind::FUNCTION_EXTENDED);
// For objects which can have fixed data following the object, only use
// enough fixed slots to cover the number of reserved slots in the object,
// regardless of the allocation kind specified.
size_t nfixed = ClassCanHaveFixedData(clasp)
? GetGCKindSlots(gc::GetGCObjectKind(clasp), clasp)
: GetGCKindSlots(kind, clasp);
RootedShape shape(cx, EmptyShape::getInitialShape(cx, clasp, group->proto(),
nfixed, initialShapeFlags));
if (!shape) {
return nullptr;
}
gc::InitialHeap heap = GetInitialHeap(newKind, group);
JSObject* obj;
if (clasp->isJSFunction()) {
JS_TRY_VAR_OR_RETURN_NULL(cx, obj,
JSFunction::create(cx, kind, heap, shape, group));
} else if (MOZ_LIKELY(clasp->isNative())) {
JS_TRY_VAR_OR_RETURN_NULL(
cx, obj, NativeObject::create(cx, kind, heap, shape, group));
} else {
MOZ_ASSERT(IsTypedObjectClass(clasp));
JS_TRY_VAR_OR_RETURN_NULL(
cx, obj, TypedObject::create(cx, kind, heap, shape, group));
}
if (newKind == SingletonObject) {
RootedObject nobj(cx, obj);
if (!JSObject::setSingleton(cx, nobj)) {
return nullptr;
}
obj = nobj;
}
probes::CreateObject(cx, obj);
return obj;
}
void NewObjectCache::fillProto(EntryIndex entry, const JSClass* clasp,
js::TaggedProto proto, gc::AllocKind kind,
NativeObject* obj) {
MOZ_ASSERT_IF(proto.isObject(), !proto.toObject()->is<GlobalObject>());
MOZ_ASSERT(obj->taggedProto() == proto);
return fill(entry, clasp, proto.raw(), kind, obj);
}
bool js::NewObjectWithTaggedProtoIsCachable(JSContext* cx,
Handle<TaggedProto> proto,
NewObjectKind newKind,
const JSClass* clasp) {
return !cx->isHelperThreadContext() && proto.isObject() &&
newKind == GenericObject && clasp->isNative() &&
!proto.toObject()->is<GlobalObject>();
}
JSObject* js::NewObjectWithGivenTaggedProto(JSContext* cx, const JSClass* clasp,
Handle<TaggedProto> proto,
gc::AllocKind allocKind,
NewObjectKind newKind,
uint32_t initialShapeFlags) {
if (CanChangeToBackgroundAllocKind(allocKind, clasp)) {
allocKind = ForegroundToBackgroundAllocKind(allocKind);
}
bool isCachable =
NewObjectWithTaggedProtoIsCachable(cx, proto, newKind, clasp);
if (isCachable) {
NewObjectCache& cache = cx->caches().newObjectCache;
NewObjectCache::EntryIndex entry = -1;
if (cache.lookupProto(clasp, proto.toObject(), allocKind, &entry)) {
JSObject* obj =
cache.newObjectFromHit(cx, entry, GetInitialHeap(newKind, clasp));
if (obj) {
return obj;
}
}
}
RootedObjectGroup group(
cx, ObjectGroup::defaultNewGroup(cx, clasp, proto, nullptr));
if (!group) {
return nullptr;
}
RootedObject obj(cx,
NewObject(cx, group, allocKind, newKind, initialShapeFlags));
if (!obj) {
return nullptr;
}
if (isCachable && !obj->as<NativeObject>().hasDynamicSlots()) {
NewObjectCache& cache = cx->caches().newObjectCache;
NewObjectCache::EntryIndex entry = -1;
cache.lookupProto(clasp, proto.toObject(), allocKind, &entry);
cache.fillProto(entry, clasp, proto, allocKind, &obj->as<NativeObject>());
}
return obj;
}
static bool NewObjectIsCachable(JSContext* cx, NewObjectKind newKind,
const JSClass* clasp) {
return !cx->isHelperThreadContext() && newKind == GenericObject &&
clasp->isNative();
}
JSObject* js::NewObjectWithClassProto(JSContext* cx, const JSClass* clasp,
HandleObject protoArg,
gc::AllocKind allocKind,
NewObjectKind newKind) {
if (protoArg) {
return NewObjectWithGivenTaggedProto(cx, clasp, AsTaggedProto(protoArg),
allocKind, newKind);
}
if (CanChangeToBackgroundAllocKind(allocKind, clasp)) {
allocKind = ForegroundToBackgroundAllocKind(allocKind);
}
Handle<GlobalObject*> global = cx->global();
bool isCachable = NewObjectIsCachable(cx, newKind, clasp);
if (isCachable) {
NewObjectCache& cache = cx->caches().newObjectCache;
NewObjectCache::EntryIndex entry = -1;
if (cache.lookupGlobal(clasp, global, allocKind, &entry)) {
gc::InitialHeap heap = GetInitialHeap(newKind, clasp);
JSObject* obj = cache.newObjectFromHit(cx, entry, heap);
if (obj) {
return obj;
}
}
}
// Find the appropriate proto for clasp. Built-in classes have a cached
// proto on cx->global(); all others get %ObjectPrototype%.
JSProtoKey protoKey = JSCLASS_CACHED_PROTO_KEY(clasp);
if (protoKey == JSProto_Null) {
protoKey = JSProto_Object;
}
JSObject* proto = GlobalObject::getOrCreatePrototype(cx, protoKey);
if (!proto) {
return nullptr;
}
RootedObjectGroup group(
cx, ObjectGroup::defaultNewGroup(cx, clasp, TaggedProto(proto)));
if (!group) {
return nullptr;
}
JSObject* obj = NewObject(cx, group, allocKind, newKind);
if (!obj) {
return nullptr;
}
if (isCachable && !obj->as<NativeObject>().hasDynamicSlots()) {
NewObjectCache& cache = cx->caches().newObjectCache;
NewObjectCache::EntryIndex entry = -1;
cache.lookupGlobal(clasp, global, allocKind, &entry);
cache.fillGlobal(entry, clasp, global, allocKind, &obj->as<NativeObject>());
}
return obj;
}
static bool NewObjectWithGroupIsCachable(JSContext* cx, HandleObjectGroup group,
NewObjectKind newKind) {
if (!group->proto().isObject() || newKind != GenericObject ||
!group->clasp()->isNative() || cx->isHelperThreadContext()) {
return false;
}
AutoSweepObjectGroup sweep(group);
return !group->newScript(sweep) || group->newScript(sweep)->analyzed();
}
/*
* Create a plain object with the specified group. This bypasses getNewGroup to
* avoid losing creation site information for objects made by scripted 'new'.
*/
JSObject* js::NewObjectWithGroupCommon(JSContext* cx, HandleObjectGroup group,
gc::AllocKind allocKind,
NewObjectKind newKind) {
MOZ_ASSERT(gc::IsObjectAllocKind(allocKind));
if (CanChangeToBackgroundAllocKind(allocKind, group->clasp())) {
allocKind = ForegroundToBackgroundAllocKind(allocKind);
}
bool isCachable = NewObjectWithGroupIsCachable(cx, group, newKind);
if (isCachable) {
NewObjectCache& cache = cx->caches().newObjectCache;
NewObjectCache::EntryIndex entry = -1;
if (cache.lookupGroup(group, allocKind, &entry)) {
JSObject* obj =
cache.newObjectFromHit(cx, entry, GetInitialHeap(newKind, group));
if (obj) {
return obj;
}
}
}
JSObject* obj = NewObject(cx, group, allocKind, newKind);
if (!obj) {
return nullptr;
}
if (isCachable && !obj->as<NativeObject>().hasDynamicSlots()) {
NewObjectCache& cache = cx->caches().newObjectCache;
NewObjectCache::EntryIndex entry = -1;
cache.lookupGroup(group, allocKind, &entry);
cache.fillGroup(entry, group, allocKind, &obj->as<NativeObject>());
}
return obj;
}
bool js::NewObjectScriptedCall(JSContext* cx, MutableHandleObject pobj) {
jsbytecode* pc;
RootedScript script(cx, cx->currentScript(&pc));
gc::AllocKind allocKind = NewObjectGCKind(&PlainObject::class_);
NewObjectKind newKind = GenericObject;
if (script &&
ObjectGroup::useSingletonForAllocationSite(script, pc, JSProto_Object)) {
newKind = SingletonObject;
}
RootedObject obj(
cx, NewBuiltinClassInstance<PlainObject>(cx, allocKind, newKind));
if (!obj) {
return false;
}
if (script) {
/* Try to specialize the group of the object to the scripted call site. */
if (!ObjectGroup::setAllocationSiteObjectGroup(
cx, script, pc, obj, newKind == SingletonObject)) {
return false;
}
}
pobj.set(obj);
return true;
}
JSObject* js::CreateThis(JSContext* cx, const JSClass* newclasp,
HandleObject callee) {
RootedObject proto(cx);
if (!GetPrototypeFromConstructor(
cx, callee, JSCLASS_CACHED_PROTO_KEY(newclasp), &proto)) {
return nullptr;
}
gc::AllocKind kind = NewObjectGCKind(newclasp);
return NewObjectWithClassProto(cx, newclasp, proto, kind);
}
bool js::GetPrototypeFromConstructor(JSContext* cx, HandleObject newTarget,
JSProtoKey intrinsicDefaultProto,
MutableHandleObject proto) {
RootedValue protov(cx);
if (!GetProperty(cx, newTarget, newTarget, cx->names().prototype, &protov)) {
return false;
}
if (protov.isObject()) {
proto.set(&protov.toObject());
} else if (newTarget->is<JSFunction>() &&
newTarget->as<JSFunction>().realm() == cx->realm()) {
// Steps 4.a-b fetch the builtin prototype of the current realm, which we
// represent as nullptr.
proto.set(nullptr);
} else if (intrinsicDefaultProto == JSProto_Null) {
// Bug 1317416. The caller did not pass a reasonable JSProtoKey, so let the
// caller select a prototype object. Most likely they will choose one from
// the wrong realm.
proto.set(nullptr);
} else {
// Step 4.a: Let realm be ? GetFunctionRealm(constructor);
Realm* realm = JS::GetFunctionRealm(cx, newTarget);
if (!realm) {
return false;
}
// Step 4.b: Set proto to realm's intrinsic object named
// intrinsicDefaultProto.
{
mozilla::Maybe<AutoRealm> ar;
if (cx->realm() != realm) {
ar.emplace(cx, realm->maybeGlobal());
}
proto.set(GlobalObject::getOrCreatePrototype(cx, intrinsicDefaultProto));
}
if (!proto) {
return false;
}
if (!cx->compartment()->wrap(cx, proto)) {
return false;
}
}
return true;
}
/* static */
bool JSObject::nonNativeSetProperty(JSContext* cx, HandleObject obj,
HandleId id, HandleValue v,
HandleValue receiver,
ObjectOpResult& result) {
return obj->getOpsSetProperty()(cx, obj, id, v, receiver, result);
}
/* static */
bool JSObject::nonNativeSetElement(JSContext* cx, HandleObject obj,
uint32_t index, HandleValue v,
HandleValue receiver,
ObjectOpResult& result) {
RootedId id(cx);
if (!IndexToId(cx, index, &id)) {
return false;
}
return nonNativeSetProperty(cx, obj, id, v, receiver, result);
}
JS_FRIEND_API bool JS_CopyPropertyFrom(JSContext* cx, HandleId id,
HandleObject target, HandleObject obj,
PropertyCopyBehavior copyBehavior) {
// |target| must not be a CCW because we need to enter its realm below and
// CCWs are not associated with a single realm.
MOZ_ASSERT(!IsCrossCompartmentWrapper(target));
// |obj| and |cx| are generally not same-compartment with |target| here.
cx->check(obj, id);
Rooted<PropertyDescriptor> desc(cx);
if (!GetOwnPropertyDescriptor(cx, obj, id, &desc)) {
return false;
}
MOZ_ASSERT(desc.object());
// Silently skip JSGetterOp/JSSetterOp-implemented accessors.
if (desc.getter() && !desc.hasGetterObject()) {
return true;
}
if (desc.setter() && !desc.hasSetterObject()) {
return true;
}
if (copyBehavior == MakeNonConfigurableIntoConfigurable) {
// Mask off the JSPROP_PERMANENT bit.
desc.attributesRef() &= ~JSPROP_PERMANENT;
}
JSAutoRealm ar(cx, target);
cx->markId(id);
RootedId wrappedId(cx, id);
if (!cx->compartment()->wrap(cx, &desc)) {
return false;
}
return DefineProperty(cx, target, wrappedId, desc);
}
JS_FRIEND_API bool JS_CopyPropertiesFrom(JSContext* cx, HandleObject target,
HandleObject obj) {
// Both |obj| and |target| must not be CCWs because we need to enter their
// realms below and CCWs are not associated with a single realm.
MOZ_ASSERT(!IsCrossCompartmentWrapper(obj));
MOZ_ASSERT(!IsCrossCompartmentWrapper(target));
JSAutoRealm ar(cx, obj);
RootedIdVector props(cx);
if (!GetPropertyKeys(cx, obj, JSITER_OWNONLY | JSITER_HIDDEN | JSITER_SYMBOLS,
&props)) {
return false;
}
for (size_t i = 0; i < props.length(); ++i) {
if (!JS_CopyPropertyFrom(cx, props[i], target, obj)) {
return false;
}
}
return true;
}
static bool GetScriptArrayObjectElements(
HandleArrayObject arr, MutableHandle<GCVector<Value>> values) {
MOZ_ASSERT(!arr->isSingleton());
MOZ_ASSERT(!arr->isIndexed());
size_t length = arr->length();
if (!values.appendN(MagicValue(JS_ELEMENTS_HOLE), length)) {
return false;
}
size_t initlen = arr->getDenseInitializedLength();
for (size_t i = 0; i < initlen; i++) {
values[i].set(arr->getDenseElement(i));
}
return true;
}
static bool GetScriptPlainObjectProperties(
HandleObject obj, MutableHandle<IdValueVector> properties) {
MOZ_ASSERT(obj->is<PlainObject>());
PlainObject* nobj = &obj->as<PlainObject>();
if (!properties.appendN(IdValuePair(), nobj->slotSpan())) {
return false;
}
for (Shape::Range<NoGC> r(nobj->lastProperty()); !r.empty(); r.popFront()) {
Shape& shape = r.front();
MOZ_ASSERT(shape.isDataDescriptor());
uint32_t slot = shape.slot();
properties[slot].get().id = shape.propid();
properties[slot].get().value = nobj->getSlot(slot);
}
for (size_t i = 0; i < nobj->getDenseInitializedLength(); i++) {
Value v = nobj->getDenseElement(i);
if (!v.isMagic(JS_ELEMENTS_HOLE) &&
!properties.emplaceBack(INT_TO_JSID(i), v)) {
return false;
}
}
return true;
}
static bool DeepCloneValue(JSContext* cx, Value* vp) {
if (vp->isObject()) {
RootedObject obj(cx, &vp->toObject());
obj = DeepCloneObjectLiteral(cx, obj);
if (!obj) {
return false;
}
vp->setObject(*obj);
} else {
cx->markAtomValue(*vp);
}
return true;
}
JSObject* js::DeepCloneObjectLiteral(JSContext* cx, HandleObject obj) {
/* NB: Keep this in sync with XDRObjectLiteral. */
MOZ_ASSERT_IF(obj->isSingleton(),
cx->realm()->behaviors().getSingletonsAsTemplates());
MOZ_ASSERT(obj->is<PlainObject>() || obj->is<ArrayObject>());
if (obj->is<ArrayObject>()) {
Rooted<GCVector<Value>> values(cx, GCVector<Value>(cx));
if (!GetScriptArrayObjectElements(obj.as<ArrayObject>(), &values)) {
return nullptr;
}
// Deep clone any elements.
for (uint32_t i = 0; i < values.length(); ++i) {
if (!DeepCloneValue(cx, values[i].address())) {
return nullptr;
}
}
ObjectGroup::NewArrayKind arrayKind = ObjectGroup::NewArrayKind::Normal;
if (obj->is<ArrayObject>() &&
obj->as<ArrayObject>().denseElementsAreCopyOnWrite()) {
arrayKind = ObjectGroup::NewArrayKind::CopyOnWrite;
}
return ObjectGroup::newArrayObject(cx, values.begin(), values.length(),
TenuredObject, arrayKind);
}
Rooted<IdValueVector> properties(cx, IdValueVector(cx));
if (!GetScriptPlainObjectProperties(obj, &properties)) {
return nullptr;
}
for (size_t i = 0; i < properties.length(); i++) {
cx->markId(properties[i].get().id);
if (!DeepCloneValue(cx, &properties[i].get().value)) {
return nullptr;
}
}
NewObjectKind newKind = obj->isSingleton() ? SingletonObject : TenuredObject;
return ObjectGroup::newPlainObject(cx, properties.begin(),
properties.length(), newKind);
}
static bool InitializePropertiesFromCompatibleNativeObject(
JSContext* cx, HandleNativeObject dst, HandleNativeObject src) {
cx->check(src, dst);
MOZ_ASSERT(src->getClass() == dst->getClass());
MOZ_ASSERT(dst->lastProperty()->getObjectFlags() == 0);
MOZ_ASSERT(!src->isSingleton());
MOZ_ASSERT(src->numFixedSlots() == dst->numFixedSlots());
if (!dst->ensureElements(cx, src->getDenseInitializedLength())) {
return false;
}
uint32_t initialized = src->getDenseInitializedLength();
for (uint32_t i = 0; i < initialized; ++i) {
dst->setDenseInitializedLength(i + 1);
dst->initDenseElement(i, src->getDenseElement(i));
}
MOZ_ASSERT(!src->hasPrivate());
RootedShape shape(cx);
if (src->staticPrototype() == dst->staticPrototype()) {
shape = src->lastProperty();
} else {
// We need to generate a new shape for dst that has dst's proto but all
// the property information from src. Note that we asserted above that
// dst's object flags are 0.
shape = EmptyShape::getInitialShape(cx, dst->getClass(), dst->taggedProto(),
dst->numFixedSlots(), 0);
if (!shape) {
return false;
}
// Get an in-order list of the shapes in the src object.
Rooted<ShapeVector> shapes(cx, ShapeVector(cx));
for (Shape::Range<NoGC> r(src->lastProperty()); !r.empty(); r.popFront()) {
if (!shapes.append(&r.front())) {
return false;
}
}
std::reverse(shapes.begin(), shapes.end());
for (Shape* shapeToClone : shapes) {
Rooted<StackShape> child(cx, StackShape(shapeToClone));
shape = cx->zone()->propertyTree().getChild(cx, shape, child);
if (!shape) {
return false;
}
}
}
size_t span = shape->slotSpan();
if (!dst->setLastProperty(cx, shape)) {
return false;
}
for (size_t i = JSCLASS_RESERVED_SLOTS(src->getClass()); i < span; i++) {
dst->setSlot(i, src->getSlot(i));
}
return true;
}
JS_FRIEND_API bool JS_InitializePropertiesFromCompatibleNativeObject(
JSContext* cx, HandleObject dst, HandleObject src) {
return InitializePropertiesFromCompatibleNativeObject(
cx, dst.as<NativeObject>(), src.as<NativeObject>());
}
template <XDRMode mode>
XDRResult js::XDRObjectLiteral(XDRState<mode>* xdr, MutableHandleObject obj) {
/* NB: Keep this in sync with DeepCloneObjectLiteral. */
JSContext* cx = xdr->cx();
cx->check(obj);
// Distinguish between objects and array classes.
uint32_t isArray = 0;
{
if (mode == XDR_ENCODE) {
MOZ_ASSERT(obj->is<PlainObject>() || obj->is<ArrayObject>());
isArray = obj->is<ArrayObject>() ? 1 : 0;
}
MOZ_TRY(xdr->codeUint32(&isArray));
}
RootedValue tmpValue(cx), tmpIdValue(cx);
RootedId tmpId(cx);
if (isArray) {
Rooted<GCVector<Value>> values(cx, GCVector<Value>(cx));
if (mode == XDR_ENCODE) {
RootedArrayObject arr(cx, &obj->as<ArrayObject>());
if (!GetScriptArrayObjectElements(arr, &values)) {
return xdr->fail(JS::TranscodeResult_Throw);
}
}
uint32_t initialized;
if (mode == XDR_ENCODE) {
initialized = values.length();
}
MOZ_TRY(xdr->codeUint32(&initialized));
if (mode == XDR_DECODE &&
!values.appendN(MagicValue(JS_ELEMENTS_HOLE), initialized)) {
return xdr->fail(JS::TranscodeResult_Throw);
}
// Recursively copy dense elements.
for (unsigned i = 0; i < initialized; i++) {
MOZ_TRY(XDRScriptConst(xdr, values[i]));
}
uint32_t copyOnWrite;
if (mode == XDR_ENCODE) {
copyOnWrite = obj->is<ArrayObject>() &&
obj->as<ArrayObject>().denseElementsAreCopyOnWrite();
}
MOZ_TRY(xdr->codeUint32(&copyOnWrite));
if (mode == XDR_DECODE) {
ObjectGroup::NewArrayKind arrayKind =
copyOnWrite ? ObjectGroup::NewArrayKind::CopyOnWrite
: ObjectGroup::NewArrayKind::Normal;
obj.set(ObjectGroup::newArrayObject(cx, values.begin(), values.length(),
TenuredObject, arrayKind));
if (!obj) {
return xdr->fail(JS::TranscodeResult_Throw);
}
}
return Ok();
}
// Code the properties in the object.
Rooted<IdValueVector> properties(cx, IdValueVector(cx));
if (mode == XDR_ENCODE && !GetScriptPlainObjectProperties(obj, &properties)) {
return xdr->fail(JS::TranscodeResult_Throw);
}
uint32_t nproperties = properties.length();
MOZ_TRY(xdr->codeUint32(&nproperties));
if (mode == XDR_DECODE && !properties.appendN(IdValuePair(), nproperties)) {
return xdr->fail(JS::TranscodeResult_Throw);
}
for (size_t i = 0; i < nproperties; i++) {
if (mode == XDR_ENCODE) {
tmpIdValue = IdToValue(properties[i].get().id);
tmpValue = properties[i].get().value;
}
MOZ_TRY(XDRScriptConst(xdr, &tmpIdValue));
MOZ_TRY(XDRScriptConst(xdr, &tmpValue));
if (mode == XDR_DECODE) {
if (!PrimitiveValueToId<CanGC>(cx, tmpIdValue, &tmpId)) {
return xdr->fail(JS::TranscodeResult_Throw);
}
properties[i].get().id = tmpId;
properties[i].get().value = tmpValue;
}
}
// Code whether the object is a singleton.
uint32_t isSingleton;
if (mode == XDR_ENCODE) {
isSingleton = obj->isSingleton() ? 1 : 0;
}
MOZ_TRY(xdr->codeUint32(&isSingleton));
if (mode == XDR_DECODE) {
NewObjectKind newKind = isSingleton ? SingletonObject : TenuredObject;
obj.set(ObjectGroup::newPlainObject(cx, properties.begin(),
properties.length(), newKind));
if (!obj) {
return xdr->fail(JS::TranscodeResult_Throw);
}
}
return Ok();
}
template XDRResult js::XDRObjectLiteral(XDRState<XDR_ENCODE>* xdr,
MutableHandleObject obj);
template XDRResult js::XDRObjectLiteral(XDRState<XDR_DECODE>* xdr,
MutableHandleObject obj);
/* static */
bool NativeObject::fillInAfterSwap(JSContext* cx, HandleNativeObject obj,
NativeObject* old, HandleValueVector values,
void* priv) {
// This object has just been swapped with some other object, and its shape
// no longer reflects its allocated size. Correct this information and
// fill the slots in with the specified values.
MOZ_ASSERT(obj->slotSpan() == values.length());
MOZ_ASSERT(!IsInsideNursery(obj));
size_t oldSlotCount = obj->numDynamicSlots();
// Make sure the shape's numFixedSlots() is correct.
size_t nfixed =
gc::GetGCKindSlots(obj->asTenured().getAllocKind(), obj->getClass());
if (nfixed != obj->shape()->numFixedSlots()) {
if (!NativeObject::generateOwnShape(cx, obj)) {
return false;
}
obj->shape()->setNumFixedSlots(nfixed);
}
if (obj->hasPrivate()) {
obj->setPrivate(priv);
} else {
MOZ_ASSERT(!priv);
}
Zone* zone = obj->zone();
if (obj->slots_) {
size_t size = oldSlotCount * sizeof(HeapSlot);
zone->removeCellMemory(old, size, MemoryUse::ObjectSlots);
js_free(obj->slots_);
obj->slots_ = nullptr;
}
if (size_t ndynamic =
dynamicSlotsCount(nfixed, values.length(), obj->getClass())) {
obj->slots_ = cx->pod_malloc<HeapSlot>(ndynamic);
if (!obj->slots_) {
return false;
}
size_t size = ndynamic * sizeof(HeapSlot);
zone->addCellMemory(obj, size, MemoryUse::ObjectSlots);
Debug_SetSlotRangeToCrashOnTouch(obj->slots_, ndynamic);
}
obj->initSlotRange(0, values.begin(), values.length());
return true;
}
void JSObject::fixDictionaryShapeAfterSwap() {
// Dictionary shapes can point back to their containing objects, so after
// swapping the guts of those objects fix the pointers up.
if (isNative() && as<NativeObject>().inDictionaryMode()) {
shape()->dictNext.setObject(this);
}
}
bool js::ObjectMayBeSwapped(const JSObject* obj) {
const JSClass* clasp = obj->getClass();
// We want to optimize Window/globals and Gecko doesn't require transplanting
// them (only the WindowProxy around them). A Window may be a DOMClass, so we
// explicitly check if this is a global.
if (clasp->isGlobal()) {
return false;
}
// WindowProxy, Wrapper, DeadProxyObject, DOMProxy, and DOMClass (non-global)
// types may be swapped. It is hard to detect DOMProxy from shell, so target
// proxies in general.
return clasp->isProxy() || clasp->isDOMClass();
}
static MOZ_MUST_USE bool CopyProxyValuesBeforeSwap(
JSContext* cx, ProxyObject* proxy, MutableHandleValueVector values) {
MOZ_ASSERT(values.empty());
// Remove the GCPtrValues we're about to swap from the store buffer, to
// ensure we don't trace bogus values.
gc::StoreBuffer& sb = cx->runtime()->gc.storeBuffer();
// Reserve space for the private slot and the reserved slots.
if (!values.reserve(1 + proxy->numReservedSlots())) {
return false;
}
js::detail::ProxyValueArray* valArray =
js::detail::GetProxyDataLayout(proxy)->values();
sb.unputValue(&valArray->privateSlot);
values.infallibleAppend(valArray->privateSlot);
for (size_t i = 0; i < proxy->numReservedSlots(); i++) {
sb.unputValue(&valArray->reservedSlots.slots[i]);
values.infallibleAppend(valArray->reservedSlots.slots[i]);
}
return true;
}
bool ProxyObject::initExternalValueArrayAfterSwap(
JSContext* cx, const HandleValueVector values) {
MOZ_ASSERT(getClass()->isProxy());
size_t nreserved = numReservedSlots();
// |values| contains the private slot and the reserved slots.
MOZ_ASSERT(values.length() == 1 + nreserved);
size_t nbytes = js::detail::ProxyValueArray::sizeOf(nreserved);
auto* valArray = reinterpret_cast<js::detail::ProxyValueArray*>(
cx->zone()->pod_malloc<uint8_t>(nbytes));
if (!valArray) {
return false;
}
valArray->privateSlot = values[0];
for (size_t i = 0; i < nreserved; i++) {
valArray->reservedSlots.slots[i] = values[i + 1];
}
// Note: we allocate external slots iff the proxy had an inline
// ProxyValueArray, so at this point reservedSlots points into the
// old object and we don't have to free anything.
data.reservedSlots = &valArray->reservedSlots;
return true;
}
/* Use this method with extreme caution. It trades the guts of two objects. */
void JSObject::swap(JSContext* cx, HandleObject a, HandleObject b) {
// Ensure swap doesn't cause a finalizer to not be run.
MOZ_ASSERT(IsBackgroundFinalized(a->asTenured().getAllocKind()) ==
IsBackgroundFinalized(b->asTenured().getAllocKind()));
MOZ_ASSERT(a->compartment() == b->compartment());
// You must have entered the objects' compartment before calling this.
MOZ_ASSERT(cx->compartment() == a->compartment());
AutoEnterOOMUnsafeRegion oomUnsafe;
if (!JSObject::getGroup(cx, a)) {
oomUnsafe.crash("JSObject::swap");
}
if (!JSObject::getGroup(cx, b)) {
oomUnsafe.crash("JSObject::swap");
}
// Only certain types of objects are allowed to be swapped. This allows the
// JITs to better optimize objects that can never swap.
MOZ_RELEASE_ASSERT(js::ObjectMayBeSwapped(a));
MOZ_RELEASE_ASSERT(js::ObjectMayBeSwapped(b));
/*
* Neither object may be in the nursery, but ensure we update any embedded
* nursery pointers in either object.
*/
MOZ_ASSERT(!IsInsideNursery(a) && !IsInsideNursery(b));
gc::StoreBuffer& storeBuffer = cx->runtime()->gc.storeBuffer();
storeBuffer.putWholeCell(a);
storeBuffer.putWholeCell(b);
if (a->zone()->wasGCStarted() || b->zone()->wasGCStarted()) {
storeBuffer.setMayHavePointersToDeadCells();
}
unsigned r = NotifyGCPreSwap(a, b);
// Do the fundamental swapping of the contents of two objects.
MOZ_ASSERT(a->compartment() == b->compartment());
MOZ_ASSERT(a->is<JSFunction>() == b->is<JSFunction>());
// Don't try to swap functions with different sizes.
MOZ_ASSERT_IF(a->is<JSFunction>(),
a->tenuredSizeOfThis() == b->tenuredSizeOfThis());
// Watch for oddball objects that have special organizational issues and
// can't be swapped.
MOZ_ASSERT(!a->is<RegExpObject>() && !b->is<RegExpObject>());
MOZ_ASSERT(!a->is<ArrayObject>() && !b->is<ArrayObject>());
MOZ_ASSERT(!a->is<ArrayBufferObject>() && !b->is<ArrayBufferObject>());
MOZ_ASSERT(!a->is<TypedArrayObject>() && !b->is<TypedArrayObject>());
MOZ_ASSERT(!a->is<TypedObject>() && !b->is<TypedObject>());
// Don't swap objects that may currently be participating in shape
// teleporting optimizations.
//
// See: ReshapeForProtoMutation, ReshapeForShadowedProp
MOZ_ASSERT_IF(a->isNative() && a->isDelegate(),
a->taggedProto() == TaggedProto());
MOZ_ASSERT_IF(b->isNative() && b->isDelegate(),
b->taggedProto() == TaggedProto());
bool aIsProxyWithInlineValues =
a->is<ProxyObject>() && a->as<ProxyObject>().usingInlineValueArray();
bool bIsProxyWithInlineValues =
b->is<ProxyObject>() && b->as<ProxyObject>().usingInlineValueArray();
// Swap element associations.
Zone* zone = a->zone();
zone->swapCellMemory(a, b, MemoryUse::ObjectElements);
if (a->tenuredSizeOfThis() == b->tenuredSizeOfThis()) {
// When both objects are the same size, just do a plain swap of their
// contents.
// Swap slot associations.
zone->swapCellMemory(a, b, MemoryUse::ObjectSlots);
size_t size = a->tenuredSizeOfThis();
char tmp[mozilla::tl::Max<sizeof(JSFunction),
sizeof(JSObject_Slots16)>::value];
MOZ_ASSERT(size <= sizeof(tmp));
js_memcpy(tmp, a, size);
js_memcpy(a, b, size);
js_memcpy(b, tmp, size);
a->fixDictionaryShapeAfterSwap();
b->fixDictionaryShapeAfterSwap();
if (aIsProxyWithInlineValues) {
b->as<ProxyObject>().setInlineValueArray();
}
if (bIsProxyWithInlineValues) {
a->as<ProxyObject>().setInlineValueArray();
}
} else {
// Avoid GC in here to avoid confusing the tracing code with our
// intermediate state.
gc::AutoSuppressGC suppress(cx);
// When the objects have different sizes, they will have different
// numbers of fixed slots before and after the swap, so the slots for
// native objects will need to be rearranged.
NativeObject* na = a->isNative() ? &a->as<NativeObject>() : nullptr;
NativeObject* nb = b->isNative() ? &b->as<NativeObject>() : nullptr;
// Remember the original values from the objects.
RootedValueVector avals(cx);
void* apriv = nullptr;
if (na) {
apriv = na->hasPrivate() ? na->getPrivate() : nullptr;
for (size_t i = 0; i < na->slotSpan(); i++) {
if (!avals.append(na->getSlot(i))) {
oomUnsafe.crash("JSObject::swap");
}
}
}
RootedValueVector bvals(cx);
void* bpriv = nullptr;
if (nb) {
bpriv = nb->hasPrivate() ? nb->getPrivate() : nullptr;
for (size_t i = 0; i < nb->slotSpan(); i++) {
if (!bvals.append(nb->getSlot(i))) {
oomUnsafe.crash("JSObject::swap");
}
}
}
// Do the same for proxies storing ProxyValueArray inline.
ProxyObject* proxyA =
a->is<ProxyObject>() ? &a->as<ProxyObject>() : nullptr;
ProxyObject* proxyB =
b->is<ProxyObject>() ? &b->as<ProxyObject>() : nullptr;
if (aIsProxyWithInlineValues) {
if (!CopyProxyValuesBeforeSwap(cx, proxyA, &avals)) {
oomUnsafe.crash("CopyProxyValuesBeforeSwap");
}
}
if (bIsProxyWithInlineValues) {
if (!CopyProxyValuesBeforeSwap(cx, proxyB, &bvals)) {
oomUnsafe.crash("CopyProxyValuesBeforeSwap");
}
}
// Swap the main fields of the objects, whether they are native objects or
// proxies.
char tmp[sizeof(JSObject_Slots0)];
js_memcpy(&tmp, a, sizeof tmp);
js_memcpy(a, b, sizeof tmp);
js_memcpy(b, &tmp, sizeof tmp);
a->fixDictionaryShapeAfterSwap();
b->fixDictionaryShapeAfterSwap();
if (na) {
if (!NativeObject::fillInAfterSwap(cx, b.as<NativeObject>(), na, avals,
apriv)) {
oomUnsafe.crash("fillInAfterSwap");
}
}
if (nb) {
if (!NativeObject::fillInAfterSwap(cx, a.as<NativeObject>(), nb, bvals,
bpriv)) {
oomUnsafe.crash("fillInAfterSwap");
}
}
if (aIsProxyWithInlineValues) {
if (!b->as<ProxyObject>().initExternalValueArrayAfterSwap(cx, avals)) {
oomUnsafe.crash("initExternalValueArray");
}
}
if (bIsProxyWithInlineValues) {
if (!a->as<ProxyObject>().initExternalValueArrayAfterSwap(cx, bvals)) {
oomUnsafe.crash("initExternalValueArray");
}
}
}
// Swapping the contents of two objects invalidates type sets which contain
// either of the objects, so mark all such sets as unknown.
MarkObjectGroupUnknownProperties(cx, a->group());
MarkObjectGroupUnknownProperties(cx, b->group());
/*
* We need a write barrier here. If |a| was marked and |b| was not, then
* after the swap, |b|'s guts would never be marked. The write barrier
* solves this.
*
* Normally write barriers happen before the write. However, that's not
* necessary here because nothing is being destroyed. We're just swapping.
*/
if (zone->needsIncrementalBarrier()) {
a->traceChildren(zone->barrierTracer());
b->traceChildren(zone->barrierTracer());
}
NotifyGCPostSwap(a, b, r);
}
static NativeObject* DefineConstructorAndPrototype(
JSContext* cx, HandleObject obj, HandleAtom atom, HandleObject protoProto,
const JSClass* clasp, Native constructor, unsigned nargs,
const JSPropertySpec* ps, const JSFunctionSpec* fs,
const JSPropertySpec* static_ps, const JSFunctionSpec* static_fs,
NativeObject** ctorp) {
// Create the prototype object.
RootedNativeObject proto(
cx, GlobalObject::createBlankPrototypeInheriting(cx, clasp, protoProto));
if (!proto) {
return nullptr;
}
RootedNativeObject ctor(cx);
if (!constructor) {
ctor = proto;
} else {
ctor = NewNativeConstructor(cx, constructor, nargs, atom);
if (!ctor) {
return nullptr;
}
if (!LinkConstructorAndPrototype(cx, ctor, proto)) {
return nullptr;
}
}
if (!DefinePropertiesAndFunctions(cx, proto, ps, fs) ||
(ctor != proto &&
!DefinePropertiesAndFunctions(cx, ctor, static_ps, static_fs))) {
return nullptr;
}
RootedId id(cx, AtomToId(atom));
RootedValue value(cx, ObjectValue(*ctor));
if (!DefineDataProperty(cx, obj, id, value, 0)) {
return nullptr;
}
if (ctorp) {
*ctorp = ctor;
}
return proto;
}
NativeObject* js::InitClass(JSContext* cx, HandleObject obj,
HandleObject protoProto_, const JSClass* clasp,
Native constructor, unsigned nargs,
const JSPropertySpec* ps, const JSFunctionSpec* fs,
const JSPropertySpec* static_ps,
const JSFunctionSpec* static_fs,
NativeObject** ctorp) {
RootedAtom atom(cx, Atomize(cx, clasp->name, strlen(clasp->name)));
if (!atom) {
return nullptr;
}
/*
* All instances of the class will inherit properties from the prototype
* object we are about to create (in DefineConstructorAndPrototype), which
* in turn will inherit from protoProto.
*
* If protoProto is null, default to Object.prototype.
*/
RootedObject protoProto(cx, protoProto_);
if (!protoProto) {
protoProto = GlobalObject::getOrCreateObjectPrototype(cx, cx->global());
if (!protoProto) {
return nullptr;
}
}
return DefineConstructorAndPrototype(cx, obj, atom, protoProto, clasp,
constructor, nargs, ps, fs, static_ps,
static_fs, ctorp);
}
void JSObject::fixupAfterMovingGC() {
// For copy-on-write objects that don't own their elements, fix up the
// elements pointer if it points to inline elements in the owning object.
if (is<NativeObject>()) {
NativeObject& obj = as<NativeObject>();
if (obj.denseElementsAreCopyOnWrite()) {
NativeObject* owner = obj.getElementsHeader()->ownerObject();
// Get the new owner pointer but don't call MaybeForwarded as we
// don't need to access the object's shape.
if (IsForwarded(owner)) {
owner = Forwarded(owner);
}
if (owner != &obj && owner->hasFixedElements()) {
obj.elements_ = owner->getElementsHeader()->elements();
}
MOZ_ASSERT(!IsForwarded(obj.getElementsHeader()->ownerObject().get()));
}
}
}
static bool ReshapeForProtoMutation(JSContext* cx, HandleObject obj) {
// To avoid the JIT guarding on each prototype in chain to detect prototype
// mutation, we can instead reshape the rest of the proto chain such that a
// guard on any of them is sufficient. To avoid excessive reshaping and
// invalidation, we apply heuristics to decide when to apply this and when
// to require a guard.
//
// Heuristics:
// - Always reshape singleton objects. This historically avoided
// de-optimizing in cases that compiler doesn't support
// uncacheable-proto. TODO: Revisit if this is a good idea.
// - Other objects instead set UNCACHEABLE_PROTO flag on shape to avoid
// creating too many private shape copies.
// - Only propegate along proto chain if we are mark DELEGATE. This avoids
// reshaping in normal object access cases.
//
// NOTE: We only handle NativeObjects and don't propegate reshapes through
// any non-native objects on the chain.
//
// See Also:
// - GeneratePrototypeGuards
// - GeneratePrototypeHoleGuards
// - ObjectGroup::defaultNewGroup
RootedObject pobj(cx, obj);
while (pobj && pobj->isNative()) {
if (pobj->isSingleton()) {
// If object was converted to a singleton it should have cleared
// any UNCACHEABLE_PROTO flags.
MOZ_ASSERT(!pobj->hasUncacheableProto());
if (!NativeObject::reshapeForProtoMutation(cx, pobj.as<NativeObject>())) {
return false;
}
} else {
if (!JSObject::setUncacheableProto(cx, pobj)) {
return false;
}
}
if (!obj->isDelegate()) {
break;
}
pobj = pobj->staticPrototype();
}
return true;
}
static bool SetProto(JSContext* cx, HandleObject obj,
Handle<js::TaggedProto> proto) {
// Regenerate object shape (and possibly prototype shape) to invalidate JIT
// code that is affected by a prototype mutation.
if (!ReshapeForProtoMutation(cx, obj)) {
return false;
}
if (proto.isObject()) {
RootedObject protoObj(cx, proto.toObject());
if (!JSObject::setDelegate(cx, protoObj)) {
return false;
}
}
if (obj->isSingleton()) {
/*
* Just splice the prototype, but mark the properties as unknown for
* consistent behavior.
*/
if (!JSObject::splicePrototype(cx, obj, proto)) {
return false;
}
MarkObjectGroupUnknownProperties(cx, obj->group());
return true;
}
RootedObjectGroup oldGroup(cx, obj->group());
ObjectGroup* newGroup;
if (oldGroup->maybeInterpretedFunction()) {
// We're changing the group/proto of a scripted function. Create a new
// group so we can keep track of the interpreted function for Ion
// inlining.
MOZ_ASSERT(obj->is<JSFunction>());
newGroup = ObjectGroupRealm::makeGroup(cx, oldGroup->realm(),
&JSFunction::class_, proto);
if (!newGroup) {
return false;
}
newGroup->setInterpretedFunction(oldGroup->maybeInterpretedFunction());
} else {
AutoRealm ar(cx, oldGroup);
newGroup = ObjectGroup::defaultNewGroup(cx, obj->getClass(), proto);
if (!newGroup) {
return false;
}
}
obj->setGroup(newGroup);
// Add the object's property types to the new group.
AutoSweepObjectGroup sweep(newGroup);
if (!newGroup->unknownProperties(sweep)) {
if (obj->isNative()) {
AddPropertyTypesAfterProtoChange(cx, &obj->as<NativeObject>(), oldGroup);
} else {
MarkObjectGroupUnknownProperties(cx, newGroup);
}
}
// Type sets containing this object will contain the old group but not the
// new group of the object, so we need to treat all such type sets as
// unknown.
MarkObjectGroupUnknownProperties(cx, oldGroup);
return true;
}
bool js::SetPrototypeForClonedFunction(JSContext* cx, HandleFunction fun,
HandleObject proto) {
// This function must only be called from |CloneFunctionObjectIfNotSingleton|!
// |CanReuseFunctionForClone| ensures |fun| is a singleton function. |fun|
// must also be extensible and have a mutable prototype for its prototype
// to be modifiable, so assert both conditions, too.
MOZ_ASSERT(fun->isSingleton());
MOZ_ASSERT(!fun->staticPrototypeIsImmutable());
MOZ_ASSERT(fun->isExtensible());
MOZ_ASSERT(proto);
if (proto == fun->staticPrototype()) {
return true;
}
// Regenerate object shape (and possibly prototype shape) to invalidate JIT
// code that is affected by a prototype mutation.
if (!ReshapeForProtoMutation(cx, fun)) {
return false;
}
if (!JSObject::setDelegate(cx, proto)) {
return false;
}
// Directly splice the prototype instead of calling |js::SetPrototype| to
// ensure we don't mark the function as having "unknown properties". This
// is safe to do, because the singleton function hasn't yet been exposed
// to scripts.
Rooted<TaggedProto> tagged(cx, TaggedProto(proto));
if (!JSObject::splicePrototype(cx, fun, tagged)) {
return false;
}
return true;
}
/* static */
bool JSObject::changeToSingleton(JSContext* cx, HandleObject obj) {
MOZ_ASSERT(!obj->isSingleton());
MarkObjectGroupUnknownProperties(cx, obj->group());
ObjectGroup* group = ObjectGroup::lazySingletonGroup(
cx, obj->group(), obj->getClass(), obj->taggedProto());
if (!group) {
return false;
}
obj->setGroupRaw(group);
return true;
}
/**
* Returns the original Object.prototype from the embedding-provided incumbent
* global.
*
* Really, we want the incumbent global itself so we can pass it to other
* embedding hooks which need it. Specifically, the enqueue promise hook
* takes an incumbent global so it can set that on the PromiseCallbackJob
* it creates.
*
* The reason for not just returning the global itself is that we'd need to
* wrap it into the current compartment, and later unwrap it. Unwrapping
* globals is tricky, though: we might accidentally unwrap through an inner
* to its outer window and end up with the wrong global. Plain objects don't
* have this problem, so we use the global's Object.prototype. The code using
* it - e.g. EnqueuePromiseReactionJob - can then unwrap the object and get
* its global without fear of unwrapping too far.
*/
bool js::GetObjectFromIncumbentGlobal(JSContext* cx, MutableHandleObject obj) {
Rooted<GlobalObject*> globalObj(cx, cx->runtime()->getIncumbentGlobal(cx));
if (!globalObj) {
obj.set(nullptr);
return true;
}
{
AutoRealm ar(cx, globalObj);
obj.set(GlobalObject::getOrCreateObjectPrototype(cx, globalObj));
if (!obj) {
return false;
}
}
// The object might be from a different compartment, so wrap it.
if (obj && !cx->compartment()->wrap(cx, obj)) {
return false;
}
return true;
}
static bool IsStandardPrototype(JSObject* obj, JSProtoKey key) {
Value v = obj->nonCCWGlobal().getPrototype(key);
return v.isObject() && obj == &v.toObject();
}
JSProtoKey JS::IdentifyStandardInstance(JSObject* obj) {
// Note: The prototype shares its JSClass with instances.
MOZ_ASSERT(!obj->is<CrossCompartmentWrapperObject>());
JSProtoKey key = StandardProtoKeyOrNull(obj);
if (key != JSProto_Null && !IsStandardPrototype(obj, key)) {
return key;
}
return JSProto_Null;
}
JSProtoKey JS::IdentifyStandardPrototype(JSObject* obj) {
// Note: The prototype shares its JSClass with instances.
MOZ_ASSERT(!obj->is<CrossCompartmentWrapperObject>());
JSProtoKey key = StandardProtoKeyOrNull(obj);
if (key != JSProto_Null && IsStandardPrototype(obj, key)) {
return key;
}
return JSProto_Null;
}
JSProtoKey JS::IdentifyStandardInstanceOrPrototype(JSObject* obj) {
return StandardProtoKeyOrNull(obj);
}
JSProtoKey JS::IdentifyStandardConstructor(JSObject* obj) {
// Note that isNativeConstructor does not imply that we are a standard
// constructor, but the converse is true (at least until we start having
// self-hosted constructors for standard classes). This lets us avoid a costly
// loop for many functions (which, depending on the call site, may be the
// common case).
if (!obj->is<JSFunction>() ||
!(obj->as<JSFunction>().flags().isNativeConstructor())) {
return JSProto_Null;
}
GlobalObject& global = obj->as<JSFunction>().global();
for (size_t k = 0; k < JSProto_LIMIT; ++k) {
JSProtoKey key = static_cast<JSProtoKey>(k);
if (global.getConstructor(key) == ObjectValue(*obj)) {
return key;
}
}
return JSProto_Null;
}
bool js::LookupProperty(JSContext* cx, HandleObject obj, js::HandleId id,
MutableHandleObject objp,
MutableHandle<PropertyResult> propp) {
if (LookupPropertyOp op = obj->getOpsLookupProperty()) {
return op(cx, obj, id, objp, propp);
}
return LookupPropertyInline<CanGC>(cx, obj.as<NativeObject>(), id, objp,
propp);
}
bool js::LookupName(JSContext* cx, HandlePropertyName name,
HandleObject envChain, MutableHandleObject objp,
MutableHandleObject pobjp,
MutableHandle<PropertyResult> propp) {
RootedId id(cx, NameToId(name));
for (RootedObject env(cx, envChain); env; env = env->enclosingEnvironment()) {
if (!LookupProperty(cx, env, id, pobjp, propp)) {
return false;
}
if (propp) {
objp.set(env);
return true;
}
}
objp.set(nullptr);
pobjp.set(nullptr);
propp.setNotFound();
return true;
}
bool js::LookupNameNoGC(JSContext* cx, PropertyName* name, JSObject* envChain,
JSObject** objp, JSObject** pobjp,
PropertyResult* propp) {
AutoAssertNoPendingException nogc(cx);
MOZ_ASSERT(!*objp && !*pobjp && !*propp);
for (JSObject* env = envChain; env; env = env->enclosingEnvironment()) {
if (env->getOpsLookupProperty()) {
return false;
}
if (!LookupPropertyInline<NoGC>(cx, &env->as<NativeObject>(),
NameToId(name), pobjp, propp)) {
return false;
}
if (*propp) {
*objp = env;
return true;
}
}
return true;
}
bool js::LookupNameWithGlobalDefault(JSContext* cx, HandlePropertyName name,
HandleObject envChain,
MutableHandleObject objp) {
RootedId id(cx, NameToId(name));
RootedObject pobj(cx);
Rooted<PropertyResult> prop(cx);
RootedObject env(cx, envChain);
for (; !env->is<GlobalObject>(); env = env->enclosingEnvironment()) {
if (!LookupProperty(cx, env, id, &pobj, &prop)) {
return false;
}
if (prop) {
break;
}
}
objp.set(env);
return true;
}
bool js::LookupNameUnqualified(JSContext* cx, HandlePropertyName name,
HandleObject envChain,
MutableHandleObject objp) {
RootedId id(cx, NameToId(name));
RootedObject pobj(cx);
Rooted<PropertyResult> prop(cx);
RootedObject env(cx, envChain);
for (; !env->isUnqualifiedVarObj(); env = env->enclosingEnvironment()) {
if (!LookupProperty(cx, env, id, &pobj, &prop)) {
return false;
}
if (prop) {
break;
}
}
// See note above RuntimeLexicalErrorObject.
if (pobj == env) {
bool isTDZ = false;
if (prop && name != cx->names().dotThis) {
// Treat Debugger environments specially for TDZ checks, as they
// look like non-native environments but in fact wrap native
// environments.
if (env->is<DebugEnvironmentProxy>()) {
RootedValue v(cx);
Rooted<DebugEnvironmentProxy*> envProxy(
cx, &env->as<DebugEnvironmentProxy>());
if (!DebugEnvironmentProxy::getMaybeSentinelValue(cx, envProxy, id,
&v)) {
return false;
}
isTDZ = IsUninitializedLexical(v);
} else {
isTDZ = IsUninitializedLexicalSlot(env, prop);
}
}
if (isTDZ) {
env = RuntimeLexicalErrorObject::create(cx, env,
JSMSG_UNINITIALIZED_LEXICAL);
if (!env) {
return false;
}
} else if (env->is<LexicalEnvironmentObject>() &&
!prop.shape()->writable()) {
// Assigning to a named lambda callee name is a no-op in sloppy mode.
Rooted<LexicalEnvironmentObject*> lexicalEnv(
cx, &env->as<LexicalEnvironmentObject>());
if (lexicalEnv->isExtensible() ||
lexicalEnv->scope().kind() != ScopeKind::NamedLambda) {
MOZ_ASSERT(name != cx->names().dotThis);
env =
RuntimeLexicalErrorObject::create(cx, env, JSMSG_BAD_CONST_ASSIGN);
if (!env) {
return false;
}
}
}
}
objp.set(env);
return true;
}
bool js::HasOwnProperty(JSContext* cx, HandleObject obj, HandleId id,
bool* result) {
if (obj->is<ProxyObject>()) {
return Proxy::hasOwn(cx, obj, id, result);
}
if (GetOwnPropertyOp op = obj->getOpsGetOwnPropertyDescriptor()) {
Rooted<PropertyDescriptor> desc(cx);
if (!op(cx, obj, id, &desc)) {
return false;
}
*result = !!desc.object();
return true;
}
Rooted<PropertyResult> prop(cx);
if (!NativeLookupOwnProperty<CanGC>(cx, obj.as<NativeObject>(), id, &prop)) {
return false;
}
*result = prop.isFound();
return true;
}
bool js::LookupPropertyPure(JSContext* cx, JSObject* obj, jsid id,
JSObject** objp, PropertyResult* propp) {
bool isTypedArrayOutOfRange = false;
do {
if (!LookupOwnPropertyPure(cx, obj, id, propp, &isTypedArrayOutOfRange)) {
return false;
}
if (*propp) {
*objp = obj;
return true;
}
if (isTypedArrayOutOfRange) {
*objp = nullptr;
return true;
}
obj = obj->staticPrototype();
} while (obj);
*objp = nullptr;
propp->setNotFound();
return true;
}
bool js::LookupOwnPropertyPure(JSContext* cx, JSObject* obj, jsid id,
PropertyResult* propp,
bool* isTypedArrayOutOfRange /* = nullptr */) {
JS::AutoCheckCannotGC nogc;
if (isTypedArrayOutOfRange) {
*isTypedArrayOutOfRange = false;
}
if (obj->isNative()) {
// Search for a native dense element, typed array element, or property.
if (JSID_IS_INT(id) &&
obj->as<NativeObject>().containsDenseElement(JSID_TO_INT(id))) {
propp->setDenseOrTypedArrayElement();
return true;
}
if (obj->is<TypedArrayObject>()) {
JS::Result<mozilla::Maybe<uint64_t>> index = IsTypedArrayIndex(cx, id);
if (index.isErr()) {
cx->recoverFromOutOfMemory();
return false;
}
if (index.inspect()) {
if (index.inspect().value() < obj->as<TypedArrayObject>().length()) {
propp->setDenseOrTypedArrayElement();
} else {
propp->setNotFound();
if (isTypedArrayOutOfRange) {
*isTypedArrayOutOfRange = true;
}
}
return true;
}
}
if (Shape* shape = obj->as<NativeObject>().lookupPure(id)) {
propp->setNativeProperty(shape);
return true;
}
// Fail if there's a resolve hook, unless the mayResolve hook tells
// us the resolve hook won't define a property with this id.
if (ClassMayResolveId(cx->names(), obj->getClass(), id, obj)) {
return false;
}
} else if (obj->is<TypedObject>()) {
if (obj->as<TypedObject>().typeDescr().hasProperty(cx->names(), id)) {
propp->setNonNativeProperty();
return true;
}
} else {
return false;
}
propp->setNotFound();
return true;
}
static inline bool NativeGetPureInline(NativeObject* pobj, jsid id,
PropertyResult prop, Value* vp,
JSContext* cx) {
if (prop.isDenseOrTypedArrayElement()) {
// For simplicity we ignore the TypedArray with string index case.
if (!JSID_IS_INT(id)) {
return false;
}
return pobj->getDenseOrTypedArrayElement<NoGC>(cx, JSID_TO_INT(id), vp);
}
// Fail if we have a custom getter.
Shape* shape = prop.shape();
if (!shape->isDataProperty()) {
return false;
}
*vp = pobj->getSlot(shape->slot());
MOZ_ASSERT(!vp->isMagic());
return true;
}
bool js::GetPropertyPure(JSContext* cx, JSObject* obj, jsid id, Value* vp) {
JSObject* pobj;
PropertyResult prop;
if (!LookupPropertyPure(cx, obj, id, &pobj, &prop)) {
return false;
}
if (!prop) {
vp->setUndefined();
return true;
}
return pobj->isNative() &&
NativeGetPureInline(&pobj->as<NativeObject>(), id, prop, vp, cx);
}
bool js::GetOwnPropertyPure(JSContext* cx, JSObject* obj, jsid id, Value* vp,
bool* found) {
PropertyResult prop;
if (!LookupOwnPropertyPure(cx, obj, id, &prop)) {
return false;
}
if (!prop) {
*found = false;
vp->setUndefined();
return true;
}
*found = true;
return obj->isNative() &&
NativeGetPureInline(&obj->as<NativeObject>(), id, prop, vp, cx);
}
static inline bool NativeGetGetterPureInline(PropertyResult prop,
JSFunction** fp) {
if (!prop.isDenseOrTypedArrayElement() && prop.shape()->hasGetterObject()) {
Shape* shape = prop.shape();
if (shape->getterObject()->is<JSFunction>()) {
*fp = &shape->getterObject()->as<JSFunction>();
return true;
}
}
*fp = nullptr;
return true;
}
bool js::GetGetterPure(JSContext* cx, JSObject* obj, jsid id, JSFunction** fp) {
/* Just like GetPropertyPure, but get getter function, without invoking
* it. */
JSObject* pobj;
PropertyResult prop;
if (!LookupPropertyPure(cx, obj, id, &pobj, &prop)) {
return false;
}
if (!prop) {
*fp = nullptr;
return true;
}
return prop.isNativeProperty() && NativeGetGetterPureInline(prop, fp);
}
bool js::GetOwnGetterPure(JSContext* cx, JSObject* obj, jsid id,
JSFunction** fp) {
JS::AutoCheckCannotGC nogc;
PropertyResult prop;
if (!LookupOwnPropertyPure(cx, obj, id, &prop)) {
return false;
}
if (!prop) {
*fp = nullptr;
return true;
}
return prop.isNativeProperty() && NativeGetGetterPureInline(prop, fp);
}
bool js::GetOwnNativeGetterPure(JSContext* cx, JSObject* obj, jsid id,
JSNative* native) {
JS::AutoCheckCannotGC nogc;
*native = nullptr;
PropertyResult prop;
if (!LookupOwnPropertyPure(cx, obj, id, &prop)) {
return false;
}
if (!prop || prop.isDenseOrTypedArrayElement() ||
!prop.shape()->hasGetterObject()) {
return true;
}
JSObject* getterObj = prop.shape()->getterObject();
if (!getterObj->is<JSFunction>()) {
return true;
}
JSFunction* getter = &getterObj->as<JSFunction>();
if (!getter->isNative()) {
return true;
}
*native = getter->native();
return true;
}
bool js::HasOwnDataPropertyPure(JSContext* cx, JSObject* obj, jsid id,
bool* result) {
PropertyResult prop;
if (!LookupOwnPropertyPure(cx, obj, id, &prop)) {
return false;
}
*result = prop && !prop.isDenseOrTypedArrayElement() &&
prop.shape()->isDataProperty();
return true;
}
bool js::GetPrototypeIfOrdinary(JSContext* cx, HandleObject obj,
bool* isOrdinary, MutableHandleObject protop) {
if (obj->is<js::ProxyObject>()) {
return js::Proxy::getPrototypeIfOrdinary(cx, obj, isOrdinary, protop);
}
*isOrdinary = true;
protop.set(obj->staticPrototype());
return true;
}
/*** ES6 standard internal methods ******************************************/
bool js::SetPrototype(JSContext* cx, HandleObject obj, HandleObject proto,
JS::ObjectOpResult& result) {
// The proxy trap subsystem fully handles prototype-setting for proxies
// with dynamic [[Prototype]]s.
if (obj->hasDynamicPrototype()) {
MOZ_ASSERT(obj->is<ProxyObject>());
return Proxy::setPrototype(cx, obj, proto, result);
}
/*
* ES6 9.1.2 step 3-4 if |obj.[[Prototype]]| has SameValue as |proto| return
* true. Since the values in question are objects, we can just compare
* pointers.
*/
if (proto == obj->staticPrototype()) {
return result.succeed();
}
/* Disallow mutation of immutable [[Prototype]]s. */
if (obj->staticPrototypeIsImmutable()) {
return result.fail(JSMSG_CANT_SET_PROTO);
}
/*
* Disallow mutating the [[Prototype]] on Typed Objects, per the spec.
*/
if (obj->is<TypedObject>()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_CANT_SET_PROTO_OF,
"incompatible TypedObject");
return false;
}
/* ES6 9.1.2 step 5 forbids changing [[Prototype]] if not [[Extensible]]. */
bool extensible;
if (!IsExtensible(cx, obj, &extensible)) {
return false;
}
if (!extensible) {
return result.fail(JSMSG_CANT_SET_PROTO);
}
// If this is a global object, resolve the Object class so that its
// [[Prototype]] chain is always properly immutable, even in the presence
// of lazy standard classes.
if (obj->is<GlobalObject>()) {
Handle<GlobalObject*> global = obj.as<GlobalObject>();
if (!GlobalObject::ensureConstructor(cx, global, JSProto_Object)) {
return false;
}
}
/*
* ES6 9.1.2 step 6 forbids generating cyclical prototype chains. But we
* have to do this comparison on the observable WindowProxy, not on the
* possibly-Window object we're setting the proto on.
*/
RootedObject objMaybeWindowProxy(cx, ToWindowProxyIfWindow(obj));
RootedObject obj2(cx, proto);
while (obj2) {
MOZ_ASSERT(!IsWindow(obj2));
if (obj2 == objMaybeWindowProxy) {
return result.fail(JSMSG_CANT_SET_PROTO_CYCLE);
}
bool isOrdinary;
if (!GetPrototypeIfOrdinary(cx, obj2, &isOrdinary, &obj2)) {
return false;
}
if (!isOrdinary) {
break;
}
}
Rooted<TaggedProto> taggedProto(cx, TaggedProto(proto));
if (!SetProto(cx, obj, taggedProto)) {
return false;
}
return result.succeed();
}
bool js::SetPrototype(JSContext* cx, HandleObject obj, HandleObject proto) {
ObjectOpResult result;
return SetPrototype(cx, obj, proto, result) && result.checkStrict(cx, obj);
}
bool js::PreventExtensions(JSContext* cx, HandleObject obj,
ObjectOpResult& result) {
if (obj->is<ProxyObject>()) {
return js::Proxy::preventExtensions(cx, obj, result);
}
if (!obj->nonProxyIsExtensible()) {
// If the following assertion fails, there's somewhere else a missing
// call to shrinkCapacityToInitializedLength() which needs to be found
// and fixed.
MOZ_ASSERT_IF(obj->isNative(),
obj->as<NativeObject>().getDenseInitializedLength() ==
obj->as<NativeObject>().getDenseCapacity());
return result.succeed();
}
if (obj->isNative()) {
// Force lazy properties to be resolved.
if (!ResolveLazyProperties(cx, obj.as<NativeObject>())) {
return false;
}
// Prepare the elements. We have to do this before we mark the object
// non-extensible; that's fine because these changes are not observable.
if (!ObjectElements::PreventExtensions(cx, &obj->as<NativeObject>())) {
return false;
}
}
if (!JSObject::setFlags(cx, obj, BaseShape::NOT_EXTENSIBLE,
JSObject::GENERATE_SHAPE)) {
return false;
}
return result.succeed();
}
bool js::PreventExtensions(JSContext* cx, HandleObject obj) {
ObjectOpResult result;
return PreventExtensions(cx, obj, result) && result.checkStrict(cx, obj);
}
bool js::GetOwnPropertyDescriptor(JSContext* cx, HandleObject obj, HandleId id,
MutableHandle<PropertyDescriptor> desc) {
if (GetOwnPropertyOp op = obj->getOpsGetOwnPropertyDescriptor()) {
bool ok = op(cx, obj, id, desc);
if (ok) {
desc.assertCompleteIfFound();
}
return ok;
}
return NativeGetOwnPropertyDescriptor(cx, obj.as<NativeObject>(), id, desc);
}
bool js::DefineProperty(JSContext* cx, HandleObject obj, HandleId id,
Handle<PropertyDescriptor> desc) {
ObjectOpResult result;
return DefineProperty(cx, obj, id, desc, result) &&
result.checkStrict(cx, obj, id);
}
bool js::DefineProperty(JSContext* cx, HandleObject obj, HandleId id,
Handle<PropertyDescriptor> desc,
ObjectOpResult& result) {
desc.assertValid();
if (DefinePropertyOp op = obj->getOpsDefineProperty()) {
return op(cx, obj, id, desc, result);
}
return NativeDefineProperty(cx, obj.as<NativeObject>(), id, desc, result);
}
bool js::DefineAccessorProperty(JSContext* cx, HandleObject obj, HandleId id,
HandleObject getter, HandleObject setter,
unsigned attrs, ObjectOpResult& result) {
Rooted<PropertyDescriptor> desc(cx);
{
GetterOp getterOp = JS_DATA_TO_FUNC_PTR(GetterOp, getter.get());
SetterOp setterOp = JS_DATA_TO_FUNC_PTR(SetterOp, setter.get());
desc.initFields(nullptr, UndefinedHandleValue, attrs, getterOp, setterOp);
}
if (DefinePropertyOp op = obj->getOpsDefineProperty()) {
MOZ_ASSERT(!cx->isHelperThreadContext());
return op(cx, obj, id, desc, result);
}
return NativeDefineProperty(cx, obj.as<NativeObject>(), id, desc, result);
}
bool js::DefineDataProperty(JSContext* cx, HandleObject obj, HandleId id,
HandleValue value, unsigned attrs,
ObjectOpResult& result) {
Rooted<PropertyDescriptor> desc(cx);
desc.initFields(nullptr, value, attrs, nullptr, nullptr);
if (DefinePropertyOp op = obj->getOpsDefineProperty()) {
MOZ_ASSERT(!cx->isHelperThreadContext());
return op(cx, obj, id, desc, result);
}
return NativeDefineProperty(cx, obj.as<NativeObject>(), id, desc, result);
}
bool js::DefineAccessorProperty(JSContext* cx, HandleObject obj, HandleId id,
HandleObject getter, HandleObject setter,
unsigned attrs) {
ObjectOpResult result;
if (!DefineAccessorProperty(cx, obj, id, getter, setter, attrs, result)) {
return false;
}
if (!result) {
MOZ_ASSERT(!cx->isHelperThreadContext());
result.reportError(cx, obj, id);
return false;
}
return true;
}
bool js::DefineDataProperty(JSContext* cx, HandleObject obj, HandleId id,
HandleValue value, unsigned attrs) {
ObjectOpResult result;
if (!DefineDataProperty(cx, obj, id, value, attrs, result)) {
return false;
}
if (!result) {
MOZ_ASSERT(!cx->isHelperThreadContext());
result.reportError(cx, obj, id);
return false;
}
return true;
}
bool js::DefineDataProperty(JSContext* cx, HandleObject obj, PropertyName* name,
HandleValue value, unsigned attrs) {
RootedId id(cx, NameToId(name));
return DefineDataProperty(cx, obj, id, value, attrs);
}
bool js::DefineDataElement(JSContext* cx, HandleObject obj, uint32_t index,
HandleValue value, unsigned attrs) {
RootedId id(cx);
if (!IndexToId(cx, index, &id)) {
return false;
}
return DefineDataProperty(cx, obj, id, value, attrs);
}
/*** SpiderMonkey nonstandard internal methods ******************************/
// Mark an object as having an immutable prototype
//
// NOTE: This does not correspond to the SetImmutablePrototype ECMAScript
// method.
bool js::SetImmutablePrototype(JSContext* cx, HandleObject obj,
bool* succeeded) {
if (obj->hasDynamicPrototype()) {
MOZ_ASSERT(!cx->isHelperThreadContext());
return Proxy::setImmutablePrototype(cx, obj, succeeded);
}
if (!JSObject::setFlags(cx, obj, BaseShape::IMMUTABLE_PROTOTYPE)) {
return false;
}
*succeeded = true;
return true;
}
bool js::GetPropertyDescriptor(JSContext* cx, HandleObject obj, HandleId id,
MutableHandle<PropertyDescriptor> desc) {
RootedObject pobj(cx);
for (pobj = obj; pobj;) {
if (!GetOwnPropertyDescriptor(cx, pobj, id, desc)) {
return false;
}
if (desc.object()) {
return true;
}
if (!GetPrototype(cx, pobj, &pobj)) {
return false;
}
}
MOZ_ASSERT(!desc.object());
return true;
}
/* * */
extern bool PropertySpecNameToId(JSContext* cx, JSPropertySpec::Name name,
MutableHandleId id,
js::PinningBehavior pin = js::DoNotPinAtom);
// If a property or method is part of an experimental feature that can be
// disabled at run-time by a preference, we keep it in the JSFunctionSpec /
// JSPropertySpec list, but omit the definition if the preference is off.
JS_FRIEND_API bool js::ShouldIgnorePropertyDefinition(JSContext* cx,
JSProtoKey key, jsid id) {
if (!cx->realm()->creationOptions().getToSourceEnabled() &&
(id == NameToId(cx->names().toSource) ||
id == NameToId(cx->names().uneval))) {
return true;
}
if (key == JSProto_FinalizationRegistry &&
cx->realm()->creationOptions().getWeakRefsEnabled() ==
JS::WeakRefSpecifier::EnabledWithoutCleanupSome &&
id == NameToId(cx->names().cleanupSome)) {
return true;
}
return false;
}
static bool DefineFunctionFromSpec(JSContext* cx, HandleObject obj,
const JSFunctionSpec* fs, unsigned flags,
DefineAsIntrinsic intrinsic) {
RootedId id(cx);
if (!PropertySpecNameToId(cx, fs->name, &id)) {
return false;
}
if (ShouldIgnorePropertyDefinition(cx, StandardProtoKeyOrNull(obj), id)) {
return true;
}
JSFunction* fun = NewFunctionFromSpec(cx, fs, id);
if (!fun) {
return false;
}
if (intrinsic == AsIntrinsic) {
fun->setIsIntrinsic();
}
RootedValue funVal(cx, ObjectValue(*fun));
return DefineDataProperty(cx, obj, id, funVal, flags & ~JSFUN_FLAGS_MASK);
}
bool js::DefineFunctions(JSContext* cx, HandleObject obj,
const JSFunctionSpec* fs,
DefineAsIntrinsic intrinsic) {
for (; fs->name; fs++) {
if (!DefineFunctionFromSpec(cx, obj, fs, fs->flags, intrinsic)) {
return false;
}
}
return true;
}
/*** ToPrimitive ************************************************************/
/*
* Gets |obj[id]|. If that value's not callable, returns true and stores an
* object value in *vp. If it's callable, calls it with no arguments and |obj|
* as |this|, returning the result in *vp.
*
* This is a mini-abstraction for ES6 draft rev 36 (2015 Mar 17),
* 7.1.1, second algorithm (OrdinaryToPrimitive), steps 5.a-c.
*/
static bool MaybeCallMethod(JSContext* cx, HandleObject obj, HandleId id,
MutableHandleValue vp) {
if (!GetProperty(cx, obj, obj, id, vp)) {
return false;
}
if (!IsCallable(vp)) {
vp.setObject(*obj);
return true;
}
return js::Call(cx, vp, obj, vp);
}
static bool ReportCantConvert(JSContext* cx, unsigned errorNumber,
HandleObject obj, JSType hint) {
const JSClass* clasp = obj->getClass();
// Avoid recursive death when decompiling in ReportValueError.
RootedString str(cx);
if (hint == JSTYPE_STRING) {
str = JS_AtomizeAndPinString(cx, clasp->name);
if (!str) {
return false;
}
} else {
str = nullptr;
}
RootedValue val(cx, ObjectValue(*obj));
ReportValueError(cx, errorNumber, JSDVG_SEARCH_STACK, val, str,
hint == JSTYPE_UNDEFINED
? "primitive type"
: hint == JSTYPE_STRING ? "string" : "number");
return false;
}
bool JS::OrdinaryToPrimitive(JSContext* cx, HandleObject obj, JSType hint,
MutableHandleValue vp) {
MOZ_ASSERT(hint == JSTYPE_NUMBER || hint == JSTYPE_STRING ||
hint == JSTYPE_UNDEFINED);
Rooted<jsid> id(cx);
const JSClass* clasp = obj->getClass();
if (hint == JSTYPE_STRING) {
id = NameToId(cx->names().toString);
/* Optimize (new String(...)).toString(). */
if (clasp == &StringObject::class_) {
StringObject* nobj = &obj->as<StringObject>();
if (HasNativeMethodPure(nobj, cx->names().toString, str_toString, cx)) {
vp.setString(nobj->unbox());
return true;
}
}
if (!MaybeCallMethod(cx, obj, id, vp)) {
return false;
}
if (vp.isPrimitive()) {
return true;
}
id = NameToId(cx->names().valueOf);
if (!MaybeCallMethod(cx, obj, id, vp)) {
return false;
}
if (vp.isPrimitive()) {
return true;
}
} else {
id = NameToId(cx->names().valueOf);
/* Optimize new String(...).valueOf(). */
if (clasp == &StringObject::class_) {
StringObject* nobj = &obj->as<StringObject>();
if (HasNativeMethodPure(nobj, cx->names().valueOf, str_toString, cx)) {
vp.setString(nobj->unbox());
return true;
}
}
/* Optimize new Number(...).valueOf(). */
if (clasp == &NumberObject::class_) {
NumberObject* nobj = &obj->as<NumberObject>();
if (HasNativeMethodPure(nobj, cx->names().valueOf, num_valueOf, cx)) {
vp.setNumber(nobj->unbox());
return true;
}
}
if (!MaybeCallMethod(cx, obj, id, vp)) {
return false;
}
if (vp.isPrimitive()) {
return true;
}
id = NameToId(cx->names().toString);
if (!MaybeCallMethod(cx, obj, id, vp)) {
return false;
}
if (vp.isPrimitive()) {
return true;
}
}
return ReportCantConvert(cx, JSMSG_CANT_CONVERT_TO, obj, hint);
}
bool js::ToPrimitiveSlow(JSContext* cx, JSType preferredType,
MutableHandleValue vp) {
// Step numbers refer to the first algorithm listed in ES6 draft rev 36
// (2015 Mar 17) 7.1.1 ToPrimitive.
MOZ_ASSERT(preferredType == JSTYPE_UNDEFINED ||
preferredType == JSTYPE_STRING || preferredType == JSTYPE_NUMBER);
RootedObject obj(cx, &vp.toObject());
// Steps 4-5.
RootedValue method(cx);
if (!GetInterestingSymbolProperty(cx, obj, cx->wellKnownSymbols().toPrimitive,
&method)) {
return false;
}
// Step 6.
if (!method.isNullOrUndefined()) {
// Step 6 of GetMethod. js::Call() below would do this check and throw a
// TypeError anyway, but this produces a better error message.
if (!IsCallable(method)) {
return ReportCantConvert(cx, JSMSG_TOPRIMITIVE_NOT_CALLABLE, obj,
preferredType);
}
// Steps 1-3, 6.a-b.
RootedValue arg0(cx, StringValue(preferredType == JSTYPE_STRING
? cx->names().string
: preferredType == JSTYPE_NUMBER
? cx->names().number
: cx->names().default_));
if (!js::Call(cx, method, vp, arg0, vp)) {
return false;
}
// Steps 6.c-d.
if (vp.isObject()) {
return ReportCantConvert(cx, JSMSG_TOPRIMITIVE_RETURNED_OBJECT, obj,
preferredType);
}
return true;
}
return OrdinaryToPrimitive(cx, obj, preferredType, vp);
}
/* ES6 draft rev 28 (2014 Oct 14) 7.1.14 */
bool js::ToPropertyKeySlow(JSContext* cx, HandleValue argument,
MutableHandleId result) {
MOZ_ASSERT(argument.isObject());
// Steps 1-2.
RootedValue key(cx, argument);
if (!ToPrimitiveSlow(cx, JSTYPE_STRING, &key)) {
return false;
}
// Steps 3-4.
return PrimitiveValueToId<CanGC>(cx, key, result);
}
/* * */
bool js::IsPrototypeOf(JSContext* cx, HandleObject protoObj, JSObject* obj,
bool* result) {
RootedObject obj2(cx, obj);
for (;;) {
// The [[Prototype]] chain might be cyclic.
if (!CheckForInterrupt(cx)) {
return false;
}
if (!GetPrototype(cx, obj2, &obj2)) {
return false;
}
if (!obj2) {
*result = false;
return true;
}
if (obj2 == protoObj) {
*result = true;
return true;
}
}
}
JSObject* js::PrimitiveToObject(JSContext* cx, const Value& v) {
if (v.isString()) {
Rooted<JSString*> str(cx, v.toString());
return StringObject::create(cx, str);
}
if (v.isNumber()) {
return NumberObject::create(cx, v.toNumber());
}
if (v.isBoolean()) {
return BooleanObject::create(cx, v.toBoolean());
}
if (v.isSymbol()) {
RootedSymbol symbol(cx, v.toSymbol());
return SymbolObject::create(cx, symbol);
}
MOZ_ASSERT(v.isBigInt());
RootedBigInt bigInt(cx, v.toBigInt());
return BigIntObject::create(cx, bigInt);
}
// Like PrimitiveToObject, but returns the JSProtoKey of the prototype that
// would be used without actually creating the object.
JSProtoKey js::PrimitiveToProtoKey(JSContext* cx, const Value& v) {
if (v.isString()) {
return JSProto_String;
}
if (v.isNumber()) {
return JSProto_Number;
}
if (v.isBoolean()) {
return JSProto_Boolean;
}
if (v.isSymbol()) {
return JSProto_Symbol;
}
MOZ_ASSERT(v.isBigInt());
return JSProto_BigInt;
}
/*
* Invokes the ES5 ToObject algorithm on vp, returning the result. If vp might
* already be an object, use ToObject. reportScanStack controls how null and
* undefined errors are reported.
*
* Callers must handle the already-object case.
*/
JSObject* js::ToObjectSlow(JSContext* cx, JS::HandleValue val,
bool reportScanStack) {
MOZ_ASSERT(!val.isMagic());
MOZ_ASSERT(!val.isObject());
if (val.isNullOrUndefined()) {
ReportIsNullOrUndefinedForPropertyAccess(
cx, val, reportScanStack ? JSDVG_SEARCH_STACK : JSDVG_IGNORE_STACK);
return nullptr;
}
return PrimitiveToObject(cx, val);
}
JSObject* js::ToObjectSlowForPropertyAccess(JSContext* cx, JS::HandleValue val,
int valIndex, HandleId key) {
MOZ_ASSERT(!val.isMagic());
MOZ_ASSERT(!val.isObject());
if (val.isNullOrUndefined()) {
ReportIsNullOrUndefinedForPropertyAccess(cx, val, valIndex, key);
return nullptr;
}
return PrimitiveToObject(cx, val);
}
JSObject* js::ToObjectSlowForPropertyAccess(JSContext* cx, JS::HandleValue val,
int valIndex,
HandlePropertyName key) {
MOZ_ASSERT(!val.isMagic());
MOZ_ASSERT(!val.isObject());
if (val.isNullOrUndefined()) {
RootedId keyId(cx, NameToId(key));
ReportIsNullOrUndefinedForPropertyAccess(cx, val, valIndex, keyId);
return nullptr;
}
return PrimitiveToObject(cx, val);
}
JSObject* js::ToObjectSlowForPropertyAccess(JSContext* cx, JS::HandleValue val,
int valIndex,
HandleValue keyValue) {
MOZ_ASSERT(!val.isMagic());
MOZ_ASSERT(!val.isObject());
if (val.isNullOrUndefined()) {
RootedId key(cx);
if (keyValue.isPrimitive()) {
if (!PrimitiveValueToId<CanGC>(cx, keyValue, &key)) {
return nullptr;
}
ReportIsNullOrUndefinedForPropertyAccess(cx, val, valIndex, key);
} else {
ReportIsNullOrUndefinedForPropertyAccess(cx, val, valIndex);
}
return nullptr;
}
return PrimitiveToObject(cx, val);
}
JSObject* js::GetThisObject(JSObject* obj) {
// Use the WindowProxy if the global is a Window, as Window must never be
// exposed to script.
if (obj->is<GlobalObject>()) {
return ToWindowProxyIfWindow(obj);
}
// We should not expose any environments except NSVOs to script. The NSVO is
// pretending to be the global object in this case.
MOZ_ASSERT(obj->is<NonSyntacticVariablesObject>() ||
!obj->is<EnvironmentObject>());
return obj;
}
JSObject* js::GetThisObjectOfLexical(JSObject* env) {
MOZ_ASSERT(IsExtensibleLexicalEnvironment(env));
return env->as<LexicalEnvironmentObject>().thisObject();
}
JSObject* js::GetThisObjectOfWith(JSObject* env) {
MOZ_ASSERT(env->is<WithEnvironmentObject>());
return GetThisObject(env->as<WithEnvironmentObject>().withThis());
}
class GetObjectSlotNameFunctor : public JS::CallbackTracer::ContextFunctor {
JSObject* obj;
public:
explicit GetObjectSlotNameFunctor(JSObject* ctx) : obj(ctx) {}
virtual void operator()(JS::CallbackTracer* trc, char* buf,
size_t bufsize) override;
};
void GetObjectSlotNameFunctor::operator()(JS::CallbackTracer* trc, char* buf,
size_t bufsize) {
MOZ_ASSERT(trc->contextIndex() != JS::CallbackTracer::InvalidIndex);
uint32_t slot = uint32_t(trc->contextIndex());
Shape* shape;
if (obj->isNative()) {
shape = obj->as<NativeObject>().lastProperty();
while (shape && (shape->isEmptyShape() || !shape->isDataProperty() ||
shape->slot() != slot)) {
shape = shape->previous();
}
} else {
shape = nullptr;
}
if (!shape) {
do {
const char* slotname = nullptr;
const char* pattern = nullptr;
if (obj->is<GlobalObject>()) {
pattern = "CLASS_OBJECT(%s)";
if (false) {
;
}
#define TEST_SLOT_MATCHES_PROTOTYPE(name, clasp) \
else if ((JSProto_##name) == slot) { \
slotname = js_##name##_str; \
}
JS_FOR_EACH_PROTOTYPE(TEST_SLOT_MATCHES_PROTOTYPE)
#undef TEST_SLOT_MATCHES_PROTOTYPE
} else {
pattern = "%s";
if (obj->is<EnvironmentObject>()) {
if (slot == EnvironmentObject::enclosingEnvironmentSlot()) {
slotname = "enclosing_environment";
} else if (obj->is<CallObject>()) {
if (slot == CallObject::calleeSlot()) {
slotname = "callee_slot";
}
} else if (obj->is<WithEnvironmentObject>()) {
if (slot == WithEnvironmentObject::objectSlot()) {
slotname = "with_object";
} else if (slot == WithEnvironmentObject::thisSlot()) {
slotname = "with_this";
}
}
}
}
if (slotname) {
snprintf(buf, bufsize, pattern, slotname);
} else {
snprintf(buf, bufsize, "**UNKNOWN SLOT %" PRIu32 "**", slot);
}
} while (false);
} else {
jsid propid = shape->propid();
if (JSID_IS_INT(propid)) {
snprintf(buf, bufsize, "%" PRId32, JSID_TO_INT(propid));
} else if (JSID_IS_ATOM(propid)) {
PutEscapedString(buf, bufsize, JSID_TO_ATOM(propid), 0);
} else if (JSID_IS_SYMBOL(propid)) {
snprintf(buf, bufsize, "**SYMBOL KEY**");
} else {
snprintf(buf, bufsize, "**FINALIZED ATOM KEY**");
}
}
}
/*** Debugging routines *****************************************************/
#if defined(DEBUG) || defined(JS_JITSPEW)
/*
* Routines to print out values during debugging. These are FRIEND_API to help
* the debugger find them and to support temporarily hacking js::Dump* calls
* into other code.
*/
static void dumpValue(const Value& v, js::GenericPrinter& out) {
switch (v.type()) {
case ValueType::Null:
out.put("null");
break;
case ValueType::Undefined:
out.put("undefined");
break;
case ValueType::Int32:
out.printf("%d", v.toInt32());
break;
case ValueType::Double:
out.printf("%g", v.toDouble());
break;
case ValueType::String:
v.toString()->dumpNoNewline(out);
break;
case ValueType::Symbol:
v.toSymbol()->dump(out);
break;
case ValueType::BigInt:
v.toBigInt()->dump(out);
break;
case ValueType::Object:
if (v.toObject().is<JSFunction>()) {
JSFunction* fun = &v.toObject().as<JSFunction>();
if (fun->displayAtom()) {
out.put("<function ");
EscapedStringPrinter(out, fun->displayAtom(), 0);
} else {
out.put("<unnamed function");
}
if (fun->hasBaseScript()) {
BaseScript* script = fun->baseScript();
out.printf(" (%s:%u)", script->filename() ? script->filename() : "",
script->lineno());
}
out.printf(" at %p>", (void*)fun);
} else {
JSObject* obj = &v.toObject();
const JSClass* clasp = obj->getClass();
out.printf("<%s%s at %p>", clasp->name,
(clasp == &PlainObject::class_) ? "" : " object",
(void*)obj);
}
break;
case ValueType::Boolean:
if (v.toBoolean()) {
out.put("true");
} else {
out.put("false");
}
break;
case ValueType::Magic:
out.put("<magic");
switch (v.whyMagic()) {
case JS_ELEMENTS_HOLE:
out.put(" elements hole");
break;
case JS_NO_ITER_VALUE:
out.put(" no iter value");
break;
case JS_GENERATOR_CLOSING:
out.put(" generator closing");
break;
case JS_OPTIMIZED_OUT:
out.put(" optimized out");
break;
default:
out.put(" ?!");
break;
}
out.putChar('>');
break;
case ValueType::PrivateGCThing:
out.printf("<PrivateGCThing %p>", v.toGCThing());
break;
}
}
namespace js {
// We don't want jsfriendapi.h to depend on GenericPrinter,
// so these functions are declared directly in the cpp.
JS_FRIEND_API void DumpValue(const JS::Value& val, js::GenericPrinter& out);
JS_FRIEND_API void DumpId(jsid id, js::GenericPrinter& out);
JS_FRIEND_API void DumpInterpreterFrame(JSContext* cx, js::GenericPrinter& out,
InterpreterFrame* start = nullptr);
} // namespace js
JS_FRIEND_API void js::DumpValue(const Value& val, js::GenericPrinter& out) {
dumpValue(val, out);
out.putChar('\n');
}
JS_FRIEND_API void js::DumpId(jsid id, js::GenericPrinter& out) {
out.printf("jsid %p = ", (void*)JSID_BITS(id));
dumpValue(IdToValue(id), out);
out.putChar('\n');
}
static void DumpProperty(const NativeObject* obj, Shape& shape,
js::GenericPrinter& out) {
jsid id = shape.propid();
if (JSID_IS_ATOM(id)) {
JSID_TO_ATOM(id)->dumpCharsNoNewline(out);
} else if (JSID_IS_INT(id)) {
out.printf("%d", JSID_TO_INT(id));
} else if (JSID_IS_SYMBOL(id)) {
JSID_TO_SYMBOL(id)->dump(out);
} else {
out.printf("id %p", reinterpret_cast<void*>(JSID_BITS(id)));
}
if (shape.isDataProperty()) {
out.printf(": ");
dumpValue(obj->getSlot(shape.maybeSlot()), out);
}
out.printf(" (shape %p", (void*)&shape);
uint8_t attrs = shape.attributes();
if (attrs & JSPROP_ENUMERATE) out.put(" enumerate");
if (attrs & JSPROP_READONLY) out.put(" readonly");
if (attrs & JSPROP_PERMANENT) out.put(" permanent");
if (shape.hasGetterValue()) {
out.printf(" getterValue %p", shape.getterObject());
} else if (!shape.hasDefaultGetter()) {
out.printf(" getterOp %p", JS_FUNC_TO_DATA_PTR(void*, shape.getterOp()));
}
if (shape.hasSetterValue()) {
out.printf(" setterValue %p", shape.setterObject());
} else if (!shape.hasDefaultSetter()) {
out.printf(" setterOp %p", JS_FUNC_TO_DATA_PTR(void*, shape.setterOp()));
}
if (shape.isDataProperty()) {
out.printf(" slot %u", shape.maybeSlot());
}
out.printf(")\n");
}
bool JSObject::hasSameRealmAs(JSContext* cx) const {
return nonCCWRealm() == cx->realm();
}
bool JSObject::uninlinedIsProxy() const { return is<ProxyObject>(); }
bool JSObject::uninlinedNonProxyIsExtensible() const {
return nonProxyIsExtensible();
}
void JSObject::dump(js::GenericPrinter& out) const {
const JSObject* obj = this;
out.printf("object %p\n", obj);
if (IsCrossCompartmentWrapper(this)) {
out.printf(" compartment %p\n", compartment());
} else {
JSObject* globalObj = &nonCCWGlobal();
out.printf(" global %p [%s]\n", globalObj, globalObj->getClass()->name);
}
const JSClass* clasp = obj->getClass();
out.printf(" class %p %s\n", clasp, clasp->name);
if (obj->hasLazyGroup()) {
out.put(" lazy group\n");
} else {
const ObjectGroup* group = obj->group();
out.printf(" group %p\n", group);
}
out.put(" flags:");
if (obj->isDelegate()) out.put(" delegate");
if (!obj->is<ProxyObject>() && !obj->nonProxyIsExtensible())
out.put(" not_extensible");
if (obj->maybeHasInterestingSymbolProperty())
out.put(" maybe_has_interesting_symbol");
if (obj->isBoundFunction()) out.put(" bound_function");
if (obj->isQualifiedVarObj()) out.put(" varobj");
if (obj->isUnqualifiedVarObj()) out.put(" unqualified_varobj");
if (obj->isIteratedSingleton()) out.put(" iterated_singleton");
if (obj->isNewGroupUnknown()) out.put(" new_type_unknown");
if (obj->hasUncacheableProto()) out.put(" has_uncacheable_proto");
if (obj->hasStaticPrototype() && obj->staticPrototypeIsImmutable()) {
out.put(" immutable_prototype");
}
const NativeObject* nobj =
obj->isNative() ? &obj->as<NativeObject>() : nullptr;
if (nobj) {
if (nobj->inDictionaryMode()) {
out.put(" inDictionaryMode");
}
if (nobj->hasShapeTable()) {
out.put(" hasShapeTable");
}
if (nobj->hasShapeIC()) {
out.put(" hasShapeCache");
}
if (nobj->hadElementsAccess()) {
out.put(" had_elements_access");
}
if (nobj->isIndexed()) {
out.put(" indexed");
}
if (nobj->denseElementsAreCopyOnWrite()) {
out.put(" copy_on_write_elements");
}
if (!nobj->denseElementsArePacked()) {
out.put(" non_packed_elements");
}
if (nobj->denseElementsAreSealed()) {
out.put(" sealed_elements");
}
if (nobj->denseElementsAreFrozen()) {
out.put(" frozen_elements");
}
if (nobj->getElementsHeader()->maybeInIteration()) {
out.put(" elements_maybe_in_iteration");
}
} else {
out.put(" not_native\n");
}
out.putChar('\n');
out.put(" proto ");
TaggedProto proto = obj->taggedProto();
if (proto.isDynamic()) {
out.put("<dynamic>");
} else {
dumpValue(ObjectOrNullValue(proto.toObjectOrNull()), out);
}
out.putChar('\n');
if (nobj) {
if (clasp->flags & JSCLASS_HAS_PRIVATE) {
out.printf(" private %p\n", nobj->getPrivate());
}
uint32_t reserved = JSCLASS_RESERVED_SLOTS(clasp);
if (reserved) {
out.printf(" reserved slots:\n");
for (uint32_t i = 0; i < reserved; i++) {
out.printf(" %3u ", i);
out.put(": ");
dumpValue(nobj->getSlot(i), out);
out.putChar('\n');
}
}
out.put(" properties:\n");
Vector<Shape*, 8, SystemAllocPolicy> props;
for (Shape::Range<NoGC> r(nobj->lastProperty()); !r.empty(); r.popFront()) {
if (!props.append(&r.front())) {
out.printf("(OOM while appending properties)\n");
break;
}
}
for (size_t i = props.length(); i-- != 0;) {
out.printf(" ");
DumpProperty(nobj, *props[i], out);
}
uint32_t slots = nobj->getDenseInitializedLength();
if (slots) {
out.put(" elements:\n");
for (uint32_t i = 0; i < slots; i++) {
out.printf(" %3u: ", i);
dumpValue(nobj->getDenseElement(i), out);
out.putChar('\n');
}
}
}
}
// For debuggers.
void JSObject::dump() const {
Fprinter out(stderr);
dump(out);
}
static void MaybeDumpScope(Scope* scope, js::GenericPrinter& out) {
if (scope) {
out.printf(" scope: %s\n", ScopeKindString(scope->kind()));
for (BindingIter bi(scope); bi; bi++) {
out.put(" ");
dumpValue(StringValue(bi.name()), out);
out.putChar('\n');
}
}
}
static void MaybeDumpValue(const char* name, const Value& v,
js::GenericPrinter& out) {
if (!v.isNull()) {
out.printf(" %s: ", name);
dumpValue(v, out);
out.putChar('\n');
}
}
JS_FRIEND_API void js::DumpInterpreterFrame(JSContext* cx,
js::GenericPrinter& out,
InterpreterFrame* start) {
/* This should only called during live debugging. */
ScriptFrameIter i(cx);
if (!start) {
if (i.done()) {
out.printf("no stack for cx = %p\n", (void*)cx);
return;
}
} else {
while (!i.done() && !i.isJSJit() && i.interpFrame() != start) {
++i;
}
if (i.done()) {
out.printf("fp = %p not found in cx = %p\n", (void*)start, (void*)cx);
return;
}
}
for (; !i.done(); ++i) {
if (i.isJSJit()) {
out.put("JIT frame\n");
} else {
out.printf("InterpreterFrame at %p\n", (void*)i.interpFrame());
}
if (i.isFunctionFrame()) {
out.put("callee fun: ");
RootedValue v(cx);
JSObject* fun = i.callee(cx);
v.setObject(*fun);
dumpValue(v, out);
} else {
out.put("global or eval frame, no callee");
}
out.putChar('\n');
out.printf("file %s line %u\n", i.script()->filename(),
i.script()->lineno());
if (jsbytecode* pc = i.pc()) {
out.printf(" pc = %p\n", pc);
out.printf(" current op: %s\n", CodeName(JSOp(*pc)));
MaybeDumpScope(i.script()->lookupScope(pc), out);
}
if (i.isFunctionFrame()) {
MaybeDumpValue("this", i.thisArgument(cx), out);
}
if (!i.isJSJit()) {
out.put(" rval: ");
dumpValue(i.interpFrame()->returnValue(), out);
out.putChar('\n');
}
out.put(" flags:");
if (i.isConstructing()) {
out.put(" constructing");
}
if (!i.isJSJit() && i.interpFrame()->isDebuggerEvalFrame()) {
out.put(" debugger eval");
}
if (i.isEvalFrame()) {
out.put(" eval");
}
out.putChar('\n');
out.printf(" envChain: (JSObject*) %p\n", (void*)i.environmentChain(cx));
out.putChar('\n');
}
}
#endif /* defined(DEBUG) || defined(JS_JITSPEW) */
namespace js {
// We don't want jsfriendapi.h to depend on GenericPrinter,
// so these functions are declared directly in the cpp.
JS_FRIEND_API void DumpBacktrace(JSContext* cx, js::GenericPrinter& out);
} // namespace js
JS_FRIEND_API void js::DumpBacktrace(JSContext* cx, FILE* fp) {
Fprinter out(fp);
js::DumpBacktrace(cx, out);
}
JS_FRIEND_API void js::DumpBacktrace(JSContext* cx, js::GenericPrinter& out) {
size_t depth = 0;
for (AllFramesIter i(cx); !i.done(); ++i, ++depth) {
const char* filename;
unsigned line;
if (i.hasScript()) {
filename = JS_GetScriptFilename(i.script());
line = PCToLineNumber(i.script(), i.pc());
} else {
filename = i.filename();
line = i.computeLine();
}
char frameType =
i.isInterp()
? 'i'
: i.isBaseline() ? 'b' : i.isIon() ? 'I' : i.isWasm() ? 'W' : '?';
out.printf("#%zu %14p %c %s:%u", depth, i.rawFramePtr(), frameType,
filename, line);
if (i.hasScript()) {
out.printf(" (%p @ %zu)\n", i.script(), i.script()->pcToOffset(i.pc()));
} else {
out.printf(" (%p)\n", i.pc());
}
}
}
JS_FRIEND_API void js::DumpBacktrace(JSContext* cx) {
DumpBacktrace(cx, stdout);
}
/* * */
js::gc::AllocKind JSObject::allocKindForTenure(
const js::Nursery& nursery) const {
using namespace js::gc;
MOZ_ASSERT(IsInsideNursery(this));
if (is<ArrayObject>()) {
const ArrayObject& aobj = as<ArrayObject>();
MOZ_ASSERT(aobj.numFixedSlots() == 0);
/* Use minimal size object if we are just going to copy the pointer. */
if (!nursery.isInside(aobj.getElementsHeader())) {
return gc::AllocKind::OBJECT0_BACKGROUND;
}
size_t nelements = aobj.getDenseCapacity();
return ForegroundToBackgroundAllocKind(GetGCArrayKind(nelements));
}
if (is<JSFunction>()) {
return as<JSFunction>().getAllocKind();
}
/*
* Typed arrays in the nursery may have a lazily allocated buffer, make
* sure there is room for the array's fixed data when moving the array.
*/
if (is<TypedArrayObject>() && !as<TypedArrayObject>().hasBuffer()) {
gc::AllocKind allocKind;
if (as<TypedArrayObject>().hasInlineElements()) {
size_t nbytes = as<TypedArrayObject>().byteLength();
allocKind = TypedArrayObject::AllocKindForLazyBuffer(nbytes);
} else {
allocKind = GetGCObjectKind(getClass());
}
return ForegroundToBackgroundAllocKind(allocKind);
}
// Proxies that are CrossCompartmentWrappers may be nursery allocated.
if (IsProxy(this)) {
return as<ProxyObject>().allocKindForTenure();
}
// Inlined typed objects are followed by their data, so make sure we copy
// it all over to the new object.
if (is<InlineTypedObject>()) {
// Figure out the size of this object, from the prototype's TypeDescr.
// The objects we are traversing here are all tenured, so we don't need
// to check forwarding pointers.
TypeDescr& descr = as<InlineTypedObject>().typeDescr();
MOZ_ASSERT(!IsInsideNursery(&descr));
return InlineTypedObject::allocKindForTypeDescriptor(&descr);
}
// Outline typed objects use the minimum allocation kind.
if (is<OutlineTypedObject>()) {
return gc::AllocKind::OBJECT0;
}
// All nursery allocatable non-native objects are handled above.
return as<NativeObject>().allocKindForTenure();
}
void JSObject::addSizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf,
JS::ClassInfo* info) {
if (is<NativeObject>() && as<NativeObject>().hasDynamicSlots()) {
info->objectsMallocHeapSlots += mallocSizeOf(as<NativeObject>().slots_);
}
if (is<NativeObject>() && as<NativeObject>().hasDynamicElements()) {
js::ObjectElements* elements = as<NativeObject>().getElementsHeader();
if (!elements->isCopyOnWrite() || elements->ownerObject() == this) {
void* allocatedElements = as<NativeObject>().getUnshiftedElementsHeader();
info->objectsMallocHeapElementsNormal += mallocSizeOf(allocatedElements);
}
}
// Other things may be measured in the future if DMD indicates it is
// worthwhile.
if (is<JSFunction>() || is<PlainObject>() || is<ArrayObject>() ||
is<CallObject>() || is<RegExpObject>() || is<ProxyObject>()) {
// Do nothing. But this function is hot, and we win by getting the
// common cases out of the way early. Some stats on the most common
// classes, as measured during a vanilla browser session:
// - (53.7%, 53.7%): Function
// - (18.0%, 71.7%): Object
// - (16.9%, 88.6%): Array
// - ( 3.9%, 92.5%): Call
// - ( 2.8%, 95.3%): RegExp
// - ( 1.0%, 96.4%): Proxy
// Note that any JSClass that is special cased below likely needs to
// specify the JSCLASS_DELAY_METADATA_CALLBACK flag, or else we will
// probably crash if the object metadata callback attempts to get the
// size of the new object (which Debugger code does) before private
// slots are initialized.
} else if (is<ArgumentsObject>()) {
info->objectsMallocHeapMisc +=
as<ArgumentsObject>().sizeOfMisc(mallocSizeOf);
} else if (is<RegExpStaticsObject>()) {
info->objectsMallocHeapMisc +=
as<RegExpStaticsObject>().sizeOfData(mallocSizeOf);
} else if (is<PropertyIteratorObject>()) {
info->objectsMallocHeapMisc +=
as<PropertyIteratorObject>().sizeOfMisc(mallocSizeOf);
} else if (is<ArrayBufferObject>()) {
ArrayBufferObject::addSizeOfExcludingThis(this, mallocSizeOf, info);
} else if (is<SharedArrayBufferObject>()) {
SharedArrayBufferObject::addSizeOfExcludingThis(this, mallocSizeOf, info);
} else if (is<WeakCollectionObject>()) {
info->objectsMallocHeapMisc +=
as<WeakCollectionObject>().sizeOfExcludingThis(mallocSizeOf);
#ifdef JS_HAS_CTYPES
} else {
// This must be the last case.
info->objectsMallocHeapMisc +=
js::SizeOfDataIfCDataObject(mallocSizeOf, const_cast<JSObject*>(this));
#endif
}
}
size_t JSObject::sizeOfIncludingThisInNursery() const {
// This function doesn't concern itself yet with typed objects (bug 1133593).
MOZ_ASSERT(!isTenured());
const Nursery& nursery = runtimeFromMainThread()->gc.nursery();
size_t size = gc::Arena::thingSize(allocKindForTenure(nursery));
if (is<NativeObject>()) {
const NativeObject& native = as<NativeObject>();
size += native.numFixedSlots() * sizeof(Value);
size += native.numDynamicSlots() * sizeof(Value);
if (native.hasDynamicElements()) {
js::ObjectElements& elements = *native.getElementsHeader();
if (!elements.isCopyOnWrite() || elements.ownerObject() == this) {
size += (elements.capacity + elements.numShiftedElements()) *
sizeof(HeapSlot);
}
}
if (is<ArgumentsObject>()) {
size += as<ArgumentsObject>().sizeOfData();
}
}
return size;
}
JS::ubi::Node::Size JS::ubi::Concrete<JSObject>::size(
mozilla::MallocSizeOf mallocSizeOf) const {
JSObject& obj = get();
if (!obj.isTenured()) {
return obj.sizeOfIncludingThisInNursery();
}
JS::ClassInfo info;
obj.addSizeOfExcludingThis(mallocSizeOf, &info);
return obj.tenuredSizeOfThis() + info.sizeOfAllThings();
}
const char16_t JS::ubi::Concrete<JSObject>::concreteTypeName[] = u"JSObject";
void JSObject::traceChildren(JSTracer* trc) {
TraceCellHeaderEdge(trc, this, "group");
traceShape(trc);
const JSClass* clasp = groupRaw()->clasp();
if (clasp->isNative()) {
NativeObject* nobj = &as<NativeObject>();
{
GetObjectSlotNameFunctor func(nobj);
JS::AutoTracingDetails ctx(trc, func);
JS::AutoTracingIndex index(trc);
// Tracing can mutate the target but cannot change the slot count,
// but the compiler has no way of knowing this.
const uint32_t nslots = nobj->slotSpan();
for (uint32_t i = 0; i < nslots; ++i) {
TraceEdge(trc, &nobj->getSlotRef(i), "object slot");
++index;
}
MOZ_ASSERT(nslots == nobj->slotSpan());
}
do {
if (nobj->denseElementsAreCopyOnWrite()) {
GCPtrNativeObject& owner = nobj->getElementsHeader()->ownerObject();
if (owner != nobj) {
TraceEdge(trc, &owner, "objectElementsOwner");
break;
}
}
TraceRange(
trc, nobj->getDenseInitializedLength(),
static_cast<HeapSlot*>(nobj->getDenseElementsAllowCopyOnWrite()),
"objectElements");
} while (false);
}
// Call the trace hook at the end so that during a moving GC the trace hook
// will see updated fields and slots.
if (clasp->hasTrace()) {
clasp->doTrace(trc, this);
}
if (trc->isMarkingTracer()) {
GCMarker::fromTracer(trc)->markImplicitEdges(this);
}
}
static JSAtom* displayAtomFromObjectGroup(ObjectGroup& group) {
AutoSweepObjectGroup sweep(&group);
TypeNewScript* script = group.newScript(sweep);
if (!script) {
return nullptr;
}
return script->function()->displayAtom();
}
/* static */
bool JSObject::constructorDisplayAtom(JSContext* cx, js::HandleObject obj,
js::MutableHandleAtom name) {
ObjectGroup* g = JSObject::getGroup(cx, obj);
if (!g) {
return false;
}
name.set(displayAtomFromObjectGroup(*g));
return true;
}
JSAtom* JSObject::maybeConstructorDisplayAtom() const {
if (hasLazyGroup()) {
return nullptr;
}
return displayAtomFromObjectGroup(*group());
}
// ES 2016 7.3.20.
MOZ_MUST_USE JSObject* js::SpeciesConstructor(
JSContext* cx, HandleObject obj, HandleObject defaultCtor,
bool (*isDefaultSpecies)(JSContext*, JSFunction*)) {
// Step 1 (implicit).
// Fast-path for steps 2 - 8. Applies if all of the following conditions
// are met:
// - obj.constructor can be retrieved without side-effects.
// - obj.constructor[[@@species]] can be retrieved without side-effects.
// - obj.constructor[[@@species]] is the builtin's original @@species
// getter.
RootedValue ctor(cx);
bool ctorGetSucceeded = GetPropertyPure(
cx, obj, NameToId(cx->names().constructor), ctor.address());
if (ctorGetSucceeded && ctor.isObject() && &ctor.toObject() == defaultCtor) {
jsid speciesId = SYMBOL_TO_JSID(cx->wellKnownSymbols().species);
JSFunction* getter;
if (GetGetterPure(cx, defaultCtor, speciesId, &getter) && getter &&
isDefaultSpecies(cx, getter)) {
return defaultCtor;
}
}
// Step 2.
if (!ctorGetSucceeded &&
!GetProperty(cx, obj, obj, cx->names().constructor, &ctor)) {
return nullptr;
}
// Step 3.
if (ctor.isUndefined()) {
return defaultCtor;
}
// Step 4.
if (!ctor.isObject()) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
JSMSG_OBJECT_REQUIRED,
"object's 'constructor' property");
return nullptr;
}
// Step 5.
RootedObject ctorObj(cx, &ctor.toObject());
RootedValue s(cx);
RootedId speciesId(cx, SYMBOL_TO_JSID(cx->wellKnownSymbols().species));
if (!GetProperty(cx, ctorObj, ctor, speciesId, &s)) {
return nullptr;
}
// Step 6.
if (s.isNullOrUndefined()) {
return defaultCtor;
}
// Step 7.
if (IsConstructor(s)) {
return &s.toObject();
}
// Step 8.
JS_ReportErrorNumberASCII(
cx, GetErrorMessage, nullptr, JSMSG_NOT_CONSTRUCTOR,
"[Symbol.species] property of object's constructor");
return nullptr;
}
MOZ_MUST_USE JSObject* js::SpeciesConstructor(
JSContext* cx, HandleObject obj, JSProtoKey ctorKey,
bool (*isDefaultSpecies)(JSContext*, JSFunction*)) {
RootedObject defaultCtor(cx,
GlobalObject::getOrCreateConstructor(cx, ctorKey));
if (!defaultCtor) {
return nullptr;
}
return SpeciesConstructor(cx, obj, defaultCtor, isDefaultSpecies);
}
bool js::Unbox(JSContext* cx, HandleObject obj, MutableHandleValue vp) {
if (MOZ_UNLIKELY(obj->is<ProxyObject>())) {
return Proxy::boxedValue_unbox(cx, obj, vp);
}
if (obj->is<BooleanObject>()) {
vp.setBoolean(obj->as<BooleanObject>().unbox());
} else if (obj->is<NumberObject>()) {
vp.setNumber(obj->as<NumberObject>().unbox());
} else if (obj->is<StringObject>()) {
vp.setString(obj->as<StringObject>().unbox());
} else if (obj->is<DateObject>()) {
vp.set(obj->as<DateObject>().UTCTime());
} else if (obj->is<SymbolObject>()) {
vp.setSymbol(obj->as<SymbolObject>().unbox());
} else if (obj->is<BigIntObject>()) {
vp.setBigInt(obj->as<BigIntObject>().unbox());
} else {
vp.setUndefined();
}
return true;
}
#ifdef DEBUG
/* static */
void JSObject::debugCheckNewObject(ObjectGroup* group, Shape* shape,
js::gc::AllocKind allocKind,
js::gc::InitialHeap heap) {
const JSClass* clasp = group->clasp();
MOZ_ASSERT(clasp != &ArrayObject::class_);
MOZ_ASSERT_IF(shape, clasp == shape->getObjectClass());
if (!ClassCanHaveFixedData(clasp)) {
MOZ_ASSERT(shape);
MOZ_ASSERT(gc::GetGCKindSlots(allocKind, clasp) == shape->numFixedSlots());
}
// Classes with a finalizer must specify whether instances will be finalized
// on the main thread or in the background, except proxies whose behaviour
// depends on the target object.
static const uint32_t FinalizeMask =
JSCLASS_FOREGROUND_FINALIZE | JSCLASS_BACKGROUND_FINALIZE;
uint32_t flags = clasp->flags;
uint32_t finalizeFlags = flags & FinalizeMask;
if (clasp->hasFinalize() && !clasp->isProxy()) {
MOZ_ASSERT(finalizeFlags == JSCLASS_FOREGROUND_FINALIZE ||
finalizeFlags == JSCLASS_BACKGROUND_FINALIZE);
MOZ_ASSERT((finalizeFlags == JSCLASS_BACKGROUND_FINALIZE) ==
IsBackgroundFinalized(allocKind));
} else {
MOZ_ASSERT(finalizeFlags == 0);
}
MOZ_ASSERT_IF(clasp->hasFinalize(),
heap == gc::TenuredHeap ||
CanNurseryAllocateFinalizedClass(clasp) ||
clasp->isProxy());
MOZ_ASSERT_IF(group->hasUnanalyzedPreliminaryObjects(),
heap == gc::TenuredHeap);
// Check that the group's shouldPreTenure flag is respected but ignore
// environment objects that the JIT expects to be nursery allocated.
MOZ_ASSERT_IF(group->shouldPreTenureDontCheckGeneration() &&
clasp != &CallObject::class_ &&
clasp != &LexicalEnvironmentObject::class_,
heap == gc::TenuredHeap);
MOZ_ASSERT(!group->realm()->hasObjectPendingMetadata());
// Non-native classes manage their own data and slots, so numFixedSlots and
// slotSpan are always 0. Note that proxy classes can have reserved slots
// but they're also not included in numFixedSlots/slotSpan.
if (!clasp->isNative()) {
MOZ_ASSERT_IF(!clasp->isProxy(), JSCLASS_RESERVED_SLOTS(clasp) == 0);
MOZ_ASSERT(!clasp->hasPrivate());
MOZ_ASSERT_IF(shape, shape->numFixedSlots() == 0);
MOZ_ASSERT_IF(shape, shape->slotSpan() == 0);
}
}
#endif